掺铒光纤放大器和拉曼光纤放大器分析和比较

合集下载

掺铒光纤放大器知识讲解

掺铒光纤放大器知识讲解
掺铒光纤放大器(EDFA)
一、发展历程 •1964年,提出掺钕(Nd3+)光纤放大器的设想 •1985年,低损耗掺杂SiO2光纤研制成功 •目前,掺Er3+光纤放大器(EDFA)最为成熟,是光纤通信 系统必备器件 •特点: –插损小、高增益、大带宽、偏振无关 –低噪声、低串扰、高输出功率等
掺铒光纤放大器(EDFA)
•由于N1和N2与泵浦光功率和信号光功率相关,因此F与泵浦 光和输入信号光功率以及放大器长度有关 •高的泵浦功率和较低的输入信号有利于获得较低的噪声指数 •由于980nm泵浦的EDFA为三能级系统,易于获得较高的粒子 数反转(nsp,980=1.05~1.10; nsp,1480=1.3~1.8) ,所以980nm 泵浦具有较低的噪声系数 •通常,EDFA的F~5
EDFA
+
均衡器
→ 合成增益
掺铒光纤放大器(EDFA)
•新型宽谱带掺杂光纤: 如掺铒氟化物玻璃光纤(30nm平坦带宽)、铒/铝共
掺杂光纤(20nm)等, 静态增益谱的平坦,掺杂工艺 复杂
•声光滤波调节: 根据各信道功率,反馈控制放大器输出端的多通
道声光带阻滤波器,调节各信道输出功率使之均衡, 动态均衡需要解复用、光电转换、结构复杂,实用性 受限
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
g=0.1~1ns),其增益不能响应调制信号的快速变 化,不存在增益调制,四波混频效应也很小,所 以在多信道放大中不引入信道间串扰(SOA则不 然),是其能够用于多信道放大的关键所在 EDFA对信道的插入、分出或无光故障等因素引起 的输入光功率的变化(较低速变化)能产生响应-瞬态特性。在系统应用中应予以控制--增益钳制 在 级 联 EDFA 系 统 中 瞬 态 响 应 速 度 将 增 加 ( 10~100s),对输入光功率的变化将更加敏感

几种常见的光放大器的比较

几种常见的光放大器的比较

对几类放大器的认识在DWDM系统中,特别是超远距离的传输中,由于不可避免的存在光纤信号功率的损失和衰减,所以补偿是必要的。

现在常用的放大器有掺铒光纤放大器(EDFA),拉曼放大器(FRA),半导体激光放大器(SOA),光纤参量放大器(OPA)。

现就这几类放大器的工作原理和特殊情况做一下说明。

1)掺铒光纤放大器(EDFA)EDFA(Erbiur Doped Fiber Amplifer)是光纤放大器中具有代表性的一种。

由于EDFA 工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。

掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。

当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。

由于这两个能级之间的能量差正好等于1550nm光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。

EDFA的组成:工作原理图:那么,EDFA的输出公路车是如何控制的呢?一般来说,EDFA的输出功率与输入信号光强度,铒纤的长度以及泵浦光的强度。

在EDFA使用的过程中,一般要控制好EDFA的平坦增益,那么不平坦的增益和平坦增益有什么区别呢?平坦的输出增益会使EDFA放大的输出功率得到一个稳定的信号增益。

如何控制增益?增益的控制室有2种选择的,一种是掺金属元素,另外一种是GFF定制,所谓的掺金属元素是值得是掺杂金属铝元素。

有上图可以知道,掺铝的金属元素的EDFA在增益的控制上明显要比不掺铝的EDFA平坦的多。

需要注意的是:EDFA在放大信号的同时也放大了噪声,而噪声主要来自EDFA的自身受激辐射,是主要的噪声源,也是系统OSNR劣化的主要原因。

放大器产生的自发辐射噪声功率为:PASE = -58 + NF + G (dBm)其中NF为光放大器噪声系数(dB)、G为光放大器的增益(dB)除了放大功率之外,还有几个量也是EDFA中比较重要的,了解他们,有助于在EDFA 故障中的维护定位:作电流:也称作偏置电流,其决定着放大板的输出光功率。

光通信fa发光组件

光通信fa发光组件

光通信fa发光组件
1. 功能:光通信 FA 发光组件的主要功能是在光信号传输过程中对光信号进行放大,以补偿光信号在光纤中的衰减,从而延长光信号的传输距离。

2. 类型:常见的光通信 FA 发光组件包括掺铒光纤放大器(EDFA)、拉曼光纤放大器(RFA)等。

其中,EDFA 是应用最广泛的光放大器类型。

3. 结构:光通信 FA 发光组件通常由增益光纤、泵浦光源、光滤波器等部分组成。

增益光纤是核心部分,泵浦光源用于提供能量,光滤波器用于过滤掉不需要的光信号。

4. 工作原理:光通信 FA 发光组件的工作原理基于受激辐射放大。

当泵浦光注入增益光纤时,会激发光纤中的铒离子,使其处于激发态。

当输入的光信号与激发态铒离子相互作用时,铒离子会释放出与输入光信号相同频率、相位和偏振态的光,从而实现光信号的放大。

5. 应用:光通信 FA 发光组件广泛应用于长途光通信、海底光通信、光分配网络等领域,对于提高光通信系统的传输容量、延长传输距离和提升网络性能具有重要作用。

总之,光通信 FA 发光组件是光通信系统中不可或缺的组成部分,其性能和可靠性对于光通信网络的质量和稳定性至关重要。

随着光通信技术的不断发展,光通信 FA 发光组件也在不断演进和改进,以满足不断增长的高速、大容量光通信需求。

简述光放大器的分类

简述光放大器的分类

简述光放大器的分类光放大器是一种能将输入的光信号放大的器件,常用于光通信、光传感和光储存等领域。

根据工作原理和材料特性的不同,光放大器可以分为几类。

一、掺铒光纤放大器掺铒光纤放大器(Erbium-Doped Fiber Amplifier,简称EDFA)是一种广泛应用于光通信系统的光放大器。

它是利用掺铒光纤中的铒离子实现光信号的放大。

当外界光信号通过掺铒光纤时,铒离子会吸收光信号的能量并将其转化为铒离子的激发态能级。

然后,光信号经过受激辐射的过程,产生与输入信号频率相同的放大信号。

掺铒光纤放大器具有较宽的放大带宽和较高的增益,适用于长距离、高速、大容量的光通信系统。

二、掺铒光纤拉曼放大器掺铒光纤拉曼放大器(Erbium-Doped Fiber Raman Amplifier,简称EDFRA)是一种利用拉曼散射效应实现光信号放大的器件。

它通过将输入的光信号与掺铒光纤中的光子相互作用,产生拉曼散射效应,从而实现光信号的放大。

掺铒光纤拉曼放大器具有宽波长范围和较低的噪声指数,适用于光通信系统中的波分复用和波分多址技术。

三、掺铥光纤放大器掺铥光纤放大器(Thulium-Doped Fiber Amplifier,简称TDFA)是一种利用掺铥光纤中的铥离子实现光信号放大的器件。

掺铥光纤放大器工作于1.45μm至1.6μm波长范围,适用于光通信系统的长距离传输和中远距离无线信号传输。

四、掺镱光纤放大器掺镱光纤放大器(Ytterbium-Doped Fiber Amplifier,简称YDFA)是一种利用掺镱光纤中的镱离子实现光信号放大的器件。

掺镱光纤放大器工作于1μm波长范围,具有高增益、高饱和输出功率和高效率的特点,适用于光通信系统中的光纤放大和激光器的增益模式锁定。

五、半导体光放大器半导体光放大器(Semiconductor Optical Amplifier,简称SOA)是一种利用半导体材料中的激子效应实现光信号放大的器件。

分布式拉曼光纤放大器的应用

分布式拉曼光纤放大器的应用

分布式拉曼光纤放大器的应用摘要随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。

在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。

本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。

1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。

低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。

这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。

光纤拉曼放大器是SRS的一个重要应用。

由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。

如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。

图1 光纤中的受激拉曼增益谱1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。

主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。

图2 分布式/集总式光放大器的比较(2)分步式拉曼放大器。

拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。

采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。

这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。

1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。

这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。

拉曼光纤放大器

拉曼光纤放大器

拉曼光纤放⼤器⼀拉曼光纤放⼤器1.拉曼光纤放⼤器出现的背景随着光纤通信技术的进⼀步发展,通信波段由C带(1528-1562nm)向L带(1570-1610nm)和S带(1485-1520nm)扩展。

由于光纤制造技术的发展,可消除在1.37µm附近的损耗⾼峰,因此通信波段有望扩展到从1.2µm-1.7µm的宽⼴范围内。

掺铒光纤放⼤器(EDFA)⽆法满⾜这样的波长范围,⽽拉曼光纤放⼤器却正好可以在此处发挥巨⼤作⽤。

另外拉曼放⼤器因其分布式放⼤特点,不仅能够减弱光纤⾮线性的影响,还能够抑制信噪⽐的劣化,具有更⼤的增益带宽、灵活的增益谱区、温度稳定性好以及放⼤器⾃发辐射噪声低等优点。

随着⾼功率⼆极管泵浦激光器和光纤光栅技术的发展,泵浦源问题也得到了较好的解决。

拉曼光纤放⼤器逐渐引起了⼈们的重视,并逐渐在光放⼤器领域占据重要地位,成为光通信领域中的新热点。

2.拉曼光纤放⼤器的⼯作原理受激拉曼散射(SRS)是电磁场与介质相互作⽤的结果。

才能过经典⼒学⾓度解释拉曼散射为:介质分⼦或原⼦在电磁场的策动下做受迫共振,由于介质分⼦具有固有的振荡频率,所以在受迫共振下界将出现频率为策动频率与固有频率的和频和差频振荡,分别对应着反斯v是电磁场的振荡频率,v 是介质分⼦固托克斯分量和斯托克斯分量,如图1所⽰,其中有的振荡频率。

图1 经典拉曼振动谱经典理论⽆法解释反斯托克斯线⽐斯托克斯线的强度弱⼏个数量级且总是先于反斯托克斯线出现的实验结果。

从量⼦⼒学的⾓度能够解释受激拉曼散射。

介质中的分⼦和原⼦在其平衡位置附近振动,将量⼦化的分⼦振动称为声⼦。

⾃发拉曼散射是⼊射光⼦与热声⼦相碰撞的结果。

受激声⼦是在⾃发拉曼散射过程中产⽣的,当⼊射光⼦与这个新添的受激声⼦再次发⽣碰撞时,则再产⽣⼀个斯托克斯光⼦的同时⼜增添⼀个受激声⼦,如此继续下去,便形成⼀个产⽣受激声⼦的雪崩过程。

产⽣受激声⼦过程的关键在于要有⾜够多的⼊射光⼦。

试说明edfa具有哪些优缺点

试说明edfa具有哪些优缺点

试说明EDFA具有哪些优缺点引言: EDFA(掺铒光纤放大器)是一种非线性光纤放大器,是光纤通信系统中使用最广泛的一种光纤放大器之一。

它通过掺铒光纤吸收输入的光信号并利用泵浦光的能量增益输出信号。

本文将对EDFA的优点和缺点进行详细说明。

EDFA的优点1. 高增益: EDFA具有高增益特性,可以提供较大的信号增益,从而有效地弥补光信号在传输过程中的衰减损耗,使得信号传输更加可靠稳定。

2. 宽增益带宽:相比其他光纤放大器,EDFA具有较宽的增益带宽,可以放大多个波长的信号,这使得它在光纤通信中能够同时放大多路波长的信号,提高了传输效率。

3. 高饱和输出功率: EDFA的饱和输出功率比较高,可以实现高功率输出,适用于长距离传输和复杂网络拓扑结构。

4. 无需光电转换: EDFA可以直接放大光信号,避免了信号在放大前需要光电转换的过程,减少了传输系统中的中间环节,提高了传输效率。

EDFA的缺点1. 噪声特性:由于EDFA本身会引入信号噪声,尤其是在高增益情况下,会导致信噪比下降,影响信号质量,需要通过其他方式降低噪声影响。

2. 成本较高:相比于其他光纤放大器,EDFA的制造和维护成本较高,尤其是在高功率和高精度要求下,会增加系统建设和运营的成本。

3. 受泵浦波长限制: EDFA的增益特性受泵浦波长的选择影响较大,不同泵浦波长对增益带宽、增益峰值等参数有影响,需要根据具体系统要求选择适当的泵浦波长。

4. 功耗较高: EDFA在工作过程中会消耗大量能量,特别是在高功率输出的情况下,会导致系统整体功耗较高,影响能源利用效率。

结论综合来看,EDFA作为一种光纤放大器,在光通信系统中具有诸多优点,如高增益、宽增益带宽、高输出功率等,可以提高通信系统性能。

但同时也存在一些缺点,如噪声特性、成本较高、泵浦波长限制和功耗较高等,需要在实际应用中综合考虑。

通过科学的应用和技术改进,可以最大限度地发挥EDFA的优点,同时克服其缺点,使其更好地服务于光通信领域的发展。

第5章 光放大器

第5章 光放大器

(1) 宽的增益平坦度(30 nm)。如对1500 nm波 长 区 的 宽 带 信 号 放 大, 最 高 带 宽 已 达 到80 nm, 是 EDFA最佳数据的两倍。在1530~1610 nm的波长区, 得到了20 dB以上的增益,增益平坦度达1.5 dB。 (2) 放大波段向长波长移动。硅和氟EDFA大约
拉曼光纤放大器的主要问题在于所需泵浦的种类, 其次是如何使放大器本身作为一个谐振腔来获得高数 量级的拉曼效应。 目前, 拉曼光纤放大器的小信号增 益为30 dB, 饱和输出功率为+25 dBm, 特别适于作光 功率放大级。
5.4 其他光纤放大器
1. 掺镨光纤放大器(PDFA) EDFA光纤放大器只能对1550 nm波段的光信号进 行放大,为了能对1310 nm波段的光信号进行放大, 人们在光纤中掺入镨。PDFA具有高的增益(约30 dB) 和高的饱和功率(20 dBm),适用于EDFA不能放大
放 大器
电 光变 换 (E /O )
光纤
光 的范 围
电 的范 围
光 的范 围
图5.1 传统的中继器原理框图
尽管这种方式对于单个波长且数据速率不太高的 通信很适用, 但对于高速率的多个波长系统显然是相 当复杂的, 每一波长就需一个再生器, 如有N个波长 就需要N个这样的再生器,造价是相当高的。另一方面, 对于很高的数据速率,电放大器的实现难度很大。 因 此, 人们试图对光信号直接放大, 如果这种放大的带 宽较宽, 则可以同时对多个波长进行放大,因而只需 一个放大器即可。 人们经过很大的努力, 终于研制成
模光纤的构造一样, 如图5.3所示。 铒离子位于EDF的
纤芯中央地带, 将铒离子放在这里有利于其最大地吸 收泵浦和信号能量, 从而产生好的放大效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

掺铒光纤放大器和拉曼光纤放大器分析和比较摘要:光放大器技术是新一代光纤通信系统中一项必不可少的关键技术,目前几种主要的光放大器技术在工程应用中各有所长。

此文介绍了光放大器技术的基本原理,并对现有主要几种光放大器技术在性能、应用和发展方向上进行了比较。

关键词:掺铒光纤放大器;光纤拉曼放大器0、综述20世纪90年代以来,Internet的普及发展和各种信息(如语音、图像、数据等)业务的快速增长,人们对现代通信系统提出了更高的要求。

在市场需求的大力推动下,通信技术取得了长足的进步,其中光纤通信技术脱颖而出,以其高速优质的特点,一跃成为当今长距离、大容量传输干线的主流技术。

但由于光纤损耗和非线性的影响,无中继传输距离成为制约系统容量和速率的瓶颈,而中继放大技术成了光通信领域的关键技术之一。

传输系统中的光纤损耗使信号随传输距离呈指数衰减,极大地限制了通信传输跨距和网络的可扩展性,因此必须在通信线路上设置中继器对信号进行再生放大。

在光放大器没有出现之前,光纤传输系统普遍采用光-电-光(OEO)的混合中继器,但这种中继方式存在“电子瓶颈”现象,在很大程度上限制了传输速率的提高,而且价格昂贵、结构复杂。

20世纪80年代出现的光放大器技术具有对光信号进行实时、在线、宽带、高增益、低噪声、低功耗以及波长、速率和调制方式透明的直接放大功能,是新一代光纤通信系统中不可缺少的关键技术。

此技术既解决了衰减对光网络传输距离的限制,又开创了1550nm波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑(1)。

又由于此技术与调制形式和比特率无关,因而在光纤通信系统中得到了广泛应用。

1、光放大器分类及原理光放大器(OA)一般由增益介质、泵浦光和输入输出耦合结构组成,其作用就是对复用后的光信号进行光放大,以延长无中继系统或无再生系统的光缆传输距离。

一个好的光放大器应具有输出功率高、放大带宽宽、噪声系数低、增益谱平坦等特性。

光放大器主要分为光纤型放大器(FA)和半导体放大器(SOA)两大类,其中光纤型放大器(FA)还可再分为掺稀土光纤放大器和常规光纤放大器,具体分类详见图1(2).本文中,仅对掺铒光纤放大器(EDFA)和光纤拉曼放大器(FRA)作以介绍和分析。

图1 光放大器的分类1、1掺铒光纤放大器(EDFA)的原理掺铒放大器的工作机理基于受激辐射,这里首先讨论激活介质掺饵石英的能级图,如图2所示。

掺铒光纤中的饵离子(Er3+)所处的能量状态是不能连续取值的,它只能处在一系列分立的能量状态上,这些能量状态称为能级,掺饵石英的能级图用3个能级表示。

图2 石英光纤中饵离子的能级饵离子从能级2到能级1的跃迁产生的受激辐射光,其波长范围为1500~1600nm,这是掺铒光纤放大器能得到广泛应用的原因。

当供给激光媒体能量使其处于激励状态时,即会产生光的受激辐射现象,如果能满足使受激辐射持续进行的条件,并用输入光去感应,则能得到比其强的输出光,从而起到放大作用。

为了实现受激辐射,需要产生能级2与能级1之间的粒子数反转,既需要泵浦源将饵离子从能级1激发到能级2。

有两种波长的泵浦源可以满足要求,一种是980nm波长的泵浦源。

在这种情况下,饵离子受激不断的从能级1转移到能级3上,在能级3上停留很短的时间(生存期),约1us,然后无辐射的落到能级2上。

由于饵离子在能级2上的生存期约为10ms,所以能级2上的饵离子不断累积,形成了能级1、2之间的粒子数反转。

在输入光子(信号光)的激励下,饵离子从能级2跃迁到能级1上,这种受激跃迁将伴随着与输入光子具有相同波长、方向和相位的受激辐射,使得信号光得到了有效的放大。

另一种是1480nm波长的泵浦源,它可以直接将饵离子从能级1激发到能级2上去,实现粒子数反转。

掺饵光纤放大器(EDFA)是利用掺饵(Er3+)光纤作为增益介质、使用激光器二极管发出的泵浦光对信号光进行放大的器件。

图3给出了掺饵光纤放大器的结构。

图3 掺铒光纤放大器的典型结构掺饵光纤是掺铒光纤放大器(EDFA)的核心部件。

它以石英光纤作为基质,在纤芯中掺入固体激光工作物质——饵离子。

在几米至几十米的掺饵光纤内,光与物质相互作用而被放大、增强。

光耦合器的作用是将信号光和泵浦光合在一起,一般采用波分复用器实现。

光隔离器的作用是抑制光反射,以确保光放大器工作稳定,它必须是插入损耗低,与偏振无关,隔离度优于40dB。

光滤波器的作用是降低自发辐射产生的噪声对系统的影响(3)。

1、2拉曼光纤放大器(RFA)原理拉曼光纤放大器的工作原理是基于石英光纤中的受激拉曼散射效应,在形式上表现为处于泵浦光的拉曼增益带宽内的弱信号与强泵浦光波同时在光纤中传输,从而使弱信号光即得到放大。

其工作原理示意如图4所示。

泵浦光子入射到光纤,光纤中电子受激并从基态跃迁到虚能级,然后处在虚能级的电子在信号光的感应下回到振动态高能级,同时发出一种和信号光相同频率、相同相位、相同方向的低频的斯托克斯光子,而剩余能量被介质以分子振动(光学声子)的形式吸收,完成振动态之间的跃迁。

斯托克斯频移γr=γp-γs由分子振动能级决定,其值决定了受激拉曼散射的频率范围,其中γp是泵浦光的频率,γs是信号光的频率。

对非晶态石英光纤来说,其分子振动能级融合在一起,形成了一条能带,因而可在较宽频差γpγs范围(40THz)内通过SRS实现信号光的放大(4)。

图4 拉曼光纤放大器工作原理示意图用激光器产生的泵浦光经光隔离器(工50)耦合到波分复用器,并与信号光一起通过波分复用器(WDM)耦合到一段光纤中,在这段光纤内利用受激拉曼散射效应使泵浦光能量向信号光转移,从而信号光得到放大。

如图5所示(5)。

图5 受激拉曼光纤放大器的基本结构受激拉曼光纤放大器的泵浦方式有前向泵浦、后向泵浦及前后同时泵浦三种方式。

泵浦光可以是连续的,也可以是脉冲式的。

当泵浦功率较低时,前向泵浦和后向泵浦方式的拉曼增益一致。

在处于泵浦饱和区域时,这两种泵浦方式总的放大特征会有很大不同。

3、光放大器的技术比较及应用3、1掺铒光纤放大器优、缺点及应用掺铒光纤放大器的优点是: (1)通常工作在1530~1565nm光纤损耗最低的窗口;(2)增益高,在较宽的波段内提供平坦的增益,是WDM理想的光纤放大器;(3)噪声系数低,接近量子极限,各个信道间的串扰极小,可级联多个放大器;(4)放大频带宽,可同时放大多路波长信号;(5)放大特性与系统比特率和数据格式无关;(6)输出功率大,对偏振不敏感;(7)结构简单,与传输光纤易耦合。

缺点是:(1)在第3窗口以上的波长,光纤的弯曲损耗较大,而常规的掺铒光纤放大器不能提供足够的增益,增益带宽只有35nm,仅覆盖石英单模光纤低损耗窗口的一部分。

制约了光纤能够容纳的波长信道数;(2)不便于查找故障,泵浦源寿命不长;(3)存在基于泵浦源调制和光时域反射计(OTDR)的监测与控制技术问题,控制内容包括输出功率的控制和不同波长通道的增益均衡,EDFA的增益对100kHz以上的高频调制不敏感,对低于1kHz的调制,掺铒光纤放大器的输出信号会产生失真(6)。

在光纤通信系统中, 掺铒光纤放大器的应用有线路放大、功率放大、前置放大和局域网。

线路放大的最重要的应用就是作为线路放大器以提高系统的传输距离。

在长途通信线路, 掺铒光纤放大器用作中断放大有很大的优势。

在局域网(LAN) 光纤通信系统中, 需要用光放大器来补偿光合束器、光学路由器等光学元件的损耗。

在一个采用几个星形耦合和掺铒光纤放大器相结合的LAN 实验中, 实现了几乎无损耗的分配网。

掺铒光纤放大器有平坦增益谱、高饱和输出功率、低串音等优点在有线电视系统(CATV)中有广阔的用途。

掺铒光纤放大器工作在 1550nm 窗口。

该窗口光纤损耗系数较 1310nm 窗口低, 噪声低,增益曲线好、放大带宽大。

与波分复用(WDM) 系统兼容。

泵浦效率高。

工作性能稳定。

目前“掺铒光纤放大器 EDFA+密集波分复用 (WDM) +非零色散光纤(NI—DSF)+光子集成(PIC)”正成为国际长途高速光纤通信系统的主要技术方向(7)。

3、2拉曼光纤放大器的优、缺点及应用拉曼光纤放大器的优点及缺点包括:(1)增益波长由泵浦光波长决定,理论上可对光纤窗口内任一波长的信号进行放大,包括光纤的整个低损耗区(1 270~1 670 nm)。

(2)增益频谱比较宽,单波长泵浦可实现40 nm范围的有效增益,如果采用多个泵浦源,则可容易地实现宽带放大。

而EDFA由于能级跃迁机制所限,增益带宽最大只有100 nm左右。

(3)增益介质为传输光纤本身,因为放大是沿光纤分布而不是集中作用,光纤中各处的信号光功率都比较小,从而可降低非线性效应尤其是四波混频(FWM)效应的干扰,与EDFA相比优势相当明显。

(4)拉曼光纤放大器的噪声指数(NF)比EDFA要低。

二者配合使用,可以有效降低系统总噪声,提高系统的信噪比,从而延长无中继传输距离及总传输距离。

(5)拉曼光纤放大器的主要缺点是所需的泵浦光功率高,集总式要几瓦到几十瓦,分布式要几百毫瓦;作用距离长,分布式作用距离要几十至上百千米,只适合于长途干线网的低噪声放大。

拉曼光纤放大器的应用包括:(1)增大无中继传输距离。

主要是由光传输系统信噪比决定的,分布式拉曼光纤放大器的等效噪声指数极低,为-2~0 dB,比EDFA的噪声指数低4.5 dB,利用分布式拉曼光纤放大器作前置放大器可明显增大无中继传输距离。

康宁公司通过实验和系统建模发现,2.5倍的延伸是有可能的。

在有线电视HFC网的建设中,特别是在城乡联网时,需要将前端光信号送到100 km外的分前端。

考虑到安全、维护及供电困难等因素,很多情况下,中途是不允许进行中继放大的。

从成本考虑,采用SDH系统是不可能的,采用模拟1 550 nm 系统是最好的选择。

要保证足够高的系统信噪比,普通模拟1 550 nm传输系统无中继传输距离一般不大于70 km。

如果采用分布式拉曼光纤放大器作接收前置放大器,能提高系统的信噪比,相应地也就增加了无中继传输距离。

根据理论计算及实际经验,采用DRA作前置放大能使模拟1 550 nm系统无中继传输距离增加到120 km左右。

图6为实现方案框图。

图6 实现方案框图(2)提升光纤的复用程度和光网络的传输容量。

分布式拉曼光纤放大器的低噪声特性可以减小信道间隔,提高光纤传输的复用程度和传输容量。

从数值模拟可以得到,原始设计为10 Gbit/s,信道间隔为100 GHz的系统,采用拉曼光纤放大器可被升级到信道间隔为50 GHz而无需任何附加代价。

相关文档
最新文档