泛函分析部分知识点汇总
泛函分析期末复习提要

泛函分析期末复习提要一、距离空间与拓扑空间(一)教学内容1. 距离空间的基本概念:定义与例子、收敛性、距离空间的连续映射与等距。
2. 距离空间中的点集:开集与闭集、稠密子集,可分距离空间。
3. 完备距离空间:Cauchy 列,完备性、闭球套定理、纲,纲定理、距离空间完备化。
4. 压缩映射原理:不动点,压缩映射原理、压缩原理的一些应用。
5.拓扑空间的基本概:拓扑空间的定义、拓扑基、拓扑空间中的连续映射,同胚、分离公理。
6.紧性和距离空间的紧性:紧性的概念、紧空间的连续映射。
7.距离空间的紧性:列紧集,全有界集、Arzela 定理。
重点 掌握距离空间的基本概念、 距离空间中的点集、 完备距离空间、 压缩映射原理、拓扑空间的基本概念、紧性和距离空间的紧性。
难点 完备距离空间、 压缩映射原理。
(二)教学基本要求1.理解距离空间、距离空间中的点集等基本概念。
2.了解完备距离空间的概念,掌握压缩映射原理的证明。
3.理解拓扑空间的基本概念及其运算性质。
二、赋范线性空间(一)教学内容1. 赋范空间的基本概念:赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例。
2. 空间)1(≥p L p:Holder 不等式与Minkowski 不等式、空间)1)((≥p E L p 、空间)(E L ∞。
3. 赋范空间进一步的性质:赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。
4. 有穷维赋范空间。
重点 赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例、Holder 不等式与Minkowski 不等式、空间)1)((≥p E L p 、空间)(E L ∞、赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。
难点 Holder 不等式与Minkowski 不等式、赋范空间的完备化、空间)1)((≥p E L p 、空间)(E L ∞。
泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析总结范文高中

泛函分析是现代数学分析的一个重要分支,它主要研究的是函数构成的函数空间以及这些空间上的线性算子。
相较于高中数学中的实变函数和复变函数,泛函分析更多地关注函数之间的相互关系和映射性质,为解决实际问题提供了新的视角和方法。
一、泛函分析的基本概念1. 函数空间:泛函分析研究的对象是函数,这些函数构成一个集合,称为函数空间。
常见的函数空间有实值函数空间、复值函数空间、有界函数空间、连续函数空间等。
2. 线性算子:函数空间上的线性算子是一种映射,它将一个函数映射到另一个函数,同时满足线性性质。
线性算子是泛函分析的核心概念,如积分算子、微分算子、傅里叶变换等。
3. 范数:范数是度量函数空间中函数“大小”的一种方式。
一个函数空间的范数满足以下性质:非负性、齐次性、三角不等式和归一性。
4. 内积:内积是度量函数空间中函数“夹角”的一种方式。
一个函数空间的内积满足以下性质:非负性、齐次性、共轭对称性和三角不等式。
二、泛函分析的主要理论1. 线性算子的谱理论:研究线性算子的特征值和特征向量,以及这些特征值和特征向量的性质。
2. 线性算子的有界性:研究线性算子是否具有有界性,以及有界性的条件。
3. 线性算子的连续性:研究线性算子是否具有连续性,以及连续性的条件。
4. 线性算子的可逆性:研究线性算子是否具有可逆性,以及可逆性的条件。
5. 线性算子的对偶性:研究线性算子的对偶算子,以及对偶算子的性质。
三、泛函分析的应用1. 微分方程:泛函分析为微分方程的求解提供了新的方法,如泛函微分方程、积分方程等。
2. 积分方程:泛函分析为积分方程的求解提供了新的方法,如变分法、迭代法等。
3. 函数论:泛函分析为函数论的研究提供了新的工具,如傅里叶分析、Sobolev空间等。
4. 线性代数:泛函分析为线性代数的研究提供了新的视角,如无穷维线性空间、线性算子等。
总之,泛函分析是一门具有广泛应用前景的数学分支。
通过对函数空间、线性算子、范数、内积等基本概念的研究,泛函分析为解决实际问题提供了新的思路和方法。
(完整)泛函分析知识总结,推荐文档

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析知识总结

泛函分析知识总结泛函分析是数学中一个重要的分支领域,它研究的是无穷维空间和函数的性质。
在泛函分析中,我们考虑的对象是函数空间,而不是具体的函数。
泛函分析广泛应用于数学、物理学、工程学等领域。
1.线性空间与拓扑空间:泛函分析的基础是线性空间的理论。
线性空间是指具有加法和数乘运算,同时满足线性结构条件的集合。
泛函分析还引入了拓扑空间的概念,拓扑空间是指在线性空间的基础上引入了距离、收敛等概念,并给出了一些性质。
2.范数与内积:范数和内积是泛函分析中常用的两个概念。
范数是定义在线性空间上的一种非负实值函数,它满足正定性、齐次性和三角不等式。
范数可以用来度量向量的大小。
内积是将两个向量映射到实数的一个运算,它满足对称性、线性性和正定性。
3.完备性和紧性:完备性是指一个空间中的柯西序列收敛于空间内的一个点。
完备性是一个重要的性质,它可以用来判断一个空间是否是可度量空间,即能够定义距离的空间。
紧性是指一个空间内的每个序列都存在收敛的子序列。
紧性常用于分析序列在空间内的收敛性。
4.泛函空间和对偶空间:泛函分析中经常考虑的是函数空间,函数空间是指由一类满足特定条件的函数构成的空间。
常用的函数空间有连续函数空间、可积函数空间等。
函数空间还可以定义内积、范数等结构。
对偶空间是一个线性空间的对偶空间,它由该线性空间上的线性函数构成。
5.泛函的连续性和收敛性:泛函分析研究的是空间到实数域的映射,所以泛函的连续性和收敛性是一个重要的问题。
在泛函分析中,我们定义了一个泛函的连续性,当且仅当对于任意给定的序列,如果其收敛于一个点,那么其映射的泛函值也会收敛于该泛函值。
类似地,我们还可以定义泛函的收敛性。
6.算子:算子是泛函分析中一个重要的概念,它是一种将一个空间映射到另一个空间的映射。
线性算子是指满足线性性质的映射,而有界算子是指满足一定范围内的性质的映射。
算子可以是线性差分方程、微分算符等。
7.泛函分析在物理学和工程学中的应用:泛函分析在物理学和工程学中有广泛的应用。
泛函分析知识点

泛函分析知识点知识体系概述(一)、度量空间与赋范线性空间第一节 度量空间的进一步例子1.距离空间的定义:设X 就是非空集合,若存在一个映射d:X ×X →R,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X,d)2、几类空间例1 离散的度量空间例2 序列空间S例3 有界函数空间B(A)例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间例6 l 2第二节 度量空间中的极限,稠密集,可分空间1. 开球定义 设(X,d)为度量空间,d 就是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域、2. 极限定义 若{x n }⊂X, ∃x ∈X, s 、t 、 ()lim ,0n n d x x →∞= 则称x 就是点列{x n }的极限、 3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 就是度量空间,E 与M 就是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。
5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 就是可分空间。
第三节 连续映射1、定义 设X=(X,d),Y=(Y , ~d )就是两个度量空间,T 就是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ< 的x,有()~0,d Tx Tx ε<,则称T 在0x 连续、2、定理1 设T 就是度量空间(X,d)到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X ∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3、定理2 度量空间X 到Y 中的映射T 就是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -就是X 中的开集、第四节 柯西(cauchy)点列与完备度量空间1、定义 设X=(X,d)就是度量空间,{}n x 就是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 就是X 中的柯西点列或基本点列。
泛函分析知识点总结
泛函分析知识点总结本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March泛函分析一,距离空间定义设X是任一非空集合,对于X中的任意两点x,y,均有一个实数d(x,y)与它对应,且满足:1)d(x,y)≥0(非负性)2)d(x,y)=0当且仅当x=y(严格正)3)d(x,y)=d(y,x)4)d(x,y)≤d(x,z)+d(z,y)(三角不等式)则称d(x,y)为X中的一个距离,定义了距离d的集合称为一个距离空间,记为(X,d),有时简记为X。
设(X,d)是一个距离空间,X中的一个数列,存在X中的任意点,如果当n趋于无穷时,这个数列按照距离收敛到这个点,则称这个数列以这点收敛。
(x,y)是x,y的二元函数,若当存在一个x的数列收敛到x,存在一个y 的数列收敛到y,则这个距离关于x,y的二元函数也收敛。
(利用三角不等式证明)开球的定义(X,d)是一个距离空间,r>0,集合B(x0,r)={x∈X|d(x,x0)<r}则称以x0为中心,r为半径的开球。
有界集:称A为有界集,若存在一个开球,使得A属于这个开球。
内点:称x0为集合G的内点,若存在一个开球B(x0,r)属于G。
开集:称G为开集,若G中的每一个点都是它的内点。
闭集:开集的补集就是闭集。
(若用接触点定义闭集就是,A的接触点的全体称为A的闭包,也就是闭集。
)闭集的等价条件是这个集合中的收敛点列收敛到这个集合中的元素。
全空间和空集即使开集也是闭集。
任意个开集的并是开集,有限个开集的交是开集。
任意个闭集的交是闭集,有限个闭集的并是闭集。
等价距离:两个距离空间称为等价距离,如果它们之间可以互相表示。
连续映射:在两个距离空间之间存在一个映射:T,称T为连续映射。
若在定义域的距离空间中存在一个开集,经过映射T,在另一个距离空间定义的距离下是任意小的。
映射T是连续的等价于值域里的开集的原像仍然是开集。
泛函分析H总结
其他概念:聚点、闭包、有界集、拓扑空间
注:A的闭包是包含A的最小的闭集,A是闭集当且仅当A与其闭包相 等,取闭包运算满足分配律。
• 设A是X的子集,x是X中定点,x与A的关系: 1. x“附近”全是A中的点(内点) 2. x“附近”没有A中的点(外点) 3. x“附近”有A中点也有不是A中点(边界 点) 4. x的任意邻域都含A-{x}中点(A的聚点) 5. x的某个邻域不含A-{x}中点(孤立点) • 练习:设X是距离空间,A,B是X的子集,则
E E E
1 p
等号相等当且仅当它们线性相关
例子
• • • • • •
•
以出租车距离定义的平面距离空间; p l 序列空间 , l , p 1 函数空间C[a,b]; 离散距离空间; R上函数|x-y|^2;|x-y|^1/2是距离吗? Hamming距离:X为所有0和1构成的三元序组所构成的集合
1
(4)式给出了用逼近解x的误差估计式。
以及隐函数存在定理
• 例:线性代数Ax=b均可写成x=Cx+D,如果 矩阵C满足条件|C|<1,则该方程有唯一解, 且可以由迭代求得 • 练习:利用压缩映像原理证明方程x=a sinx 只有唯一解x=0,其 中0<a<1。 • 隐函数定理:设函数 f(x,y)在带状区域D中 处处连续,且处处有关于y的偏导数。如果 存在常数m<M,满足 0 m f y '( x, y) M . 则方程f(x,y)=0在区间[a,b]上必有唯一的连 续函数y=g(x)作为解。其中
泛函分析总结
泛函分析知识点小结及应用§1 度量空间的进一步例子设X 是任一非空集合,若对于∈∀y x ,X ,都有唯一确定的实数()y x d,与之对应,且满足 1.非负性:()y x d,0≥,()y x d ,=0y x =⇔;2. 对称性:d(x,y)=d(y,x);3.三角不等式:对∈∀z y x ,,X ,都有()y x d ,≤()z x d ,+()z y d ,, 则称(X ,d )为度量空间,X 中的元素称为点。
欧氏空间n R 对nR 中任意两点()n x x x x ,,,21 =和()n y y y y ,,,21 =,规定距离为()y x d ,=()2112⎪⎭⎫⎝⎛-∑=n i i i y x .[]b a C ,空间 []b a C ,表示闭区间[]b a ,上实值(或复值)连续函数的全体.对[]b a C ,中任意两点y x ,,定义()y x d ,=()()t y t x b t a -≤≤max . p l ()1+∞<≤p 空间 记pl ={}⎭⎬⎫⎩⎨⎧∞<=∑∞=∞=11k p kk k x x x . 设{}∞==1k k x x ,{}∞==1k k y y ∈p l ,定义 ()y x d ,=p i p i i y x 11⎪⎪⎭⎫ ⎝⎛-∞=. 例1 序列空间S令S 表示实数列(或复数列)的全体,对{}∞==∀1k k x x ,{}∞==1k k y y ,令 ()y x d ,=∑∞=121k k k k k k y x y x -+-1. 例2 有界函数空间()A B设A 是一个给定的集合,令()A B 表示A 上有界实值(或复值)函数的全体. ∈∀y x ,()A B ,定义 ()y x d ,=()()t y t x At -∈sup .例3 可测函数空间()X M设()X M为X 上实值(或复值)的可测函数的全体,m 为Lebesgue 测度,若()X m ∞<,对任意两个可测函数()t f 及()t g ,由于()()()()11<-+-t g t f t g t f ,故不等式左边为X 上可积函数. 令 ()g f d,=()()()()t 1f t g t d Xf yg t -⎰+-.§2 度量空间中的极限设{}∞=1n n x 是()d X ,中点列,若X x ∈∃,s.t. ()0,lim =∞→x x d n n (*)则称{}∞=1n n x 是收敛点列,x 是点列{}∞=1n n x 的极限.收敛点列的极限是唯一的. 若设n x 既牧敛于x 又收敛y ,则因为()()()0,,,0→+≤≤n n x y d x x d y x d ()∞→n ,而有 ()y x d ,=0. 所以x =y .注 (*)式换一个表达方式:()x x d n n ,lim ∞→=()x x d n n ,lim ∞→. 即当点列极限存在时,距离运算与极限运算可以换序. 更一般地有 距离()y x d,是x 和y 的连续函数.具体空间中点列收敛的具体意义:1. 欧氏空间n R m x =()()()()m n m m x x x ,,,21 , ,2,1=m ,为nR 中的点列,x =()n x x x ,,,21 ∈n R ,()x x d m ,=()()()()()()2222211n m n m m x x x x x x -++-+- . x x m → ()∞→m ⇔ 对每个n i ≤≤1,有 ()i m i x x → ()∞→m .2. []b a C , 设{}⊂∞=1n n x []b a C ,,∈x []b a C ,,则()x x d n ,=()()0max →-≤≤t x t x n bt a ()∞→n ⇔ {}∞=1n n x 在[]b a ,一致收敛于x .3. 序列空间S 设m x =()()()(),,,,21m n m m ξξξ, ,2,1=m ,及x =() ,,,,21n ξξξ分别是S 中的点列及点,则()()()∑∞=→-+-=10121,k k m kkm k k m x x d ξξξξ ()∞→m ⇔ m x 依坐标收敛于x .4. 可测函数空间()X M设{}∞=1n n f ⊂()X M ,f ⊂()X M ,则因()f f d n ,=()()()()⎰-+-X nn dm t f t f t f t f 1,有 f f n → ⇔ f f n ⇒. §3 度量空间中的稠密集 可分空间定义 设X 是度量空间,N 和M 是X 的两个子集,令M 表示M 的闭包,若N ⊂M ,则称集M 在集N 中稠密,当N =X 时,称M 为X 的一个稠密子集. 若X 有一个可数的稠密子集,则称X 是可分空间. 例1 n 维欧氏空间nR 是可分空间. 事实上,坐标为有理数的点的全体是nR 的可数稠密子集. 例2 离散距离空间X 可分 ⇔ X 是可数集. 例3 ∞l 是不可分空间.§4 连续映射 定义 设X =()d X ,,Y =()dY ~,是两个度量空间,T 是X 到Y 中的映射:X =()d X ,T→ Y =()d Y ~,. 0x ∈X ,若∀ε>0,∃δ>0,s.t. ∀x ∈X 且()0,x x d <δ,都有()0,~Tx Tx d <ε,则称T 在0x 连续:定理 1 设T 是度量空间()d X ,到度量空间()d Y ~,中的映射:()d X ,T →()d Y ~,, 则T 在0x 连续 ⇔ 当n x →0x 时,必有n Tx →0Tx .定理2 度量空间X 到Y 中的映照T 是X 上的连续映射 ⇔ 任意开集M ⊂Y ,M T 1-是X 中的开集.定理2' 度量空间X 到Y 中的映照T 是X 上的连续映照 ⇔ 任意闭集M ⊂Y ,M T 1-是X 中的闭集.§5 柯西点列和完备度量空间定义 1 设X =(X ,d )是度量空间,{}∞=1n n x 是X 中的点列. 若>∀ε0,()N ∈=∃εN N ,s.t.当N n m >,时,有()m n x x d ,<ε,则称{}∞=1n n x 是X 中的柯西点列或基本点列. 若度量空间(X ,d )中每个柯西点列都收敛,则称(X ,d )是完备的度量空间.在一般空间中,柯西点列不一定收敛,如点列1, 1.4, 1,41, ,412.1 在1R 中收敛于2,在有理数集中不收敛.但度量空间中每一个收敛点列都是柯西点列.定理1 完备度量空间X 的子空间M 是完备度量空间 ⇔ M 是X中的闭子空间.常见例子:(1)C (收敛的实或复数列的全体)是完备度量空间 (2) []b a C,是完备的度量空间(3) []b a P ,(实系数多项式全体) 是不完备的度量空间§6 度量空间的完备化 定义 1 设(X ,d ),(X ~,d ~)是两个度量空间,若存在X 到X ~上的保距映射T (∀1x ,2x ∈X ,有d ~(T 1x ,T 2x )=d (1x ,2x )),则称(X ,d )和(X ~,d ~)等距同构,此时称T 为X 到X ~上的等距同构映照。
泛函分析知识点总结
泛函分析知识点总结1.Baire定理定理(Baire纲定理)完备的距离空间是第⼆类型集。
解释:完备的距离空间(X,d),∀x∈X都是内点,因为X在X中是开集。
⼀个⽆处稠密(nowhere dense)的集合就是闭包不含内点的集合不会是整个X,即X不是第⼀类型集,所以只能是第⼆类型集。
注:完备的距离空间是第⼆类型集,那么它的闭包⾄少存在⼀个内点。
这个经常被⽤来证明。
例如,开映射定理、闭图像定理等。
2. 闭包和导集的区别根据定义,集合的闭包是集合的导集和集合的并。
导集是集合所有聚点组成的集合,不包含孤⽴点。
所以闭包是集合导集和孤⽴点组成的集合。
3.闭集在度量空间中,如果⼀个集合所有的极限点都是这个集合中的点,那么这个集合是闭集。
4.不动点定理压缩映射:设(X,d)是距离空间,T是X到X的映射,如果存在⼀个常数θ(0≤θ<1),对于所有的x,y∈X,满⾜下述不等式:d(Tx,Ty)<θd(x,y)则称T是X上的⼀个压缩映射。
不动点定理:设X是完备的距离空间,T是X到X的压缩映射,则T在X上有唯⼀的不动点x∗.即Tx∗=x∗是⽅程Tx=x在X上的唯⼀解。
5.施密特正交化将⼀个线性⽆关的集合{x n}进⾏施密特正交化。
e1=x1 ||x1||e2=x2−<x2,e1>e1 ||x2−<x2,e1>e1||e j+1=x j+1−j∑k=1<x j+1,e k>e k ||x j+1−j∑k=1<x j+1,e k>e k||注:本质上说就是让x j+1减去其在e k,k=0,…,j上的分量,就正交化了。
然后再除以对应范数,进⾏单位化。
6.Hilbert空间的同构n为的实(复)Hilbert空间与R n(C n)同构。
(保距离,保线性,保范数,保内积)⽆限维可分Hilbert空间与l2空间(L2[0,1])等距同构。
7.算⼦的连续性和有界性连续性:对于X中的任何收敛于x0的点列{x n},恒有Tx n→Tx0,n→=∞有界性:存在正常数M,使得对⼀切x∈X,有||Tx||≤M||x||⼀点连续,则处处连续:设X和Y是数域\textbf{F}上的线性赋范空间,T:X→Y是⼀个线性算⼦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。
泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。
一、度量空间的进一步例子1、度量空间设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1° 的充要条件为x=y2° 对任意的z 都成立,则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空间。
x 中的元素称为点。
2、常见的度量空间(1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。
(2)序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称 为序列空间。
(3)有界函数空间B(A )设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义 (4)可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。
令 (5)C[a,b]空间令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意两点x,y ,定义二、度量空间中的极限、稠密集、可分空间1、收敛点列设 是(X ,d )中点列,如果存在 ,使 则称点列 是(X ,d ) 中的收敛点列,x 是点列 的极限。
收敛点列性质:(1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯一的。
(2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。
(,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()|f tg t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-⎰(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x2、收敛点列在具体空间中的意义(1)n 维欧式空间中:为 中的点列,即: 按欧式距离收敛于x 的充要条件是 依坐标收敛于(2)序列空间S 中:为 S 中的点列,(3)C[a,b]空间设 及X 分别为C[a,b] 中的点列及点,(4)可测函数空间M(X)设 及 f 分别为可测函数空间中的点列及点,3、稠密集,可分空间(1)设X 是度量空间,E 和M 是X 中的两个子集,令 表示M 的闭包,如果 ,那么称集M 在集E 中稠密。
等价定义:如果E 中任何一点x 的任何邻域都含有集M 中的点,就称M 在E 中稠密。
对任一 ,有M 中的点列 ,使得 (2)当E=X 时,称集M 为X 的一个稠密子集。
(3)如果X 有一个可数的稠密子集时,称X 为可分空间。
三、连续映射1、度量空间中的连续性设 X=(X,d),Y=(Y ,d ) 是两个度量空间,T 是X 到Y 中的映射, 如果对于任意给定 ,存在 ,使对X 中一切满足的x ,成立 则称T 在 连续。
我们也可以用集显来定义映射的连续性连续性的极限定义设T 是度量空间(X,d)到(Y ,d ) 中的映射,那么T 在 连续的充要条件为当 时,必有 2、连续映射如果映射T 在X 的每一点都连续,则称T 是X 上的连续映射。
称集合 为集合M 在映射T 下的原像。
定理:度量空间X 到Y 的映射T 是X 上的连续映射的充要条件为Y 中任意开集M的原像 是X 中的开集。
n R ()()()12(,,...,),1,2,...,m m m m n x m ξξξ==12(,,...,)n n x R ξξξ=∈()lim (,)0,()1m m i i m d x x m i n ξξ→∞=⇔→→∞≤≤{}m x m x()()()12(,,...,,...),1,2,...,m m m m n x m ξξξ==12(,,...,,...)n x Sξξξ=∈()lim (,)0(),m m i i m d x x m ξξ→∞=⇔→→∞{}n x (,)max |()()|n n a t b d x x x t x t ≤≤=-lim (,)0{}[,]n n n d x x x a b x →∞=⇔在上一致收敛于 {}n f lim (,)0()n n n d f f f t →∞=⇔⇒f(t)E M ⊂x E ∈{}n x ()n x x n →→∞0,x X ∈0ε>0δ>0(,)d x x δ<0(,)d Tx Tx ε<0x 0,x X ∈0()n x x n →→∞0()n Tx Tx n →→∞{|,}x x X Tx M Y ∈∈⊂1T M -四、柯西点列和完备度量空间1、柯西点列设 X=(X,d)是度量空间, 是X 中点列,如果对任何事先给定的 ,存在正整数 ,使当n ,m>N 时,必有 则称 是X 中的柯西点列或基本点列。
总结:在实数空间当中,柯西点列一定是收敛点列;但是在一般的度量空间当中,柯西点列不一定收敛,但是每一个收敛点列一定是柯西点列。
2、完备的度量空间如果度量空间(X,d)中每一个柯西点列都在(X,d)中收敛,则称(X,d)是完备的度量空间。
子空间完备性定理完备度量空间X 的子空间M ,是完备空间的充要条件是:M 是X 中的闭子空间。
五、度量空间的完备化1、等距同构映射设(X,d), 是两个度量空间,如果存在X 到 的保距映射T ,即 ,则称 (X,d) 和 等距同构,此时 T 称为X 到 上的等距同构映射。
六、压缩映射原理及其应用作为完备度量空间概念的应用,我们介绍巴纳赫的压缩映射原理,它在许多关于存在唯一性的定理(例如微分方程,代数方程,积分方程等)的证明中是一个有力的工具。
在介绍压缩映射原理前,我们来介绍压缩映射以及不动点1、压缩映射设X 是度量空间,T 是X 到X 中的映射,如果存在一个数a ,0<a<1,使得对所有的x,y 属于X ,成立 则称T 是压缩映射。
几何意义:压缩映射就是使映射后距离缩短a 倍的映射。
2、不动点设X 为一个集合,T 是X 到X 的一个映射,如果 ,使得 ,则称x*为映射T 的不动点。
3、压缩映射定理设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且只有一个不动点。
注意:a.完备度量空间中的压缩映射必有唯一的不动点。
b.完备性是保证映射的不动点的存在,至于不动点的唯一性,并不依赖于X 的完备性。
压缩映射具有连续性,即对任何收敛点列 必有{}n x 0ε>()N N ε=(,)n m d xx ε<{}n x (,),X d X (,)(,)d Tx Ty d x y =(,),X d X (,)(,)d Tx Ty d x y α≤*x X ∈**Tx x =0()n x x n→→∞0()n Tx Tx n →→∞八、 赋范线性空间和巴拿赫空间1、赋范线性空间设X 是实(或复)的线性空间,如果对于每个向量 ,有一个确定的实数,记为 与之对应,并且满足: 1° 且 等价于x=02° 其中 a 为任意实(或复)数;3° 则称 X 按范数成为赋范线性空间。
范数类似于普通向量的长度2、关于极限的定义(依范数收敛)设 是X 中一点列,如果存在 ,使 则称 依范数收敛于 x ,记为 或3、赋范线性空间的性质1°赋范线性空间不仅是线性空间,也是一个度量空间。
如果令 可以验证的d (x ,y ) 是X 上的距离。
依范数收敛于 x 等价于按距离收敛于x 称 d (x ,y )为由范数 导出的距离。
度量和线性结构之间的协调性:2°范数 是 x 的连续函数。
4、巴拿赫空间及常用例子完备的赋范线性空间称为巴拿赫空间。
(1)欧式空间 ,对每个 ,定义 欧式空间 按上述范数成Banach 空间。
(2)空间,对每个 ,定义 空间 C[a ,b] 按上述范数成Banach 空间。
(3)空间 ,对每个 ,定义 空间 按上述范数成Banach 空间。
x X ∈x 0x ≥0x =x x αα=,,x y x y x y X+≤+∈x {}n x x X ∈||||0()n x x n -→→∞{}n x ()n x x n →→∞lim n n x x →∞=(,)||||,(,),d x y x y x y X =-∈{}n x {}nx ||||x (,0)(,)(,0)||(,0)d x y d x y d x d x αα-=⎧⎨=⎩||||x n R 12(,,...,)n n x R ξξξ=∈||||x =n R [,]x C a b ∈||||max |()|a t b x x t ≤≤=l ∞12(,,...)x l ξξ∞=∈||||sup ||j j x ξ=l ∞第八章 有界线性算子和连续线性泛函一、有界线性算子和连续线性泛函1、线性算子和线性泛函的定义()()()()()()()()()()().或复是实T 则称,子集时是数域的T R 当.T R 记作,的值值T 称为T D T ,的定义定T 称为T D 其中,中的线的线性Y 到T D 是从T 则称βT y,αT x βy αx T 成立β,α,及数X,y x,Y,T D :T ,的线线性子空X 是T D ,的线线性空或复是两两个同为Y 和X 设 的线性泛函+=+∈∀→2、有界线性算子和连续线性泛函()()().有界线界线性有界线界线性泛函是特,地特 .线性算子称为为无,否则.中的有界线的有界Y 到T D 是T 则称,T D x ,x c T x 使得成立c,如果存在常数,是线线性算Y T D :T ,是两两个赋范线性空Y 和X 设 别∈≤→3、相关定理连续有界的充分必要条件是则是线性算子设T T T , 定理1()., 子空间中的闭是是上连续的充分必要条件在那么上的线性泛函是设X f N X f X f 定理24、有界线性算子的范数(算子范数)()()()()., ,,.sup,:,,0T D x x T Tx T T D T x Tx T Y X T D T Y X T D x x ∈∀≤∞<=→⊂∈≠则有时当显见上的范数在为算子称是线性算子是两个赋范线性空间设二、有界线性算子空间和共轭空间1、有界线性算子全体所成空间()X Y β→设X 和Y 是两个赋泛线性空间, 以表示由X 到Y 中有界线性算子全体。