七年级乘法公式教案
乘法公式(教案)

1.分组讨论:学生们将分成若干小组,每组讨论一个与乘法公式相关的实际问题,如计算长方形面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过拼图游戏,演示完全平方公式的构成和原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“乘法公式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(4)乘法公式在综合问题中的应用:学生需要将乘法公式应用于解决实际问题,特别是涉及到多个乘法公式的综合运用。
举例:求解(3x+4)²(2x-1)时,如何运用完全平方公式和平方差公式简化计算过程。
在教学过程中,教师要针对这些重点和难点内容进行详细讲解和反复强调,通过典型例题和练习,帮助学生深入理解乘法公式,并能够在实际问题中熟练应用。同时,注重启发学生思考,培养他们分析问题和解决问题的能力。
三、教学难点与重点
1.教学重点
(1)完全平方公式的理解与应用:使学生理解完全平方公式的推导过程,掌握公式结构特点,能够熟练运用公式进行计算。
举例:求解(x+3)²和(x-4)²的结果。
(2)平方差公式的理解与应用:让学生掌握平方差公式的结构,能够将实际问题转化为平方差公式的形式进行计算。
举例:计算9²-4²和5²-3²的结果。
七年级数学乘法公式-教案

1欢迎。
下载乘法公式【知识梳理】 (一)平方差公式1.平方差公式: a b a b a 2 b 2 2.平方差公式的特点:( 1) 左边是两个项式相乘,两项中有一项完全相同,另一项互为相反数 ( 2) 右边是乘式中两项的平方差(相同项的平方减去相反项的平方) (3) 公式中的a,b 可以是具体的数,也可是单项式或多项式表达式3. 平方差公式 语言叙述用于计算 逆用公式二)完全平方公式22ab b 22.完全平方公式的特点:号内而像是种每一项的平方,中间一项为左边二项式中两项乘积的 式可由语言表述为:首平方,尾平方,两项乘积在中央 . 3.公式的恒等变形及推广:222( 1) a b b a a b22( 2)a b a b4.完全平方公式的几种常见变形:2 2 2 2 ( 1) a 2 b 2a b 2ab a b 2ab在公式 a b a 2 2abb 2中, 左边是一个二项式的完全平方,右边是一个二次三项式 . 其中有两项是左边括 应用1.完全平方公式: a2b 22ab b 22 倍,其符号由左边括号内的符号决定 . 本公a b 2 a b a b a b2(2) ab2 2(3) a b 2a b 2 4ab(4) 2 2a b a b 4ab(5) a 2b c 2 a b2c22ab 2ac 2bc5•其他:(拓展内容)a b 3, a b 3 ,a3b3, a3b3完全平方公式的表示完全平方公式的结构特征完全平方公式的应用完全平方公式的变形【典型例题分析】(一)平方差公式题型一:【例1】请根据下图图形的面积关系来说明平方差公式【例2】判断下列各式能否用平方差公式计算,如果不能,应怎样改变才能使平方差公式适用?1 1(1) 2a b a 2b ( 2) 2a 3b 2b 3a ( 3) 3m 2 3m 23 3【分析】应用公式时,应首先判断能不能运用公式,必须是两个二项式相乘;这两个二项式要符合公式特征,公式中的“ a”,“b”与位置、自身的符号无关,观察的要点是“两因式中的两对数是否有一对完全相同,另一对相反” •不能盲目套用公式6.完全平方公式【答案】(1)不能,若改为2b ^a ^a 2b就可以应用公式3 3(2)不能,若改为2a 3b 3b 2a就可以应用公式【例4】类型2: abbab 2 a 2(1) (2xy+1 ) (1-2xy ) (2) (3x-4a ) (4a+3x ) (3) (3 2a)( 32a)(4) (b 2 2a 3)(2a 3 b 2)(3)不能,若改为 3m 2 3m 2就可以应用公式【借题发挥】1 •试判断下列两图阴影部分的面积是否相等【答案】相等2 •下列计算中可以用平方差公式的是()11 (A ) a2 a 2(B )abba 22(C )x y x y(D ) x 2 y x y 2【答案】B题型二:平方差公式的计算及简单应用【例3】类型1: a b a b a 2 b 2 (1)1 2a 1 2a(2) (1 5y)(15y)(3) (3m 2n)(3m2n)1 21 12 1x — x — 2 3 2 3【答案】 (1)原式=1 4a 2; (2)原式=125y 2; 2 2(3)原式=9m 4n ;(4)原式」X 2-4 9(4)【答案】(1)原式=1 4x2y2;(2)原式=9x216a2;(3)原式=4a29 ; (4)原式=4a6b4(1) ( 2x25)( 2x25)(2) ( 2a 3)(2a 3)(3) (-5xy+4z ) (-5xy-4z )(4) 2x2y 3z 2x2y 3z【答案】4 2 2 2 2 2 42 2 (1)原式=4x y 25 ; (2)原式=9 4a ; (3)原式=25x y 16z ; (4)原式=4x y 9z【例6】类型4:ma mb a b m a2 b2(xy+xz) (y-z )【答案】原式=xy2 xz2【方法总结】为了避免错误,初学时,可将结果用“括号”的平方差表示,再往括号内填上这两个数如:(a + b) (a - b)= a2 -b2J计算:(1 + 2x)(1 - 2x)= ( 1 ) 2- ( 2x ) =1-4x【例7】___________ m 2 4 m2.【借题发挥】1. ,括号内应填入下式中的(A.攵―令2 B . 4八拧C .■圧D .須+ 4于【答案】A【例8】运用平方差公式化简:(1) abab a 3b a 3b(2) x2 2 x2 2 x 2 x 2精品文档25欢迎下载(3) 1 x 1 x 1x 2 (4)【例8】用简便方法计算下列各式 2 1 (1) 91 89(2)59.8 60.2(3)-0 39 3 3【答案】(1) 原式= =901 90 1902 128099(2) 原式= =60 0.2 600.2602 0.223599.96【方法总结】 用乘法公式计算,首先要把需要计算的算式写成乘法公式的形式,一般地,给出的算式是可以写成 公式所要求的形式的,利用乘法公式能简化计算。
乘法公式初中教案

乘法公式初中教案教学目标:1. 理解乘法公式的概念和意义。
2. 学会运用乘法公式进行计算和解决问题。
3. 培养学生的逻辑思维能力和数学思维习惯。
教学重点:1. 乘法公式的概念和意义。
2. 乘法公式的运用和计算。
教学难点:1. 乘法公式的理解和记忆。
2. 乘法公式的灵活运用。
教学准备:1. 教学课件或黑板。
2. 练习题和答案。
教学过程:一、导入(5分钟)1. 引导学生回顾加法、减法、乘法、除法的定义和运算规则。
2. 提问:我们已经学过加法、减法、乘法、除法,那么有没有什么规律可以让我们更快地计算乘法呢?二、新课讲解(15分钟)1. 介绍乘法公式的概念:乘法公式是指在乘法运算中,两个数的乘积与它们的因数之间的关系。
2. 讲解乘法公式的意义:乘法公式可以帮助我们更快地计算乘法,避免繁琐的计算过程。
3. 举例讲解乘法公式:以2x3和3x2为例,解释它们的乘积都是6,强调乘法公式的交换律。
4. 讲解乘法公式的运用:通过例题展示如何运用乘法公式进行计算和解决问题。
三、课堂练习(15分钟)1. 布置练习题,让学生独立完成。
2. 选取部分学生的作业进行讲解和点评,纠正错误并巩固知识点。
四、拓展与应用(15分钟)1. 引导学生思考:乘法公式在日常生活中有哪些应用?2. 举例说明乘法公式在实际问题中的应用,如购物时计算总价、计算面积等。
3. 让学生尝试自己用乘法公式解决实际问题,培养学生的应用能力。
五、总结与反思(5分钟)1. 回顾本节课所学内容,让学生复述乘法公式的概念和意义。
2. 提问:通过本节课的学习,你们认为乘法公式在数学中的作用是什么?3. 鼓励学生积极思考,提出问题,培养学生的批判性思维。
教学评价:1. 课后作业:布置相关练习题,检验学生对乘法公式的掌握程度。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习效果。
3. 学生反馈:收集学生的学习心得和意见,不断改进教学方法,提高教学质量。
初中数学乘法公式教案

初中数学乘法公式教案教学目标:1. 理解乘法公式的含义和运用。
2. 掌握乘法公式的计算方法和步骤。
3. 能够灵活运用乘法公式解决实际问题。
教学重点:1. 乘法公式的含义和运用。
2. 乘法公式的计算方法和步骤。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾加法、减法、乘法、除法的定义和运算规律。
2. 提问:我们已经学习了加法、减法、乘法、除法,那么有没有一种方法可以快速计算两个数的乘积呢?二、新课讲解(15分钟)1. 介绍乘法公式的含义:乘法公式是一种用来计算两个数乘积的方法,它将乘法运算转化为加法运算。
2. 讲解乘法公式的计算方法和步骤:a. 将两个数写成加数的形式。
b. 将加数按照一定的顺序相加。
c. 得出结果。
3. 举例讲解乘法公式的运用:以2x3为例,将其写成加数的形式为2+2+2+2,然后按照顺序相加得到结果6。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固乘法公式的计算方法和步骤。
2. 引导学生相互讨论,解决练习题中的问题。
四、总结与拓展(5分钟)1. 总结乘法公式的含义和运用,强调乘法公式的计算方法和步骤。
2. 提问:乘法公式可以用来计算两个数的乘积,那么能不能用来计算三个数或者更多数的乘积呢?五、课后作业(布置作业)1. 根据课堂练习的情况,布置适量的作业,让学生巩固乘法公式的计算方法和步骤。
教学反思:本节课通过讲解乘法公式的含义和运用,让学生掌握了乘法公式的计算方法和步骤,并能够灵活运用乘法公式解决实际问题。
在教学过程中,注意引导学生相互讨论,解决练习题中的问题,提高了学生的合作意识和解决问题的能力。
同时,通过提问和拓展,激发了学生的思考和探究欲望,为后续的学习打下了基础。
《乘法公式》教案

《乘法公式》教案教学目标1、经历探究两数和乘以这两数的差的过程来推导平方差公式,理解平方差公式的结构特征,并能有意识地用平方差公式进行简单的运算;了解平方差公式的几何背景;2、在探究平方差公式的过程中,发展学生的符号感和推理、概括能力;通过平方差公式的几何背景的了解,体会代数与几何的内在统一;3、学生通过推导两数和的平方公式,了解公式的几何背景,理解并掌握公式的结构特征,并能进行简单的计算,能用文字、字母表达两数和的平方公式;4、学生通过推导两数差的平方公式,了解公式的几何背景,理解并掌握公式的结构特征,并能进行简单的计算,能用文字、字母表达两数差的平方公式.重点难点重点平方差公式的应用;两数和、两数差的平方的公式.难点(1)平方差公式的结构特征及其有效地应用;(2)平方差公式的几何意义;(3)对公式中字母a、b的广泛含义的理解与正确应用.教学设计【一】知识回顾学生活动:计算:(1)(x+3) (x+3) (2)(x-3) (x-3)(3)(a+b)(a+b) (4)(a-b)(a-b)教学活动说明:通过复习反馈旧知,为新知作铺垫,体现知识的连续性.创设情景提出问题,引入课题小组活动素材:有一位老爷爷非常喜欢孩子,每当有孩子到他家作客时,老爷爷都要拿出糖果招待他们.来一个孩子就给这个孩子一块糖,来两个孩子就给每个孩子两块糖,来三个孩子就给每个孩子三块糖……(1)地一天有a个小男孩一起去了老爷爷家,老爷爷一共给了他们_______块糖;(2)第二天有b个小女孩一起去了老爷爷家,老爷爷一共给了她们_______块糖;(3)第三天这(a+b)个小孩子一起去了老爷爷家,老爷爷一共给了他们_______块糖;(4)这些孩子第三天得到的糖果总数与前两天他们得到的糖果总数哪个多?多多少?为什么?教学活动说明:学生分组讨论,从有趣的分糖情景中理解(a+b)2与a2+b2的关系.可激发学生学习的欲望,体现循序渐进的原则,利于运用所学知识解决实际问题从而引出课题.探究(a+b)2的几何意义1、(两人合作探究):请同学们用自制长方形、正方形卡片拼出一个大正方形.按以下要点思考:(1)大正方形的边长是多少?(2)写出每一块卡片的面积.(3)用不同的形式表示正方形的总面积,并进行比较,你发现了什么?(a+b)2=a2+2ab+b2教学活动说明:由于正方形的总面积有多种表示方式,学生通过自己动手操作,观察、对比、猜想,了解(a+b)2=a2+2ab+b2的几何背景,对此公式有了一个直观的认识.2、(学生猜想):(a-b)2=?教学活动说明:学生在直观认识的基础上,从代数角度推导公式,可以进一步理解算理.鼓励学生自己探索,鼓励算法多样化.知识归纳交流活动(学生活动):用自己所理解的语言叙述公式.理解并掌握公式的结构特征.教学活动说明:有意识培养学生有条理的思考和语言表达能力,在交流的氛围中分享同学的想法.公式的运用(师生合作学习):两数和(差)的平方公式计算第一题组(1)(a+1)2;(2)(a+3)2;(3)(2a+3b)2;(4)(2a+b)2;第二题组(1)(x-1)2;(2)(x-3)2;(3)(2x-3y)2;(4)(2x-y)2;第三题组(1)(-2m+n)2;(2)(-2m-n)2;(3)10012;(4)9992.(教学活动说明):帮助学生理解公式中字母的广泛性,在练习的过程中掌握书写的格式.体会公式的应用价值.六、学生反馈练习(学生四大组竞赛活动):(1)(2x+y)2;(2)(5a +4b)2;(3)972;(1)(2x-y)2;(2)(5a -4b)2;(3)2022;(1)(x+2y)2;(2)(4a +5b)2;(3)1012;(1)(x-2y)2;(2)(4a-5b)2;(3)992.(教学活动说明):由每个组的组长抽题交给本组成员,限定每人只能做一题然后传给下一个同学,比速度、比合作、比准确,通过学生的共同努力完成任务.在巩固知识的同时培养团队精神和荣誉感.七、知识的小结和延伸教学活动说明:本节课理解掌握了两数和的平方公式,利用公式计算时首先确定将哪个数或者式看作a,哪个数或者式看作b,然后再按公式展开.我们还可以运用所学的知识和方法去探索(a+b+c)2的结论.只要求感兴趣的同学去探索.【二】活动一竞赛激智,建立模型,揭示公式问题1看谁能又快又准地回答下面4个小题的计算结果.(5+3)(5-3)﹦________;(0.5+0.3)(0.5-0.3)﹦_______;(5+0.3)(5-0.3)﹦________;(0.5+3)(0.5-3)﹦_______.(全部结果出来后)追问:你是如何计算的?设计意图:以通过竞赛为载体,以自主参与为教学形式,使学生从计算的快慢中产生疑惑:总是那几个算得快,我怎么也能象他们那样?进而激发学生的求知的热情.问题2:请计算下列多项式的积:(1)(x+1)(x-1)﹦____________;(2)(m+2)(m-2)﹦___________;(3)(2x+1)(2x-1)﹦__________.(全部结果正确后)追问1:你们的计算结果有什么规律吗?追问2:你发现这些多项式的乘积的表达形式有什么规律吗?学生总结:(1)计算的结果都是两项的平方差,与以往两项乘以两项的结果大多是三项或四项不同;(2)这些两项乘以两项中,有一项是完全相同,另一项又是互为相反的;(3)结果是两项的平方差,并且是完全相同项的平方减区互为相反项的平方.师生互动:(a+b)(a-b)﹦a2-b2两个数的和与这两个数的差的记,等于这两个数的平方差.教师:(1)这个公式叫做(乘法的)平方差公式.(2)公式中的字母可以表示具体的数,也可以表示单项式或多项式;(3)只要是符合公式的结构特征,都可以用公式进行计算.学生练习:1、下列多项式乘法中,能用平方差公式计算的有___________.A(x+1)(1-x) B(a+b)(b-a) C(-a+b)(a-b)D (x 2-y )( x +y 2)E (-a -b )(a -b )F (c 2-d 2)(d 2+c 2)2、下面各式的计算对不对?如果不对,应当怎样改正?(1)(x +2)(x -2)﹦x 2-2; (2)(-3a -2)(3a -2)﹦9a 2-4.设计意图:以学生熟悉的多项式的积为载体,以全部参与讨论、归纳总结为教学形式,由于计算的结果与以往的结果在表现的形式上有大的差异,以及平方差公式的发生过程的探究,体会到从一般到特殊的数学思想方法;通过选择、填空等的练习让学生了理解、掌握平方差公式的结构特征,从心里感受这种一般到特殊的数学思想方法的魅力.活动二师生互动、感知代数、几何的统一师:请同学们将准备的正方形纸板拿出:(1)设它的边长为a (图1),大家都知道它的面积为a 2;(2)请同学们按图2剪去一个边长为b 的小正方形,大家都知道剩下部分的面积为(a 2-b 2);(3)请同学们将剩下的图形剪成(沿图2的虚线)两个长方形,并将一边长为b 的小长方形拼到一边长为a 的长方形后得图3;同学们都知道图3的一边长为(a +b ),另一边长为(a -b ),面积为(a +b )(a -b );(4)同学们比较图2和图3不难发现它们面积的关系.a b a -b )﹦a 2-b 2.图(1) 图(2) 图(3)师:我们通过拼图游戏给出了平方差公式的一种几何解释.这说明平方差公式具有直观的几何意义,也说明代数不只是计算,还有美妙的几何意义,这实际就是数学魅力.设计意图:通过学生拼图游戏,学生直观体验了平方差公式的几何意义,感受代数不只是计算,还有美妙的几何意义,亲身经历了数学魅力所在.活动三例题分析、指导应用、巩固理解例1运用平方差公式计算:(1)(a +3)(a -3)(2)(2a +3b )(2a -3b )(3)(1+2c )(1-2c )(4)(-2x -y )(2x -y )分析:(1)在(1)中,可以把3看成b,即:(a+3)(a-3)﹦a2-32(a+b)(a-b)﹦a2-b2(2)将(2)调整成平方差公式形式计算.(3)(4)自主计算.例2:运用平方差公式计算:1998×2002设计意图:通过一则平方差公式简单的例题分析及应用,巩固理解了公式结构特征,让学生进一步感受到这种一般到特殊的数学思想方法的魅力.活动四拓展分析、提升能力计算(1)102×98;(2)(y+2)(y-2)-(y-1)(y+5).分析:只有符合公式要求的乘法,才能用公式简化计算,其余的乘法运算仍按乘法法则计算.学生练习:运用平方差公式计算:(1)51×49;(2)(3x+4)(3x-4)-(2x+3)(3x-2)设计意图:这是平方差公式的拓展例题分析及应用,使学生进一步体会平方差公式的结构特征,能进一步灵活运用乘法公式、法则进行计算.活动5小结:平方差公式你学会了吗?。
七年级数学下册《乘法公式的综合运用》教案、教学设计

5.教师及时批改作业,了解学生的学习情况,为下一步教学提供依据。
d.总结:引导学生总结乘法公式的特点、应用规律和注意事项。
e.作业:布置适量的课后作业,巩固所学知识。
4.教学评价:
a.过程性评价:关注学生在课堂上的参与程度、思考问题和解决问题的能力。
b.终结性评价:通过课后作业和阶段测试,评价学生对乘法公式的掌握程度。
c.个性化评价:针对学生的个体差异,给予有针对性的指导和鼓励。
2.完全平方公式:继续采用具体数字,让学生观察并归纳出完全平方公式:a² + 2ab + b² = (a + b)²。同时,引导学生了解完全平方公式的变式,如a² - 2ab + b² = (a - b)²。
3.公式的推导与应用:通过几何图形、实际例题等方式,讲解乘法公式的推导过程和应用方法,让学生理解乘法公式的实际意义。
2.情境导入:展示一个与学生生活相关的实际问题,如计算一个正方形与一个长方形的面积差,引发学生思考如何简化计算过程,从而引出乘法公式的学习。
(二)讲授新知
1.平方差公式:以具体的数字为例,引导学生观察并发现两个数的平方差与这两个数的和与差之间的关系。通过实际计算,总结出平方差公式:a² - b² = (a + b)(a - b)。
七年级数学下册《乘法公式的综合运用》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握乘法公式的综合运用,包括平方差公式、完全平方公式以及它们的变式。
2.培养学生运用乘法公式进行简便计算的能力,提高运算速度和准确性。
3.通过对乘法公式的运用,使学生能够解决一些实际问题,如面积计算、速度问题等。
13七年级数学下册 9.4乘法公式(第2课时)教案2 苏科版

9.4 乘法公式(二)一、教学目标:1.通过拼图探索计算2)(c b a ++的公式,并推导这个公式.2.进一步巩固完全平方公式和平方差公式,并会用乘法公式化简某些代数式.二、教学重、难点:如何灵活运用乘法公式三、教学过程:情境创设 请同学们用准备好了的正方形和长方形纸板拼图,拼成如图所示的大正方形.问:通过这样的拼图过程,你能发现什么吗?探索活动做一做问题一:你是如何表示图中大正方形的面积的?问题二:你能用2222)(b ab a b a ++=+推导2)(c b a ++吗?结论:得到公式ca bc ab c b a c b a 222)(2222+++++=++小试牛刀计算(1)2)432(c b a ++ (2)2)23(z y x --例题教学例1. 计算(1)2)35(p + (2)2)72(y x - (3))9)(3)(3(2++-x x x(4)22)32()32(+-x x (5))4)(4(++-+y x y x 练一练 (1)22)10()10(+-x x (2)))((2222n mn m n mn m +-++ (3)22)33()33(--+a a (4))3)(3()3(2y x y x y x +--+ 例2. 若,4,922-==+xy y x 求(1)2)(y x + (1)2)(y x -例3. 求代数式)(5)3()2(22n m m n m n m -+--+的值,其中51,101==n m . 小结(1) 说说完全平方公式、平方差公式的特征(2) 把b a +看成""x ,就可以用完全平方公式计算2)(c b a ++,运用这种转化的思想,你能计算3)(b a +、4)(b a +吗?作业P82习题9.4第1,4(2)、(4)、(6),6题。
七年级数学下册教案-9.4 乘法公式6-苏科版

9.4乘法公式(1)课型:新授课一、教学目标知识与技能:理解完全平方公式,并能利用完全平方公式进行整式乘法运算。
过程与方法:经历探索完全平方公式的过程,感悟数形结合思想,知道用符号进行运算、推理,得到的结论具有一般性。
情感态度与价值观:培养学生良好的数学思维习惯,增强学生学习数学的兴趣。
二、教学重点完全平方公式的推导与应用。
三、教学难点灵活地应用完全平方公式。
四、教学方法教法:启发式教学学法:小组合作、探索交流五、教学过程5.1【前世印记】活动一:请学生拿出准备好的纸片,以小组为单位,拼一个正方形。
学生操作,结果如图。
问:你能计算它的面积吗?学生从整体和部分两个角度分别计算,得到:2222+=+a+)(bbaba活动二:你能只利用其中的三张纸片,拼一个正方形,面积是2()a b -吗?学生动手操作。
问:有没有其它方法表示这个正方形的面积?学生从另一个角度表示面积,得到等式:222()2a b a ab b -=-+问:你能利用代数运算的方法验证从几何拼图中得到的两个等式吗? 学生利用多项式×多项式进行检验。
【设计意图】从几何拼图出发,利用整体和部分两种角度分别计算面积,得到完全平方公式,并进行检验。
在活动过程中体会从不同角度思考问题,及数形结合思想。
5.2【正印封神】完全平方公式:(和的完全平方)2222)(b ab a b a ++=+;(差的完全平方)222()2a b a ab b -=-+.文字描述: 两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.问:仔细观察两个公式,它们有什么相同点和不同点? 学生观察思考。
相同:左边是平方形式;右边是一个三项式;不同:左边一个是和的平方,一个是差的平方;右边第二项2ab 的符号不同,且2ab 项的符号与左边的加减符号一致。
利用公式计算:2(1)x +;2(2)a b -.分析:利用哪个公式计算:公式中的a 、b 分别是什么?【设计意图】通过观察,充分认识两个公式的异同,并能在实际问题中选择恰当的公式进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:运用乘法公式进行计算
教学目标:1、知识与技能:掌握乘法公式的结构特征,灵和地综合运用平方差公式和完全平方公式进行混合运算。
2、过程与方法:经历综合运用乘法公式进行运算过程,进一步
发展符号感,体会公式中的字母a,b的广泛含义。
3、情感态度与价值观:通过交流各自的做法,培养学生倾听他
人的意见,形成与他人合作学习的习惯。
教学重点:正确选择乘法公式进行运算。
教学难点:综合运用平方差和完全平方公式进行多项式的计算。
教学方法:探索讨论、范例练习与分析、归纳总结。
教学过程:
一、复习乘法公式
1、平方差公式:
2、完全平方公式:
它们各自的特点是什么?
二、探索讨论
想一想以下式子哪些可以写成两个数的和与差的积
(1)(2) )
-
-
a+
(b
)(
a
b
(3)(4)
(5) 22)()(b a b a -++ (6)
(7) 三、范例练习与分析
例1运用乘法公式计算:
(1)
(2) ))((b a b a +-- (4) (4)
(5) 22)()(b a b a -++ (6)
(7)
四、小结:利用乘法公式可以使多项式的运算更为简便,但必须正确选择 乘法公式。
五、思考
(1) ()2c b a ++ (2)()2c b a -+
(3)()()()()12......1212123242++++
六、布置作业 P107练习
石阡县坪地场初级中学数学教研组
石阡县坪地场中学 数学教研组
七年级下4.3.3运用乘法公式计算 (题卡)
学 校 姓 名 班 级
运用乘法公式计算(先找出下例式子哪些可以化为两个数的和与差的积,并找出哪两个数填在括号内)
(1)
( ) (2) ))((b a b a +-- ( )
(5)
( ) (4) ( )
(5) 22)()(b a b a -++ ( ) (6)
( )
(7)
( )
思考:
(1) 2)c b a ++( (2) ()2c b a -+
(3) ()()()()12......1212123242++++
通过上面的练习你最大的收获是什么?有那些困惑?
说课稿:
我说课的内容是:《乘法公式——平方差公式》。
本章的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。
而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。
因此,在教学安排上,我选择从学生熟悉的公式的特点入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。
数学是一门抽象的学科,但数学是来源于实际生活的。
因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。
本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。
乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。
本节课设计了一系列学生活动,老师作为辅导者引领学生进入本节的知识结
构中,展现了学生自主学习的特点,在思考、讨论、口答、小结等环节中掌握新知。