钢管下料数学建模
钢管下料数学建模

钢管下料数学建模摘要:本论文通过数学建模的方法研究了钢管下料问题。
首先,提出了一个钢管下料的数学模型,建立了目标函数和约束条件,以求解钢管的最优下料方案。
接着,采用了一种基于遗传算法的优化方法对模型进行求解,通过对实际钢管下料问题的实例进行仿真实验,验证了模型的可行性和有效性。
最后,对论文的研究结果进行了分析和总结,并对进一步的研究方向进行了展望。
关键词:钢管下料;数学建模;遗传算法;最优化1. 引言钢管的下料是制造业中常见的生产工艺之一。
通过合理的下料方案,可以最大限度地利用原材料,提高钢管的利用率。
因此,钢管下料问题的研究对于降低生产成本、提高生产效率具有重要意义。
2. 钢管下料的数学模型2.1 目标函数钢管下料的目标是使得原材料的浪费最小化。
因此,我们可以将下料的浪费量作为目标函数,即最小化浪费的总量。
2.2 约束条件钢管下料的约束条件主要包括原材料的长度限制、钢管的尺寸要求、切割工具的限制等。
这些约束条件需要在数学模型中进行描述和考虑。
3. 遗传算法优化方法遗传算法是一种基于生物进化理论的优化算法,可以通过模拟自然选择、交叉和变异等过程,搜索最优解。
我们可以将钢管下料问题转化为一个优化问题,通过遗传算法来求解最优下料方案。
4. 实验仿真我们通过对一组实际钢管下料问题的实例进行仿真实验,验证了数学模型和遗传算法的可行性和有效性。
实验结果表明,采用遗传算法可以得到较优的下料方案,并且在一定时间内可以找到满足约束条件的最优解。
5. 结果分析和总结通过对实验结果的分析和总结,我们可以得出以下结论:数学模型和遗传算法在钢管下料问题中具有较好的应用效果,可以提高下料方案的优化效果和生产效率。
6. 进一步展望在进一步的研究中,我们可以考虑对模型进行改进和扩展,以适应更复杂的钢管下料问题。
此外,可以结合其他优化算法和数据挖掘技术,进一步提高钢管下料的效果和精度。
【精品】钢管下料数学建模

关于防盗窗钢管下料最优方案的数学模型摘要本文主要是解决在工程施工过程中钢管下料的最优方案,建立相关的数学优化模型,及在遇到原料不能满足我们的生产需要的时候如何建立一个比较优化的方案并能切实可行,并能满足双方的利益最大。
对上述问题的分析,将钢管下料问题简单的分为圆形和方形钢管分别下料,使问题更简化.同时考虑到原料的价格对我们的选择方案的影响,通过查阅有关资料得知原料的价格与长度成正比。
对圆形钢管原料和订购商所需规格钢管的材料总长的分析可得,原料足以满足所需,主要考虑的是生产厂家在满足订单生产的条件下,使自己所使用的钢管原料的总费用最少,同时满足剩余废料最省作为最终目标。
同理分析得出出方形管原料总长不足以满足订单的生产需要,故我们应先满足订单中规格中米数较长的量.因为从厂家的利益考虑,规格米数较长额单价更高;而对于订购商来说规格较长的量比规格短的量用途大.故我们例举出针对圆形或方形的所有可行的下料方案,把用于该方案的钢管数为设定相应的未知数x,同时根据已知条件构建了相应的约束条件,建立了本文中的线性优化模型,最终使用lingo.12计算的出如下结果:一、圆形钢管分割方案:对模型一、二分析得出最终使用模型二,具体数据如下:(分析详见正文)二、方形钢管分割方案:【关键词】线性规划费用最省余料最省LINGO12.0一.问题的提出某不锈钢装饰公司承接了一住宅小区的防盗窗安装工程,为此购进了一批型号为304的不锈钢钢管,分为方形管和圆形管两种,具体数据如下表:根据小区的实际情况,需要截取钢管的规格与数量如下:购商的订单的同时还能使自己所用的原料费最少。
二.问题的分析通过题目可知,要求我们在题目所给定的条件下,找寻最佳下料方案,使满足各种需要的前提下所使用的原材料的费用、所使用的量和所剩的余料最省。
圆形钢管原材料的总长:4*5000+6*9000=74000(米)订单产品的总长:1。
5*16500+1.8*12000+1.2*8000=55950(米)方形钢管原材料的总长:4*2000+6*2000=20000(米)订单产品的总长:1。
数学建模---最优化的有效切割问题

约束 满足需求 4 x1 3x2 2 x3 x4 x5 50
x2 2 x4 x5 3x6 20 x3 x5 2 x7 15
26 x1 x2 x3 31
x1 x2 x3
模式排列顺序可任定
计算结果
• 模式1:每根原料钢管切割成3根4米和1根6 米钢管,共10根; • 模式2:每根原料钢管切割成2根4米、1根5 米和1根6米钢管,共10根; • 模式3:每根原料钢管切割成2根8米钢管, 共8根。 • 原料钢管总根数为28根。
整数非线性规划模型
钢管下料问题2
增加约束,缩小可行域,便于求解
每根原料钢管长19米
需求:4米50根,5米10 根,6米20根,8米15根
4 50 5 10 6 20 8 15 26 原料钢管总根数下界: 19
特殊生产计划:对每根原料钢管 模式1:切割成4根4米钢管,需13根; 模式2:切割成1根5米和2根6米钢管,需10根; 模式3:切割成2根8米钢管,需8根。 原料钢管总根数上界:13+10+8=31
钢管下料问题2 目标函数(总根数)
Min x1 x2 x3
模式合理:每根 余料不超过3米
约束 条件
满足需求
r11 x1 r12 x2 r13 x3 50
r21 x1 r22 x2 r23 x3 10
16 4r11 5r21 6r31 8r41 19
钢管下料数学建模

钢管下料数学建模摘要:I.引言- 介绍钢管下料数学建模的背景和意义II.钢管下料数学建模的基本概念- 钢管下料问题的定义和特点- 数学建模的基本步骤和方法III.钢管下料数学模型的构建- 建立切割长度和数量的数学模型- 建立切割方式选择的数学模型- 建立总余料最少和切割总根数最少的数学模型IV.钢管下料数学模型的求解- 求解切割长度和数量的数学模型- 求解切割方式选择的数学模型- 求解总余料最少和切割总根数最少的数学模型V.钢管下料数学建模的应用- 实际工程中的应用案例- 取得的成果和效果VI.总结与展望- 总结钢管下料数学建模的过程和结果- 展望未来的研究方向和应用场景正文:钢管下料数学建模是一种利用数学方法解决钢管下料问题的技术。
在钢管生产中,下料是一个重要的环节,它涉及到钢管的切割、拼接和余料的处理等问题。
通过建立数学模型,可以有效地解决这些问题,提高生产效率和质量。
钢管下料问题的定义是:给定一定长度的钢管,在满足一定约束条件下,如何进行切割和拼接,使得切割后的钢管长度和数量满足要求,同时总余料最少或切割总根数最少。
这个问题具有非线性、整数和组合优化等特点,需要采用合适的数学建模方法进行求解。
钢管下料数学建模的基本步骤包括:问题定义、变量和参数定义、模型构建、模型求解和模型检验等。
其中,问题定义是明确问题的具体要求和约束条件;变量和参数定义是确定需要求解的变量和参数;模型构建是建立数学模型,包括目标函数和约束条件;模型求解是采用合适的算法求解模型,得到最优解;模型检验是对最优解进行检验,确认是否满足要求。
在钢管下料数学模型中,切割长度和数量的数学模型是最基本的模型,它决定了切割后的钢管长度和数量。
切割方式选择的数学模型是为了在满足长度和数量要求的前提下,选择最优的切割方式。
总余料最少和切割总根数最少的数学模型是为了在满足长度和数量要求的前提下,使得总余料最少或切割总根数最少。
钢管下料数学建模的应用非常广泛,可以应用于钢管生产、物流运输、资源分配等领域。
下料问题数学建模(钢管)

防盗窗下料问题摘要本文针对寻找经济效果最优的钢管下料方案,建立了优化模型。
问题中的圆形管下料设定目标为切割原料圆形管数量尽可能少且在使用一定数量圆形管的过程中使被切割利用过的原料总进价尽可能低。
问题中的方形管原料不足以提供所需截得的所用钢管,故设目标为使截得后剩余方形管总余量最小。
模型的建立过程中,首先运用了C语言程序,利用逐层分析方法,罗列出针对一根钢材的截取模式;然后根据条件得出约束关系,写出函数关系并对圆形管下料建立了线性模型,对方形管下料建立了非线性模型;接着,在对模型按实际情况进行简化后,借助lingo程序对模型求解,得出了模型的最优解,并给出了最符合经济效果最优原则的截取方案。
关键词:钢管下料;最优化;lingo;问题提出某不锈钢装饰公司承接了一住宅小区的防盗窗安装工程,为此购进了一批型号为304的不锈钢管,分为方形管和圆形管两种,方管规格为25×25×1.2(mm),圆管规格Φ19×1.2(mm)。
每种管管长有4米和6米两种,其中4米圆形管5000根,6米圆形管9000根,4米方形管2000根,6米方形管2000根。
根据小区的实际情况,需要截取1.2m圆管8000根, 1.5m圆管16500根,1.8m圆管12000根,1.4m方形管6000根,1.7m方形管4200根,3m方形管2800根。
请根据上述的实际情况建立数学模型,寻找经济效果最优的下料方案。
基本假设和符号说明1、假设钢管切割过程中无原料损耗或损坏;2、假设余料不可焊接;3、假设同种钢材可采用的切割模式数量不限;4、假设不同长度钢管运费、存储资源价值没有区别;5、假设该304型号不锈钢管未经切割则价值不变,可在其它地方使用。
为便于描述问题,文中引入一些符号来代替基本变量,如表一所示:问题分析与模型建立问题中的圆形管原料足够,寻找经济效果最优的下料方案,即目标为切割原料圆形管数量尽可能少。
考虑到6米圆形管与4米圆形管的采购价格应该是不同的,所以我们寻求的是在使用一定数量6米圆形管与4米圆形管的过程中使被切割利用过的原料总进价尽可能低。
关于钢材下料问题的数学建模论文

B 题 钢管下料问题摘要应客户要求,某钢厂用两类同规格但不同长度的钢管切割出四种不同长度的成品钢管。
故该原料下料问题为典型的优化模型。
钢厂在切割钢管时,又要求每种钢管的切割模式都不能超过5种,故我们先分别列出两种原料钢管出现频率较高的切割模式,每一问都需要针对不同钢管节约要求分别求出5种切割模式的最佳组合。
第一问要求余料最少,在切割模式的选择方面,我们尽量要求余料为零,并在此基础上要求切割得成品钢管除满足客户要求外,多余客户要求的钢管数也要尽可能的少,运用Lingo 软件求出余料最少时,需要65根A 类钢管采用4种切割模式切割,需要40根B 类钢管采用2种切割模式切割,总余料为20米。
第二问要求总根数最少,故我们只要求总根数最少,在这里我们分了两种情况:有余料时,需A 类钢管65根,采用5种切割模式,需B 类钢管38根,采用4种切割模式,余料各为2米;无余料时,需A 类钢管75根,采用3种切割模式,需B 类钢管39根,采用4种切割模式。
第三问我们运用Lingo 软件求出较优解为当m=0.4时最大收益h=a-159,具体切割模式见模型求解部分。
为了找到替代比例与最大收益的关系,我们分别给m 赋值为0、10%、20%、30%、40%时,用Lingo 解得各自的最大收益,并用四次拟合的方法大致算出了最大收益z 和替代比例m 的关系,为4322083.31416.7279.1715.833160h a m m m m =+-+--(a 为总售出额)。
第四问就是将钢厂下料问题一般化,将本文中模型进行推广,得出了可普遍应用的一般化模型。
关键词:优化模型、整数规划模型、线性规划模型、非线性规划模型、Lingo 、四次拟合问题重述某钢厂主要生产两种结构用无缝钢管,两类钢管除长度不同外规格无差别,A 类型钢管长度为19米,B 类型钢管长度为29米。
假设某单位要订购该钢厂的一批钢管,要求钢厂将原料钢管按照客户订单的要求进行切割成不同长度,具体如下:钢厂在切割钢管时,要求每种钢管的切割模式都不能超过5种,建立数学模型解决下列问题: (1)在满足订单要求的前提下,如何切割才能使余料最省;(2)在满足订单要求的前提下,如何切割才能使耗费原料钢管的数量最少;(3)如果B 类钢管的单价是A 类钢管的2.5倍,又目前钢厂B 类钢管产量不足,如果客户要求将B 类钢管中的5米、7米和8米三种长度的订货量必须全部满足,而B 类中3米的订货量中可以有不超过40%的部分用A 类代替,又该如何切割,才能使钢厂的收益最大,并给出替代比例与最大收益之间的关系。
数学建模合理下料问题

数学建模合理下料问题某钢管零售商从钢管厂进货,然后将钢管按照顾客的要求切割后售出,从钢管厂进货时,每根钢管的长度都是19米①现在有一客户需要50根4米、20根6米、15根8米的钢管,应如何下料最节省?②零售商如果采用的不同切割方式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割方式不能超过3种。
此外,该客户除需要①中的三种钢管外,还需要10根5米的钢管,应如何下料最省?(一)模型假设:1,假设钢管可以任意分割一根钢管可以有以下7种分法:①②③④⑤⑥⑦4米 4 3 2 1 1 0 06米0 1 0 2 1 3 08米0 0 1 0 1 0 2余料 3 1 3 3 1 1 3符号说明:x1-x7,表示对应分割方法下4,6,8米钢管的根数w , 表示所用的19米钢管数h , 表示余料模型分析:要求下料最节省,也即是所用的19米钢管数w最少。
客户需要50根4米、20根6米、15根8米的钢管,可以得到以下方程式:4x1+3x2+2x3+x4+x5>=50x2+2x4+x5+3x6>=20x3+x5+x7>=15Min h=3x1+x2+3x3+3x4+x5+x6+3x7模型求解:上述问题属于线性规划,它可以用单纯形法方法求解,也可以用LINDO软件求解。
用LINDO求解如下:直接输入min 3x1+x2+3x3+3x4+x5+x6+3x7subject to4x1+3x2+2x3+x4+x5=50x2+2x4+x5+3x6=20x3+x5+x7=15end将文件存储并命名后,选择菜单“solve”,并对提示“DO RANGE(SENSITIVITY)ANALYSIS”回答“是”或“否”。
即可得输出结果。
LP OPTIMUM FOUND AT STEP 4OBJECTIVE FUNCTION V ALUE1) 35.00000VARIABLE V ALUE REDUCED COSTX1 0.000000 0.000000X2 10.000000 0.000000X3 5.000000 0.000000X4 0.000000 4.750000X5 10.000000 0.000000X6 0.000000 4.750000X7 0.000000 1.500000模型假设:一根钢管可以有以下15种分法:⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂44 3 3 2 2 2 1 1 1 0 0 0 0 0 0 米0 1 0 2 1 0 3 1 0 2 2 1 1 0 0 5米0 0 1 0 1 0 0 0 1 1 0 2 1 3 0 6米0 0 0 0 0 1 0 1 1 0 1 0 1 0 2 8米3 2 1 1 0 3 0 2 1 3 1 2 0 1 3 余料符号说明:x1-x15,表示对应分割方法下4,5,6,8米钢管的根数w , 表示所用的19米钢管数h , 表示余料模型分析:要求下料最节省,也即是所用的19米钢管数w最少。
数学建模数学规划模型4

1.问题
某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出, 从钢管厂进货时得到的原料钢管都是19m。
(1)现有一客户需要50根4m、20根6m和15根8m的钢管应如何下料 最节省?
(2)零售商如果采用的不同切割模式太多,将会导致生产过程的复 杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模 式不能超过3种.
MS=[a(:),b(:),c(:),d(:)]; %满足0<n1<4,0<n2<3,0<n3<3,0<n4<2的所有模式
g=[4;5;6;8];
%切割要求
n=find((MS*g>=16)&(MS*g<=19)); %合理的切割模式号
HLMS=MS(n,:);
%HLMS合理的切割模式
HLMS=sortrows(HLMS,-1); %HLMS按第一列降序排列
%钢管下料问题 问题1求解(按余料最小和根数最少两种方式)
%求合理的切割模式
clear,clc
[a,b,c]=ndgrid([0:4],[0:3],[0:2]); %ndgrid: N 维空间中的矩形网格
MS=[a(:),b(:),c(:)]; %MS为满足条件0<n1<4,0<n2<3,0<n3<2的所有模式
8米根数 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 2 15
余料 3 2 1 1 0 3 0 2 3 1 3 1 2 0 1 3
模式
1
2
3
4
5
6
7
8
9
10
11 12
13 14
15
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢管下料数学建模
一、引言
钢管下料是工业生产中常见的一项工艺,它涉及到如何将原始的钢管按照预定的尺寸进行切割,以便于后续加工和使用。
在进行钢管下料时,数学建模可以帮助我们计算出最佳的下料方案,以最大程度地减少浪费,提高生产效率。
本文将以钢管下料数学建模为主题,探讨如何利用数学方法求解钢管下料问题。
二、问题描述
假设有一根长度为L的钢管,需要按照给定的尺寸进行切割。
切割时需要考虑以下几个因素:
1. 切割后的钢管长度需要满足给定的要求;
2. 切割时需要考虑钢管的浪费情况,即尽量减少剩余钢管的长度;
3. 切割时需要考虑生产效率,即尽量减少切割次数。
三、数学建模
钢管下料问题可以抽象为一个数学模型,通过建立数学模型,我们可以计算出最佳的下料方案。
下面将介绍两种常见的数学建模方法。
1. 贪心算法
贪心算法是一种简单而常用的数学建模方法,它通过每一步都选择局部最优解来达到全局最优解。
在钢管下料问题中,贪心算法可以按照以下步骤进行:
1)将钢管初始长度L赋值给一个变量remain;
2)根据给定的尺寸要求,选择一个长度小于等于remain的最大钢管尺寸,将其切割出来;
3)将remain减去切割出来的钢管长度,得到剩余的钢管长度;4)重复步骤2和3,直到remain小于等于0。
2. 动态规划
动态规划是一种更加复杂但是更加精确的数学建模方法,它通过将原问题划分为多个子问题,并保存子问题的解来求解原问题。
在钢管下料问题中,动态规划可以按照以下步骤进行:
1)建立一个长度为L+1的数组dp,dp[i]表示长度为i的钢管的最佳下料方案所需的最少切割次数;
2)初始化dp数组,将dp[0]设置为0,其余元素设置为正无穷大;3)从长度为1开始,依次计算dp[1]、dp[2]、...、dp[L]的值;
4)最终dp[L]即为所求的最佳下料方案所需的最少切割次数。
四、案例分析
为了更好地理解钢管下料数学建模,我们以一个具体的案例进行分析。
假设有一根长度为9米的钢管,需要切割成长度分别为2米、3米和4米的三段钢管。
现在我们将分别使用贪心算法和动态规划方法求解最佳下料方案。
1. 贪心算法
按照贪心算法的步骤,我们可以得到如下的下料方案:
从9米的钢管中切割出一段长度为4米的钢管,剩余的钢管长度为5米;
然后,从5米的钢管中切割出一段长度为4米的钢管,剩余的钢管长度为1米;
从1米的钢管中切割出一段长度为2米的钢管,剩余的钢管长度为-1米。
由于剩余的钢管长度为负数,所以无法完成切割,贪心算法无法得到最佳下料方案。
2. 动态规划
按照动态规划的步骤,我们可以得到如下的下料方案:
初始化dp数组,将dp[0]设置为0,其余元素设置为正无穷大;
然后,依次计算dp[1]、dp[2]、...、dp[9]的值,得到dp数组为[0, 1, 1, 2, 2, 2, 2, 2, 3, 3];
dp[9]的值为3,即最佳下料方案所需的最少切割次数为3次。
五、总结
钢管下料数学建模是一个重要且应用广泛的问题,通过合理地利用数学方法,我们可以计算出最佳的下料方案,从而提高生产效率,减少浪费。
本文介绍了贪心算法和动态规划两种常见的数学建模方法,并通过一个具体的案例进行了分析。
希望通过本文的介绍,读
者能够对钢管下料数学建模有进一步的了解,并能够在实际生产中应用相关的数学方法,提高工作效率。