Matlab实验报告(三)-MATLAB绘图

合集下载

MATLAB实验报告

MATLAB实验报告

实验一MATLAB操作基础实验目的和要求:1、熟悉MATLAB的操作环境及基本操作方法。

2、掌握MATLAB的搜索路径及设置方法。

3、熟悉MATLAB帮助信息的查阅方法实验内容:1、建立自己的工作目录,再设置自己的工作目录设置到MA TLAB搜索路径下,再试验用help命令能否查询到自己的工作目录。

2、在MA TLAB的操作环境下验证课本;例1-1至例1-4,总结MATLAB的特点。

例1-1例1-2例1-3例1-43、利用帮助功能查询inv、plot、max、round等函数的功能。

4、完成下列操作:(1)在matlab命令窗口输入以下命令:x=0:pi/10:2*pi;y=sin(x);(2)在工作空间窗口选择变量y,再在工作空间窗口选择回绘图菜单命令或在工具栏中单击绘图命令按钮,绘制变量y的图形,并分析图形的含义。

5、访问mathworks公司的主页,查询有关MATLAB的产品信息。

主要教学环节的组织:教师讲授实验目的、开发环境界面、演示实验过程,然后同学上机练习。

思考题:1、如何启动与退出MA TLAB集成环境?启动:(1)在windows桌面,单击任务栏上的开始按钮,选择‘所有程序’菜单项,然后选择MA TLAB程序组中的MA TLABR2008b程序选项,即可启动MATLAB系统。

(2)在MA TLAB的安装路径中找到MA TLAB系统启动程序matlab.exe,然后运行它。

(3)在桌面上建立快捷方式后。

双击快捷方式图标,启动MA TLAB。

退出:(1)在MA TLAB主窗口file菜单中选择exitMATLAB命令。

(2)在MA TLAB命令窗口中输入exit或quit命令。

(3)单击MATLAB主窗口的关闭按钮。

2、简述MATLAB的主要功能。

MATLAB是一种应用于科学计算领域的数学软件,它主要包括数值计算和符号计算功能、绘图功能、编程语言功能以及应用工具箱的扩展功能。

3、如果一个MATLAB命令包含的字符很多,需要分成多行输入,该如何处理?使用‘;’隔开4、Help命令和lookfor命令有何区别?help是显示matlab内置的帮助信息一般是help 命令;而lookfor 关键词是通过关键词查找,“关键词”就是你要找的词语5、在MA TLAB环境下,建立了一个变量fac,同时又在当前目录下建立了一个m文件fac.m,如果需要运行fac.m文件,该如何处理?实验二MATLAB矩阵及运算实验目的和要求:1、掌握MATLAB数据对象的特点及运算规则2、掌握MATLAB建立矩阵的方法及矩阵处理的方法3、掌握MATLAB分析的方法实验内容:1.求下列表达式的值(1)(2)(3)(4)2.已知A=[-1,5,-4;0,7,8;3,61,7],B=[8,3,-1;2,5,3;-3,2,0] 求下列表达式的值:(1)A+6B和A^2-B+I(其中I为单位矩阵)。

MATLAB实验报告

MATLAB实验报告

MATLAB实验报告一、实验目的本次 MATLAB 实验旨在深入了解和掌握 MATLAB 软件的基本操作和应用,通过实际编程和数据处理,提高解决问题的能力,培养编程思维和逻辑分析能力。

二、实验环境本次实验使用的是 MATLAB R2020a 版本,运行在 Windows 10 操作系统上。

计算机配置为英特尔酷睿 i5 处理器,8GB 内存。

三、实验内容(一)矩阵运算1、矩阵的创建使用直接输入、函数生成和从外部文件导入等方式创建矩阵。

例如,通过`1 2 3; 4 5 6; 7 8 9` 直接输入创建一个 3 行 3 列的矩阵;使用`ones(3,3)`函数创建一个 3 行 3 列元素全为 1 的矩阵。

2、矩阵的基本运算包括矩阵的加减乘除、求逆、转置等。

例如,对于两个相同维度的矩阵`A` 和`B` ,可以进行加法运算`C = A + B` 。

3、矩阵的特征值和特征向量计算通过`eig` 函数计算矩阵的特征值和特征向量,加深对线性代数知识的理解和应用。

(二)函数编写1、自定义函数使用`function` 关键字定义自己的函数,例如编写一个计算两个数之和的函数`function s = add(a,b) s = a + b; end` 。

2、函数的调用在主程序中调用自定义函数,并传递参数进行计算。

3、函数的参数传递了解值传递和引用传递的区别,以及如何根据实际需求选择合适的参数传递方式。

(三)绘图功能1、二维图形绘制使用`plot` 函数绘制简单的折线图、曲线等,如`x = 0:01:2pi; y = sin(x); plot(x,y)`绘制正弦曲线。

2、图形的修饰通过设置坐标轴范围、标题、标签、线条颜色和样式等属性,使图形更加清晰和美观。

3、三维图形绘制尝试使用`mesh` 、`surf` 等函数绘制三维图形,如绘制一个球面`x,y,z = sphere(50); surf(x,y,z)`。

(四)数据处理与分析1、数据的读取和写入使用`load` 和`save` 函数从外部文件读取数据和将数据保存到文件中。

MATLAB实验3

MATLAB实验3

实验三函数式M文件和MA TLAB绘图一、实验目的:1、掌握基本的绘图命令2、掌握各种图形注释方法3、掌握三维图形的绘制方法4、了解一些特殊图形的绘制5、了解图形的高级控制技巧二、相关知识1基本的绘图命令1)、常用绘图命令常用的统计图函数:在MA TLAB 7中,使用plot函数进行二维曲线图的绘制>> x=0:0.1:10;>> y1=sin(x);>> y2=cos(x-2.5);>> y3=sqrt(x);>> plot(x,y1,x,y2,x,y3)3)、极坐标图形的绘制MA TLAB提供了polar(x1,x2,s)函数来在极坐标下绘制图形:(参数1角度,参数2极半径,参数3颜色和线性)>> x= 0:0.01:10;>> y1=sin(x);>> y2 = cos(x-2.5);>> polar(y1,y2,'-r+')4)、多个图形的绘制方法subplot函数可以实现多个图形的绘制:>>x = 0:.1:20;>>subplot(2,2,1)>>plot(x,sin(x));>>subplot(2,2,2);>>plot(x,cos(x))5)、曲线的色彩、线型和数据点型基本的绘图命令都支持使用字符串来给不同的曲线定义不同的线型,颜色和数据点型。

plot(x,sin(x),'-rd')图形注释对图形进行注释的方式A 图形注释“工具栏。

B 图形调色板中的注释工具C insert 菜单中的“注释”命令D 直接使用注释命令Annotation 函数Xlabel ,ylabel ,zlabel 函数 Title 函数 Colorbar 函数 Legend 函数实验内容: 一、 基础练习1、跟我练输入x,y 的值,并将它们的值互换后输出 x=input('Input x please:\n');y=input('Input y please:\n'); echo on z=x; x=y; y=z; disp(x); disp(y);echo off2、练习请求键盘输入命令keyboard ,处理完毕后,键入return ,程序将继续运行 求一元二次方程ax2 +bx+c=0的根。

MATLAB实验报告

MATLAB实验报告

MATLAB实验报告实验⼀ MATLAB 环境的熟悉与基本运算⼀、实验⽬的及要求1.熟悉MATLAB 的开发环境;2.掌握MATLAB 的⼀些常⽤命令;3.掌握矩阵、变量、表达式的输⼊⽅法及各种基本运算。

⼆、实验内容1、熟悉MATLAB 的开发环境: ① MATLAB 的各种窗⼝:命令窗⼝、命令历史窗⼝、⼯作空间窗⼝、当前路径窗⼝。

②路径的设置:建⽴⾃⼰的⽂件夹,加⼊到MATLAB 路径中,并保存。

? 设置当前路径,以⽅便⽂件管理。

2、学习使⽤clc 、clear,了解其功能与作⽤。

3、矩阵运算:已知:A=[1 2;3 4]; B=[5 5;7 8]; 求:A*B 、A 、*B,并⽐较结果。

4、使⽤冒号选出指定元素:已知:A=[1 2 3;4 5 6;7 8 9]; 求:A 中第3列前2个元素;A 中所有列第2,3⾏的元素; 5、在MATLAB 的命令窗⼝计算: 1))2sin(π2) 5.4)4.05589(÷?+ 6、关系及逻辑运算1)已知:a=[5:1:15]; b=[1 2 8 8 7 10 12 11 13 14 15],求: y=a==b ,并分析结果 2)已知:X=[0 1;1 0]; Y=[0 0;1 0],求: x&y+x>y ,并分析结果 7、⽂件操作1)将0到1000的所有整数,写⼊到D 盘下的data 、txt ⽂件 2)读⼊D 盘下的data 、txt ⽂件,并赋给变量num 8、符号运算1)对表达式f=x 3-1 进⾏因式分解2)对表达式f=(2x 2*(x+3)-10)*t ,分别将⾃变量x 与t 的同类项合并 3)求3(1)xdz z +?三、实验报告要求完成实验内容的3、4、5、6、7、8,写出相应的程序、结果实验⼆ MATLAB 语⾔的程序设计⼀、实验⽬的1、熟悉 MATLAB 程序编辑与设计环境2、掌握各种编程语句语法规则及程序设计⽅法3、函数⽂件的编写与设计4、了解与熟悉变量传递与赋值⼆、实验内容1.编写程序,计算1+3+5+7+…+(2n+1)的值(⽤input 语句输⼊n 值)。

实验三 绘图操作

实验三 绘图操作

课程名称: MATLAB实验题目:实验三绘图操作学生姓名:专业:电子信息工程班级:学号:指导教师:张静实验地点:现代通信实验室日期: 2012 年 12月 12 日实验3 绘图操作一、实验目的1、掌握绘制二维图形的常用函数。

2、掌握绘制三维图形的常用函数。

3、掌握绘制图形的辅助操作。

4、掌握图形对象属性的基本操作。

5、掌握利用图形对象进行绘图操作的方法。

二、预习要求(1)复习7章所讲内容;(2)熟悉MATLAB中的绘图命令。

三、实验内容1、已知2=,2cos(2)1y x=,完成下列操作:y y y=,31*2y x(1)在同一坐标系下用不同的颜色和线型绘制3条曲线。

程序如下:clear all;x=0:0.1:2*pi;y1=x.^2;y2=cos(2*x);y3=y1.*y2;plot(x,y1,'r-',x,y2,'b*',x,y3,'c+')运行结果:(2)以子图形式绘制3条曲线。

程序:clear all;x=(0:0.01:2)*pi;y1=x.^2;y2=cos(2*x);y3=y1.*y2;h1=subplot(2,2,1);plot(x,y1)title('y1=x.^2')h2=subplot(2,2,2);plot(x,y2)title('y2=cos(2*x)');h3=subplot(2,2,3);plot(x,y3)title('y3=y1.*y2');运行结果:(3)分别用条形图、阶梯图、杆图和填充图绘制3条曲线。

条形码绘图:代码:clear all;x=0:0.1:10;y1=x.^2;y2=cos(2*x);y3=y1.*y2;bar(x,y1)title('y1=x.^2');bar(x,y2)title('y2=cos(2*x)');bar(x,y3)title('y3=y1.*y2');运行结果:阶梯图绘图:代码:clear all; x=0:0.1:10;y1=x.^2;y2=cos(2*x);y3=y1.*y2;stairs(x,y1)title('y1=x.^2'); stairs(x,y2)title('y2=cos(2*x)'); stairs(x,y3)title('y3=y1.*y2'); 运行结果:杆图绘图:代码:clear all;x=0:0.1:10;y1=x.^2;y2=cos(2*x);y3=y1.*y2;stem(x,y1)title('y1=x.^2'); stem(x,y2)title('y2=cos(2*x)'); stem(x,y3)title('y3=y1.*y2'); 运行结果:填充图绘图:代码:clear all;x=0:0.1:10;y1=x.^2;y2=cos(2*x);y3=y1.*y2;fill(x,y1,’c’)title('y1=x.^2');fill(x,y2,’r’)title('y2=cos(2*x)');fill(x,y3,’b’)title('y3=y1.*y2'); 运行结果:2、绘制极坐标曲线sin()a b n ρθ=+,并分析参数a ,b ,n 对曲线形状的影响。

MATLAB第三节 绘图

MATLAB第三节 绘图

2,0.5],[0,2]上画隐函数 的图. 【例】 在[-2,0.5],[0,2]上画隐函数 e x + sin( xy ) = 0 的图 ezplot('exp(x)+sin(x*y)',[ezplot('exp(x)+sin(x*y)',[-2,0.5,0,2])
ezplot(‘x(t) , y(t) ezplot( x(t)’,’y(t) ,[tmin,tmax]) x(t) y(t)’,[tmin,tmax])
上画y=cos x 的图形 的图形. 【例】 在[0,π ]上画 上画
ezplot('sin(x)',[0,pi])
ezplot(‘f(x,y) ,[xmin,xmax,ymin,ymax]) ezplot( f(x,y)’,[xmin,xmax,ymin,ymax]) f(x,y)
note:表示在区间xmin<x<xmax和 ymin<y<ymax绘制隐 函数f(x,y)=0的函数图.
4.2特殊坐标图形 特殊坐标图形
semilogx(x,y)—单对数X semilogx(x,y) 单对数X轴绘图命令 semilogy(x,y)—单对数Y轴绘图命令 semilogy(x,y) 单对数Y
【例】以X轴为对数重新绘制上述曲线; 轴为对数重新绘制上述曲线; x=[0:0.01:2*pi] y=abs(1000*sin(4*x))+1 单对数X semilogx(x,y) %单对数X轴绘图 【例】以Y轴为对数重新绘制上述曲线; 轴为对数重新绘制上述曲线; x=[0:0.01:2*pi] y=abs(1000*sin(4*x))+1 单对数Y semilogy(x,y) %单对数Y轴绘图

国家开放大学《Matlab语言及其应用》实验报告(第三章--绘制二维和三维图形)

国家开放大学《Matlab语言及其应用》实验报告(第三章--绘制二维和三维图形)
国家开放大学《Matlab语言及其应用》实验报告
——绘制二维和三维图形
姓名:学号:
实验名称
绘制二维和三维图形
实验目标
利用Matlab常见函数完成二维图形的绘制和图形的标注;实现三维曲线和曲面图形的绘制。
实验要求
熟悉Matlab基本绘图函数、图形处理函数,了解三维曲线和曲面图形的绘制方法。
实验步骤
1、用Matlab基本绘图函数绘制二维图形:根据已知数据,用plot函数画出正弦函数曲线,并进行相应标注。
enon
实验内容
1.二维曲线绘图
例:精细指令实例
2.三维曲线绘图
【例】三维曲线绘图基本指令演示一:plot3
t=(0:0.02:2)*pi;x=sin(t);y=cos(t);z=cos(2*t);
plot3(x,y,z,'b-',x,y,z, 'rd')三维曲线绘图(蓝实线和红菱形)
box on
legend('链','宝石')在右上角建立图例
subplot(121);
surf(x1,y1,z1);
subplot(122);
[x2,y2,z2]=sphere (30);
surf(x2,y2,z2);
clear;clf;
z=peaks;
subplot(1,2,1);mesh(z);% 透视
hidden off
subplot(1,2,2);mesh(z);%不透视
2、用三维曲线绘图基本指令plot 3绘制三维曲线图:t=0~2pi;x=sin(t);y=cos(t);z=cos(2*t);用plot3函数画出关于x,y,z的三维曲线图,并适当加标注。

MATLAB实验三

MATLAB实验三

效果图:2. 当k = 1,2,3时,在同一幅图用同时画出函数sin()y kx 的图形。

MATLAB 代码:x = 0:pi/100:2*pi; y1 = sin(x); y2 = sin(2*x); y3 = sin(3*x); plot(x,y1,x,y2,x,y3) axis([0 2*pi -1 1])legend('y = sin(x)','y = sin(2x)','y = sin(3x)')注:legend 的作用是对图中的不同曲线做标注效果图:以上画图的效果也可以用hold on实现:x = 0:pi/100:2*pi;y1 = sin(x);y2 = sin(2*x);y3 = sin(3*x);plot(x,y1);hold on;plot(x,y2);plot(x,y3);hold offsubplot(2,2,4); plot(x,y)title('y = exp(x)*sin(4x)')注:title 的作用是给图形写上标题 效果图:4. 作隐函数3330x y xy +-=(笛卡尔儿叶形线)的图形 MATLAB 代码:ezplot('x^3+y^3-3*x*y',[-2 2 -2 2])axis equal注: axis equal 的作用是把纵横坐标的刻度比例一致 效果图:5. 在极坐标系下画出心形线2(1cos )r θ=+ MATLAB 代码:theta = 0:pi/100:2*pi; r = 2*(1+cos(theta)); polar(theta,r,'r')注:参数’r’是表示用红色作图,参数与颜色之间的关系如下表所示:b 蓝色g 绿色r 红色c 青绿色m 洋红色y 黄色k 黑色效果图:5. 画出空间螺旋线cos(),sin(),x t y t z t ===的图形MATLAB 代码:t = 0:pi/100:10*pi;x = cos(t);y = sin(t);z = t;plot3(x,y,z)title('x = cos(t),y = sin(t) z = t')效果图:7. 画出MATLAB测试函数peaks的图形MATLAB代码:[X,Y,Z] = peaks;surf(X,Y,Z)shading interpcolormap(cool)注:shading可使用的参数及含义如下:faceted 网络修饰,这是缺省的方式flat 去掉黑色线条,根据小方格的值确定颜色interp 颜色整体改变,根据小方块四角的值差补过度点的值确定颜色colormap为色图设定函数,其参数及含义如下:hsv ——饱和值色图gray ——线性灰度色图hot ——暖色色图cool ——冷色色图bone ——兰色调灰色图copper ——铜色色图pink ——粉红色图prism ——光谱色图jet ——饱和值色图IIflag ——红、白、蓝交替色图六、课堂练习1. 在同一坐标系中画出函数1sin(2*3)y x=+,2sin(32)y x=+的图形,且对于不以同的曲线使用不同的线型;>> x=0:pi/100:2*pi;y1=sin(2*x+3);y2=sin(3*x+2);plot(x,y1,'r-',x,y2,'g+')legend('y1=sin(2*x+3)','y2=sin(3*x+2)')>>2. 当k 分别取1, 2, 3, 4的时候,在同一个窗口的四个子图中分别画出函数*sin(*)y t k t ,每个子图加上适当的标题;>> t = 0:pi/100:2*pi;% 画第一幅子图y = t.*sin(1*t);subplot(2,2,1);3. 画出三个两两相切的圆(假设这个三个圆的方程分别是:22221,(3)4x y x y +=-+=,22(4)9x y +-=);>> ezplot('x^2+y^2=1',[-7 7 -7 7]);hold onezplot('(x-3)^2+y^2=4',[-7 7 -7 7]);hold onezplot('x^2+(y-4)^2=9',[-7 7 -7 7]);4. 在极坐标系下画出三叶形曲线3*sin(3*)r θ=,并尝试不同的线形和颜色; theta = 0:pi/100:2*pi;>> r=3*sin(3*theta);>> polar(theta,r,'r')theta = 0:pi/100:2*pi; r=3*sin(3*theta); polar(theta,r,'g+')5. 画出星形线332*cos ,2*sin x t y t ==的图形; >> t = 0:pi/100:10*pi;x=2*cos(t).^3;>> y=2*sin(t).^3;>> plot(x,y)6. 画出双纽线22222()3*()x y x y +=-的图形; ezplot('(x^2+y^2)^2=3*(x^2-y^2)',[-3 3 -3 3])7. 画出三维曲线图:*cos ,*sin ,x t t y t t z t ===>> t=0:pi/100:2*pi;>> x=t.*cos(t);>> y=t.*sin(t);>> z=t;>> plot3(x,y,z)8. 分别用mesh和surf函数画出马鞍面2246x yz=-+9x=-pi:pi/50:pi;y=x;[X,Y]=meshgrid(x,y); z=-X.^2./4+Y.^2./6.*9; mesh(X,Y,z)>> x=-pi:pi/50:pi;y=x;[X,Y]=meshgrid(x,y); z=-X.^2./4+Y.^2./6.*9; >> surf(X,Y,z)9. 画出球心在原点的球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验目的1.掌握MATLAB的基本绘图命令。

2.掌握运用MATLAB绘制一维、二维、三维图形的方法.3.给图形加以修饰。

一、预备知识1.基本绘图命令plotplot绘图命令一共有三种形式:⑴plot(y)是plot命令中最为简单的形式,当y为向量时,以y的元素为纵坐标,元素相应的序列号为横坐标,绘制出连线;若y为实矩阵,则按照列绘出每列元素和其序列号的对应关系,曲线数等于矩阵的列数;当y为复矩阵时,则按列以每列元素的实部为横坐标,以虚部为纵坐标,绘出曲线,曲线数等于列数。

⑵ plot(x,y,[linspec])其中linspec是可选的,用它来说明线型。

当x和y为同维向量时,以x为横坐标,y为纵坐标绘制曲线;当x是向量,y是每行元素数目和x维数相同的矩阵时,将绘出以x为横坐标,以y中每行元素为纵坐标的多条曲线,曲线数等于矩阵行数;当x为矩阵,y为相应向量时,使用该命令也能绘出相应图形。

⑶ plot(x1,y1,x2,y2,x3,y3……)能够绘制多条曲线,每条曲线分别以x和y为横纵坐标,各条曲线互不影响。

线型和颜色MATLAB可以对线型和颜色进行设定,线型和颜色种类如下:线:—实线:点线 -.虚点线——折线点:.圆点 +加号 *星号 x x型 o 空心小圆颜色:y 黄 r 红 g 绿 b 蓝 w 白 k 黑 m 紫 c 青特殊的二维图形函数表5 特殊2维绘图函数[1] 直方图在实际中,常会遇到离散数据,当需要比较数据、分析数据在总量中的比例时,直方图就是一种理想的选择,但要注意该方法适用于数据较少的情况。

直方图的绘图函数有以下两种基本形式。

·bar(x,y) 绘制m*n 矩阵的直方图.其中y 为m *n 矩阵或向量,x 必须单向递增。

·bar(y) 绘制y 向量的直方图,x 向量默认为x=1:m close all; %关闭所有的图形视窗。

x=1:10;y=rand (size(x )); bar(x,y ); %绘制直方图.123456789100.51Bar()函数还有barh ()和errorbar ()两种形式,barh()用来绘制水平方向的直方图,其参数与bar()相同,当知道资料的误差值时,可用errorbar ()绘制出误差范围,其一般语法形式为:errorbar (x,y,l,u)其中x,y 是其绘制曲线的坐标,l ,u 是曲线误差的最小值和最大值,制图时,l 向量在曲线下方,u 向量在曲线上方。

或用errorbar (x ,y ,e )绘制误差范围是[y —e ,y+e ]的误差直方图。

下面看一个例子。

x=linspace(0,2,20)*pi y=sin (x)e=std(y)*ones (size (x )); %设置误差为原始数据的标准差。

errorbar (x,y,e ); %绘制以标准差为误差范围的误差直方图.-22468-2-1012[2] 柄图柄图又称火柴杆图或针状图,主要用来绘制数位信号。

该图把每个数据点画成一条直线,在直线未端用点表示数据,所以形象地称作火柴杆图或针状图(大头针)。

绘制此图形的函数为stem ()函数,常用格式如下:·stem(y) 向量y 的值作为柄的长度从x 轴延伸,x 值自动产生,当y 为矩阵时,每一行的值在同一个柄上生成.·stem(x,y ) 绘制x 对y 的列向量的柄图。

x 和y 可以是同样大小的向量或矩阵,当x 为行或列向量时,y 行数必须与x 的长度相同。

·stem(…,’fill’) fill 参数确定是否填充柄的头部·stem(…,linespec) linespec 确定柄图线的属性,如线型,颜色及标记等。

下面是绘制柄图的一个简单的例子. x=linspace(0,10,50); y=sin(x)。

*exp (—x/3); stem(x,y); %绘制柄图0246810[3] 阶梯图和柄图类似,stairs()函数也常用来绘制横坐标是时间序列的数位信号,又称阶梯图。

不同的是stairs()函数绘制出的阶梯图其相邻数据点间不用直线连接,而是相邻两点间的值全取起点数据的值,该函数的常用语法格式与stem()函数类似的有:stairs (y ) stairs(x,y ) stairs(…,linespec)变量的含义与stem()函数类似。

Stairs ()函数画出阶梯图例子如下所示: x=linspace (0,10,50); y=sin (x).*exp(-x/3);stairs(x ,y ); %绘制函数y 的阶梯图 title (‘stair 函数')0246810-0.50.51stair函函[4] 饼图饼图与直方图的功能类似,都表示资料中某个分量在总量中所占的比例,它的基本命令格式为:·pie(x ) 绘制向量x 的饼图,x 中的值被x/sum (x)规范化以确定饼图中每一片的大小.如果sum(x)<=1,则直接用x中的值作为饼中片的大小,如果sum(x)〉1,则只画出饼图的一部分。

·pie(x,explode) 用来从x的饼图中去掉explode向量表示的片,explode必须与x大小相同。

explode向量被置1的分量对应片与此饼图分开。

·pie(x,label)用来标注饼图中片的名称.下面是一个用函数绘制饼图的例子.x=[11。

4,23。

5,35。

4,15.6];%某工厂4个季度的生产量。

explode=zeros(size(x)); %生成零向量。

[c,offset]=min(x); %c=1,求最小值的下标offset,c=1。

explode(offset)=1; %指定占比例最小的一块和整个饼分离.pie(x,explode);%绘制有分离的饼图。

[5]频数累计柱状图频数累计柱状图主要用于在笛卡尔坐标系中统计在一定范围内数据的频数,并用柱状图表示出来,可用大量的资料显示其分布情况和统计特性。

函数hist()的常用语法格式为:·n=hist(y)把y向量中的数据等划分为10个区间进行统计,最后画出10个柱形。

如果y为矩阵,则按列计算。

·n=hist(y,x)其中y为要统计的.当x为标量时,x指定了统计的区间数;当x为向量时,以该向量中各元素为中心进行统计,区间数等于x向量的长度。

·n=hist(y,n)其中n为要绘出的柱形数.下面是柱形图的一个例子。

x=randn(5000,1); %产生5000个m=0,s=1,的高斯乱数hist(x,20); %20代表长条的个数。

-4-2024020*******800[6]极坐标图极坐标图在工程计算中应用十分广泛,MATLAB 用polar ()函数绘制极坐标图,函数的常用语法格式为:polar (theta ,rho) 用角度theta 对极半径rho 作图。

其中theta 必须用弧度表示,如用角度需先转换。

polar (theta ,rho ,s ) theta 与rho 同前,s 为曲线使用的线型. 应用如下,得到的结果如图所示。

theta=linspace(0,2*pi); r=cos(4*theta ); polar (theta,r); title (‘极坐标图’)函函函函另外,还可以用rose()函数在极坐标系中绘制频数累计柱状图—角度直方图(又称玫瑰图).rose 和hist 很接近,只不过是将数据大小视为角度,数据个数视为距离,并用极坐标绘制表示。

该函数的常用语法格式为:·rose(theta) 用相角theta 绘制角度直方图·rose(theta,nbins ) 其中nbins 是一个整数,把0-2Π分成等份,默认值为20。

·rose(theta,x) 其中x 是一个向量,用theta 对向量x 作图。

接下来绘制离散随机序列的角度直方图。

x=randn (1000,1); rose(x);title (‘随机序列的角度直方图’) 运行后的结果如图所示.50 100 1503021060240902701203001503301800函函函函函函函函函函二、 实验内容与步骤1.创建一个5×5魔方矩阵,并画出表示这个矩阵的图形。

在命令区输入:A=magic (5);plot (A )2.在同一坐标轴里绘出y=sin(x ),z=cos (x )两条曲线。

在命令区输入:x=linspace (0,2*pi,50);y=sin (x ); plot(x ,y ) hold on z=cos(x); plot (x ,z) hold off3.画出y=x²的曲线(x ∈(-5,5))。

在这曲线上加入相同区间里的y=31x 的曲线,并且要求采用绿色折线标识。

在命令区输入;x=linspace (-5,5,100); y=x 。

^2; plot (x ,y)hold onz=x 。

^(1/3);plot(x,z ,’g——’) hold off4.在同一窗口,不同坐标系里分别绘出y1=sinx ,y2=cosx ,y3=cinh(x ),y4=cosh(x )4个图形。

在命令区输入:x=linspace (0,2*pi,30);subplot (2,2,1);plot (x,sin (x )); subplot(2,2,2);plot (x ,cos (x)); subplot (2,2,3);plot (x,sinh(x)); subplot (2,2,4);plot (x ,cosh(x ));5.绘制一个三维曲线x=cosp,y=sinp,z=p。

在命令区输入:p=0:pi/10:20*pi;x=cos(p);y=sin(p);z=p;plot3(x,y,z)三、练习1。

画出横坐标在(—15,15)上的函数y=cosx的曲线。

2.用图形表示离散函数y=|(n—6)|1-,并加入网格。

3。

用图形表示连续调制波形y=sin(t)sin(9t)及其包络线。

4.设x=zsin3z,y=zcos3z,要求在-45~45区间内画出x 、y 、z 三维曲线。

5.绘制函数r r z /)sin( 的三维曲面图,其中22y x r +=。

四、 实验分析本次试验主要对MATLAB绘图进行练习,二维作图与三维作图基本相似,只不过参数不同,多了一个z轴,进行三维图形绘制时注意x,y,z的顺序。

五、实验总结MATLAB具有强大的图形功能,能够解决很多的问题,将它们直观的表现出来。

相关文档
最新文档