新能源储能系统及智能微网解决方案

合集下载

储能系统解决方案

储能系统解决方案

储能系统解决方案一、发电侧解决方案发电侧储能系统分为集中型和分散型,能够改善光伏、风电限发问题,提高经济性;减少瞬时功率变化率,减少电网冲击。

1、风电站储能解决方案储能系统可对现有上网电价较高的风电电站进行改善,解决弃风现象,消除风电随机波动,提高风电电厂电能输出质量,可使风电成为可调度电力,并能参与调峰调频。

·减少弃风,提高经济性。

·平滑输出随机波动,提高电能质量。

·提高功率预测精度,减少电网冲击。

·风电场储能参与辅助服务。

2、火电站联合调频解决方案储能系统具有反应迅速、精度高、调节准确等优点,配合火电站进行联合调频,可弥补火电机组速度慢、精度低、方向错(超调)的调频特性。

·速度快·精度高·调节准3、光伏电站储能解决方案储能系统可对现有上网电价较高的光伏电站进行改善。

解决光伏电站弃光现象,消除光伏随机波动,提高光伏电厂电能输出质量,可使光伏成为可调度电力,并能参与调峰调频等辅助服务。

·减少弃光,提高经济性·提高功率预测精度,减少电网冲击·平滑功率随机波动,提高电能质量·光伏电站储能参与辅助服务直线母线方案交流母线方案二、电网侧储能解决方案随着新能源大幅接入加剧发电侧不平衡且用户侧日峰谷差和季节峰谷差仍在加剧,电网侧储能作用更加凸显,电网侧储能是辅助服务的有效调节工具并可推动电力市场化和电力现货交易的进程。

1、电网储能解决方案储能系统能够实现调峰调频控制,实时监测负荷波动,快速响应电网调度,提高电网频率稳定性。

储能系统也能够根据电网功率因数变化,动态调整电网无功,减少系统损耗,保障电网可靠运行。

·电力调频调峰·独立参与辅助服务·二次调频、有偿调峰、AVC、旋转备用、冷备用、黑启动2、用户侧解决方案结合光伏和储能系统,可以通过生产一存储一消耗来有效地管理家庭和工商业的能源循环,是未来智慧能源系统重要组成部分。

2024版智慧电力解决方案(智能电网解决方案)

2024版智慧电力解决方案(智能电网解决方案)

平台层技术及应用场景
平台层技术包括云计算、大数据、 人工智能等,用于对感知层采集 的数据进行处理、分析和挖掘。
应用场景包括电网规划、调度控 制、故障诊断等。
通过平台层技术,实现对电网的 智能化管理和优化运行,提高电
网的经济效益和社会效益。
应用层技术及应用场景
1
应用层技术包括电力市场交易、需求侧管理、综 合能源服务等,用于实现电网与用户之间的互动 和增值服务。
通信信道
采用230MHz无线专网、GPRS/CDMA无线公网、光纤专网等多种 通信方式,确保用电信息采集的实时性和准确性。
分布式能源接入设备与系统
分布式电源接入设备
包括光伏逆变器、风电变流器、储能变流器等,实现分布式电源 的灵活接入和高效利用。
微电网控制系统
实现微电网的并网运行、孤岛运行以及两种模式间的平滑切换, 提高供电可靠性和电能质量。
深化产学研合作,促进成果转化
通过深化产学研合作,促进科技创新成果的转化和应用,为智慧电力的发展提供有力支持。
培育新兴产业,拓展应用领域
通过培育新兴产业,拓展智慧电力的应用领域,推动电力行业的转型升级和可持续发展。
THANKS
感谢观看
结合新能源发电特性和市场需 求,开发新能源发电与传统能 源发电的联合调度和优化运行
模式。
05
智慧电力解决方案价值体现
提高供电可靠性和安全性
01
02
03
通过实时监测和预警系统, 及时发现并处理电网故障,
减少停电时间和范围。
利用先进的信息技术和通 信技术,实现对电网设备 的远程监控和操作,提高
运维效率。
通过智能用电设备和家庭能源管理系统,实现用户侧能源消费的可视化、可控制和 可优化。

智能微网系统的高效运营为您的能源供应提供最佳解决方案

智能微网系统的高效运营为您的能源供应提供最佳解决方案

智能微网系统的高效运营为您的能源供应提供最佳解决方案随着能源需求的不断增长和环境问题的加剧,传统的能源供应方式已经不能满足人们对高效、可持续能源的需求。

在这种背景下,智能微网系统应运而生。

智能微网系统是一种基于多能源、多电源、多负荷、多能耗的能源组织形式,能够实现不同能源之间的高效协同运作,为您的能源供应提供最佳解决方案。

一、智能微网系统的定义和构成智能微网系统是一种分布式能源系统,由多个能源源、负荷和储能装置相互连接而成。

它不仅可以接入传统的能源网,还可以与非传统的可再生能源进行接入。

智能微网系统主要由以下三个部分构成:1. 能源源:智能微网系统可以接入各种能源源,如传统的电网、太阳能发电系统、风能发电系统等。

这些能源源可以根据实际需求进行灵活调整和切换,以实现最优能源供应。

2. 负荷:智能微网系统可以接入各种负荷设备,包括家庭、工业和商业负荷。

通过智能控制和优化调度,智能微网系统可以根据实际用电需求灵活分配能源,提高能源利用效率。

3. 储能装置:智能微网系统可以配备多种储能装置,如电池、超级电容器等。

这些储能装置可以在能源供应充裕时存储多余的能量,在能源供应短缺时释放能量,以实现能量的平衡和稳定供应。

二、智能微网系统的优势和应用领域智能微网系统具有以下优势,使其在能源供应领域具有广泛的应用前景:1. 高效性:智能微网系统通过精确的能源管理和智能调度算法,能够实现能源的高效利用,最大限度地降低能源损耗和浪费。

2. 稳定性:智能微网系统具有多能源供应和多储能装置的特点,能够保证能源供应的稳定性,降低能源供应中断的风险。

3. 灵活性:智能微网系统可以根据需要灵活调整能源供应策略,适应不同的能源需求和负荷变化。

4. 可持续性:智能微网系统能够接入可再生能源,如太阳能和风能,从而减少对传统能源的依赖,实现能源供应的可持续发展。

智能微网系统在以下领域具有广泛的应用前景:1. 城市能源供应:智能微网系统可以为城市提供多能源、高效能源供应,实现能源的区域自治和互联互通。

微电网解决方案 四方

微电网解决方案 四方

微电网解决方案四方1. 引言随着能源需求日益增长和可再生能源的发展,微电网成为解决能源供应问题的一种可行方案。

微电网是由多个分布式能源资源(DER)组成的小型电力系统,可以独立运行或与主电网互联,在能源供应和可靠性方面提供了更好的灵活性。

本文将介绍四个方面的微电网解决方案:能源管理、智能电网技术、电池储能和智能微电网控制。

2. 能源管理微电网的能源管理是确保稳定供电的关键。

能源管理系统(EMS)通过实时监测和控制能源流动,确保微电网内部各种能源资源的最佳利用。

主要功能包括能源发电控制、能源存储管理和能源供需平衡。

通过合理配置和控制能源资源,能源管理系统可以优化能源利用效率,降低能源消耗,并确保微电网内的电力供应稳定可靠。

3. 智能电网技术智能电网技术在微电网中扮演着重要角色。

智能电网通过先进的通信和控制技术,实现对微电网内部各个组件的集成和协调。

这些组件包括分布式能源资源、储能系统、电动汽车充电桩等。

智能电网技术可以实现对能源的灵活调度,提高系统的可靠性和效率。

此外,智能电网技术还可以实现与主电网的互联,实现双向能量流动。

4. 电池储能电池储能是微电网中的重要组成部分。

借助电池储能系统,微电网可以在需求高峰时段储存过剩的电力,并在需求低谷时段释放电力供应。

电池储能系统具有快速响应、高效率和低环境影响等优点,在微电网的能量管理中起到关键作用。

此外,电池储能系统还可以储存可再生能源,以便在没有太阳能或风能时提供持续的电力供应。

5. 智能微电网控制智能微电网控制是确保微电网运行平稳和可靠的关键。

通过智能微电网控制系统,可以对微电网内的各个组件进行监测和控制。

该系统可以实施智能能源调度策略,动态管理微电网中的能源流动。

此外,智能微电网控制系统还能够实现对微电网内部各设备的优化控制,以提高系统效率和可靠性。

6. 总结微电网作为一种可行的能源供应方案,具有更好的能源管理能力、智能电网技术、电池储能和智能微电网控制等优势。

新能源微电网项目的关键技术解决方案

新能源微电网项目的关键技术解决方案

新能源微电网项目的关键技术解决方案1.能源互联网能源互联网是新能源微电网项目的核心技术之一、它通过互联网技术、物联网技术和大数据技术,将分散的新能源发电系统、能源储存系统和用电负荷系统进行连接管理,实现能源的高效利用和优化配置。

能源互联网技术可以实现多个微电网之间的能源互联互通,提供灵活、可靠的能源供应和需求平衡。

2.能源储存技术新能源微电网项目需要解决新能源波动性和不可控性带来的能源供需平衡问题,这就需要采用能源储存技术实现能源的调峰填谷和调度控制。

目前常用的能源储存技术包括电池储能技术、储氢技术、压缩空气储能技术等。

这些技术可以将不稳定的新能源发电系统产生的能源储存起来,在用电高峰时供给,从而实现能源的平衡供给。

3.智能微电网控制与管理智能微电网控制与管理是新能源微电网项目中至关重要的一个环节。

通过智能化的微电网控制与管理系统,可以实现对能源的智能分配和调度控制,实时监测和响应能源需求,有效管理能源的使用和分配,提高能源系统的效率和可靠性。

智能微电网控制与管理技术包括分散智能控制技术、混合智能控制技术、智能优化调度技术等。

4.安全保障技术5.经济性优化技术新能源微电网项目需要考虑到经济性的问题,即如何在保证能源供应的前提下,降低能源成本和运营成本。

经济性优化技术包括能源成本优化技术、运营成本优化技术、经济调度技术等。

通过对能源的成本和运营进行优化调整,可以降低整个新能源微电网项目的运营成本,提高经济性。

总之,新能源微电网项目的关键技术解决方案包括能源互联网、能源储存技术、智能微电网控制与管理、安全保障技术和经济性优化技术等方面。

这些技术将有助于实现新能源微电网项目的高效运行、能源的平衡供给和优化配置,以及保障项目的安全和经济性。

智能微电网解决方案(40页 PPT)

智能微电网解决方案(40页 PPT)
网调及各省调应每年编制一次本系统的低频减负荷方案,网调于每年元十二月份完成并下达各省调。各省调应在于次年二月一月完成方案的编制,并下达到各地区及厂站,要求于三月末完成实施。低频自动减负荷装置的运行管理,低频减负荷装置正常均应投入使用,不得自行退出。若低频减负荷装置因故停运,所在省调应及时向网调汇报。在系统频率降到该装置的启动值时,所在厂站值班人员应手动切除该装置所控制的线路负荷。
目录
单击此处添加标题
智能微电网
01
单击此处添加标题
历 程
03
单击此处添加标题
智能微电网技术
02
智能电网的定义
智能电网是以物理电网为基础将现代先进的传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网 1 硬件基础:电网和建立在集成的、高速双向通信网络。2 软件基础:智能的控制技术,是指诊断电网状态,防止供电中断,改善电能质量扰动的装置和算法。
按照分级管理的原则,各省调调管范围内发电机组一次调频功能的试验、监督和考核工作,由相应省调负责。第33条 全网频率二次调整主要由网调及其直调发电机组负责。西北电网第一调频厂由网调指定,一般由直调水电厂担任,网调其它直调水电厂以及AGC投频率调节模式的火电机组担任第二调频厂。西北电网的AGC控制策略和发电机组的AGC控制模式由网调确定。当网调直调发电机组AGC投入频率调节模式运行时,正常频率主要首先靠AGC来调整。
智能电网的功能
特征
传统电网
智能电网
激励/包括电力用户
电价不透明,缺少实时定价,选择很少
充分的电价信息,实时定价,有许多方案和电价可供选择
提供发电/储能
中央发电占优,少量分布式发电, 储能或可再生能源
大量“即插即用”的分布式电源补助中央发电(节能、环保)

【全文】智慧新能源储能解决方案

【全文】智慧新能源储能解决方案

解决方案--储能电池预测控分析
储能电池预测控分析技术,是对新能源储能电池延长运行寿命、优化电池系统可充电深度、优化充放电策略、防范事故、指导运维的关键。储能电池预测控分析,可以确定电池剩余寿命及可修复程度,从而确定该电池的剩余价值,并可进行提前拟定方案应对,不管是从储能电池本身还是从储能站维护都具备非常高效的价值。
系统具有自诊功能,有效减少人工干预
储能电池性能AI算法
线性测控AI算法
热失控辨析AI算法
自修复AI算法
解决方案--电弧AI识别关断
基于AI算法体系建立电弧AI识别模型,有效对新能源储能内外环境电弧检测。智能识别簇间电气连接异常,毫秒级100%识别拉弧,秒级关断,大幅降低电气拉弧安全风险。储能设备配置四级过流保护措施,通过“电力电子+电气”联动的双电分断方式,实现簇间回路微秒级可靠分断,大幅提升了保护的速度与精度,有效阻止危险事件发生。
Smart New Energy Storage Solutions
智慧新能源储能解决方案
目录
2
市 场 背 景
解 决 方 案
3
1
技 术 介 绍
4
前 景 未 来
市场背景
1
市场背景--储能的意义
弃风弃光应用发电平滑计划发电调频与备用
弥补线损调峰调频减少电网投资减少人工配置
削峰填谷电能治理微电网应用配电稳定
25%
55%
45%
29%
24%
22%
23%
传统方式
效能优化管理方式
基于计算机AI算法模型,在满足系统能量调度的基础上,新能源储能系统簇级管理器与PCS、EMS协同控制,通过算法结合电控装置建立能效优化算法模型,系统主动获取各簇电池各类数值测控,并分析电池簇需求空间,引导EMS系统分配能量流动,对各簇电池进行差异化功率按需分配,发挥每簇电池的潜力,比较传统方式综合提升系统循环效率(RTE)提升3%以上,全过程无需人工干预。

智能微电网技术方案

智能微电网技术方案

智能微电网技术方案引言智能微电网技术是当前电力系统领域的热门话题,随着可再生能源和分布式能源的快速发展,微电网技术得到了广泛关注和应用。

本文将介绍智能微电网技术的定义、特点以及构建的技术方案,以及其在能源管理和电力系统调度方面的优势。

一、智能微电网技术的定义智能微电网技术是一种将传统的中央化电网转变为分布式电力系统的技术。

它采用先进的通信、控制和调度技术,将可再生能源、储能技术和智能电网技术结合起来,实现微电网的自主管理和优化运行。

通过智能化的设备和系统,微电网能够实现对电能的高效利用,提高能源利用效率和供电可靠性。

二、智能微电网技术的特点1. 分布式能源接入:智能微电网技术允许分布式能源(如太阳能、风能等)直接接入微电网系统,减少了对传统中央电网的依赖,提高了能源利用效率。

2. 自主管理和调度:智能微电网技术借助先进的智能电网技术,能够自主管理和调度能源的产生、存储和使用,实现对电网的有效控制。

3. 供电可靠性:智能微电网技术能够实现分布式能源和储能系统的互联互通,从而提高供电可靠性和鲁棒性。

4. 节能减排:智能微电网技术可通过优化能源管理和电力调度,减少能源浪费,从而实现节能减排的目标。

三、智能微电网技术方案的构建1. 分布式能源接入技术:通过建设分布式能源发电站,将太阳能、风能等可再生能源接入微电网系统。

同时,通过智能电网技术实现对分布式能源的监控、管理和调度。

2. 储能技术:采用先进的储能技术(如锂离子电池、超级电容器等),对分布式能源进行储存,以便在需要时进行供电。

通过智能化的储能系统管理和控制,实现对能源的灵活调度。

3. 智能电网技术:借助通信、控制和调度技术,实现对微电网的自主管理和优化运行。

通过智能电网系统,能够对能源的生产、传输、储存和使用进行实时监控和调度,提高能源利用效率。

4. 运行管理系统:建设智能微电网运行管理系统,集成微电网的各个组成部分,并实现对微电网系统的集中监控和调度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新能源储能系统及智能微网解决方案1概述(略)
用电量统计:
应急用电部分:
大陆机电机房:总功率数为36kw,应急时间暂无统计,可按一般水平计算。

2项目具体设计
光伏系统
已建成140KW光伏电站,基本自发自用,只有周末用电量不大时,有余电上网。

3.3.1双向储能逆变器
根据现场实际需求,南楼北楼每天实时用电量为每小时最大300KWH,最小150KWH,应急36KW负荷,建议南北楼各增加一套储能系统,功率在100KW,系统选用双向储能逆变器三相100KW。

3.3.2储能蓄电池
按照数据统计计算,每月7万度电,最少每天用电量在2000KWH以上,光伏每天提供500KWH,建议储能系统蓄电池总共储能1000KWH,直流电压按照500V 设计,需要单体电池2V1000AH,共需要500只。

(这个蓄电池容量可根据投资来设计)南楼500KWH蓄电池,北楼500KWH蓄电池,每个楼蓄电池数量2V1000AH,250只。

3.3.6交流配电柜
36KW负荷整体系统需要配置一套50KW的交流配电柜,用于应急系统馈线管理。

3.5 双向储能逆变器性能特点
1、专为智能电网、智能微网设计,接受电网调度;
2、可满足铅酸蓄电池、锂电、超级电容、钒电池等不同储能形式的接入,适用范围广;
3、双向逆变,恒功率充放电、恒流充放电、恒压充放电等多种电池充放电模式可选,
4、具有时间段工作模式设定功能,根据当地电网特点设置合理的工作方式;
5、具有市电接口和负载接口两路交流接口,实现并网运行及独立孤网运行;
6、完善的孤岛检测及并离网模式切换,当市电突然断电时,储能逆变器可自动无缝切换到离网工作模式,与大电网脱离,建立微电网独立运行;
7、RS485、以太网、CAN总线等多种通讯接口可选,实现远程监控;
8.选配智能电网主控系统,可与光伏并网逆变器、风力并网系统、潮汐发电系统、柴油发电机等多种能源方式实现互联,组成混合能源智能电网,可实现多种组网方式;
四、系统设备清单。

相关文档
最新文档