高中物理电磁大题和答案
高中物理模块复习典型题分类-电磁感应(含详细答案)

高中物理模块复习典型题分类-电磁感应(含详细答案)一、单选题1.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)()A.2.5 m/s 1 WB.5 m/s 1 WC.7.5 m/s 9 WD.15 m/s 9 W2.如图所示,水平桌面上放一闭合铝环,在铝环轴线上方有一条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断中正确的是()A.铝环有收缩趋势,对桌面压力减小B.铝环有收缩趋势,对桌面压力增大C.铝环有扩张趋势,对桌面压力减小D.铝环有扩张趋势,对桌面压力增大3.如图所示,A为水平放置的胶木圆盘,在其侧面带有负电荷,在A的正上方用丝线悬挂一个金属圆环B,使B的环面在水平面上且与圆盘面平行,其轴线与胶木盘A的轴线重合。
现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大4.如图所示,AB、CD是一个圆的两条直径且AB、CD夹角为60°,该圆处于匀强电场中,电场强度方向平行该圆所在平面.其中φB=φC=φ,U BA=φ,保持该电场的场强大小和方向不变,让电场以B点为轴在其所在平面内逆时针转过60°.则下列判断中不正确的是()A.转动前U BD=φB.转动后U BD=C.转动后D.转动后5.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。
高中物理电磁振荡复习 题集附答案

高中物理电磁振荡复习题集附答案高中物理电磁振荡复习题集附答案一、选择题(每题4分,共20分)1. 在一个空气容器中,放置有一个带电粒子。
当容器被连接到一个电源上并施加一个电压,容器内的电场和磁场均被激发产生。
这个过程中,能量转换的过程主要是通过哪种方式实现的?A. 电场能和磁场能相互转换B. 电场能转化为磁场能C. 磁场能转化为电场能D. 电磁能相互转换2. 假设一个电感为L,电容为C的简谐振荡电路,其振荡频率为f。
如果同时将电流增加n倍,电感增加m倍,电容不变,那么振荡频率的变化为:A. 与n无关,与m成正比B. 与m无关,与n成正比C. 与n、m无关D. 与n、m成正比3. 以下哪个条件是电磁振荡发生的必要条件?A. 电感器件必须是超导体B. 振荡系统中存在能量损耗C. 有可控的交变电源D. 振荡电流与振荡磁场相互作用4. 两个相互垂直的振动方向相同的简谐振荡的光波叠加时,能够产生什么样的光偏振?A. 圆偏振B. 部分偏振C. 偏振状态不固定D. 线偏振5. 一个振荡电路的等效电感为L,等效电容为C,当之间的电势差达到最大值并保持该值时,振荡频率为f。
若将电容C改变为2C,则振荡频率变为:A. f/2B. fC. 2fD. 4f二、填空题(每空2分,共20分)1. 振荡电路中,电流和电压相互滞后π/2个相位,该振荡电路被称为。
2. 单摆在最低点或最高点的时候具有的动能和势能。
3. 物理学家麦克斯韦在创立电磁场理论时,一共使用了个方程。
4. 电磁振荡的一个重要应用是用于。
5. 简谐振荡的特征量有(或 T,ω,f)。
三、解答题(每题12分,共60分)问题1:简述电磁波的产生过程,并解释为何电磁波传播时无需介质。
问题2:画出一个电容为C,电感为L的简谐振荡电路,并标注出电容和电感所存储的能量。
问题3:简述按照波动理论,光的叠加原理以及干涉现象的产生原理。
问题4:简述电磁振荡是如何在无源电路中产生的,并解释为何能够持续振荡。
高中物理电磁大题和答案

高中物理电磁大题和答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.(2014年 安徽卷)18.“人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞。
已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子的运动半径不变。
由此可判断所需的磁感应强度B 正比于A .TB .T C.3T D .2T【答案】A【解析】由于等离子体中带电粒子的平均动能与等离子体的温度T 成正比,即k E T ∝。
带电粒子在磁场中做圆周运动,洛仑磁力提供向心力:2v qvB m R =得mv B qR =。
而212k E mv =故可得:2k mE mvB qR ==又带电粒子的运动半径不变,所以k B E T ∝∝。
A 正确。
2.(2014年 大纲卷)25.(20 分)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向。
在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度发射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进人电场。
不计重力。
若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求: ⑴电场强度大小与磁感应强度大小的比值; ⑵该粒子在电场中运动的时间。
25. 【答案】(1)201tan 2v θ (2)02tan dv θ【考点】带电粒子在电磁场中的运动、牛顿第二定律、【解析】(1)如图粒子进入磁场后做匀速圆周运动,设磁感应强度大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0,由洛伦兹力公式及牛顿第二定律得:2000mv qv B R =由题给条件和几何关系可知:R 0=d设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在电场中运动的时间为t ,离开电场时沿x 轴负方向的速度大小为v y 。
高中物理电磁感应经典练习题(含答案)

高中物理电磁感应经典练习题(含答案)问题一在一个磁场强度为 0.5 T 的均匀磁场中,一根长度为 0.3 m 的导线以速率 5 m/s 垂直于磁场的方向进入,而后又以同样的速率垂直于磁场的方向退出。
求导线内的感应电动势大小。
解答:根据法拉第电磁感应定律,感应电动势的大小可以用以下公式表示:E = B * l * v其中,E 为感应电动势的大小,B 为磁场强度,l 为导线长度,v 为导线进出磁场的速率。
代入已知值,可以得到:E = 0.5 T * 0.3 m * 5 m/s = 0.75 V所以,导线内的感应电动势大小为 0.75 V。
问题二一根长度为 0.2 m 的导线以速率 10 m/s 垂直于磁场的方向进入磁感应强度为 0.6 T 的磁场,计算导线内感应电流的大小。
解答:根据法拉第电磁感应定律,感应电流的大小可以用以下公式表示:I = B * l * v其中,I 为感应电流的大小,B 为磁感应强度,l 为导线长度,v 为导线进入磁场的速率。
代入已知值,可以得到:I = 0.6 T * 0.2 m * 10 m/s = 1.2 A所以,导线内感应电流的大小为 1.2 A。
问题三一个直径为 0.4 m 的圆形线圈磁感应强度为 0.8 T 的磁场中转动,每转一圈的时间为 0.5 s。
求圆形线圈内感应电动势的大小。
解答:根据法拉第电磁感应定律,感应电动势的大小可以用以下公式表示:E = B * A * ω * N其中,E 为感应电动势的大小,B 为磁感应强度,A 为线圈面积,ω 为角速度,N 为线圈匝数。
线圈面积可以通过以下公式计算:A = π * r^2其中,r 为线圈半径。
代入已知值,可以得到:A = π * (0.4/2)^2 = 0.04π m^2角速度可以通过以下公式计算:ω = 2π / T其中,T 为每转一圈的时间。
代入已知值,可以得到:ω = 2π / 0.5 s = 4π rad/s代入已知值,可以得到:E = 0.8 T * 0.04π m^2 * 4π rad/s * N感应电动势的大小取决于线圈的匝数,由于未提及线圈匝数,所以无法计算具体的感应电动势大小。
高中物理第十三章电磁感应与电磁波初步真题(带答案)

高中物理第十三章电磁感应与电磁波初步真题单选题1、如图所示,空间中只有矩形虚线框内存在着垂直纸面的匀强磁场,当平行于纸面的闭合线圈水平向右匀速经过图中a、b、c、d四个位置时,线圈中有感应电流的是()A.a位置B.b位置C.c位置D.d位置答案:B线圈中的磁通量发生变化时则有感应电流,由图可知b位置磁通量正在增加,有感应电流;a、c、d位置磁通量均未变化,无感应电流,故ACD不符合题意,B符合题意。
故选B。
2、如图为公交车上车时刷卡的情景,当听到“嘀”的声音,表示刷卡成功。
刷卡所用的IC卡内部有电感线圈L 和电容C构成的LC振荡电路。
刷卡时,读卡机向外发射某一特定频率的电磁波,IC卡内的LC振荡电路产生电谐振,线圈L中产生感应电流,给电容C充电,达到一定的电压后,驱动卡内芯片进行数据处理和传输。
下列说法正确的是()A.读卡机发射的电磁波不能在真空中传播B.IC卡是通过X射线工作的C.读卡机发射的电磁波偏离该特定频率,则IC卡内不会产生感应电流D.IC卡既能接收读卡机发射的电磁波,也有向读卡机传输数据的功能答案:DA.读卡机发射的电磁波能在真空中传播,选项A错误;B.IC卡工作肯定不是依靠X射线,X射线的辐射能量比较大,长时间接触对人体有害,选项B错误;C.若读卡机发射的电磁波偏离该特定频率,则IC卡内仍会产生感应电流,只不过不能产生电谐振,从而不能产生较大的感应电流,选项C错误;D.IC卡既能接收读卡机发射的电磁波,也有向读卡机传输数据的功能,选项D正确。
故选D。
3、在一根电流随时间均匀增大的长直导线周围存在()A.恒定的匀强磁场B.恒定的非匀强磁场C.随时间变化的匀强磁场D.随时间变化的非匀强磁场答案:D通电直导线产生的磁场时非匀强磁场,并且磁场与电流的变化相对应,电流随时间均匀增强,磁场随时间也均匀增强,所以在一根电流随时间均匀增大的长直导线周围存在随时间变化的非匀强磁场。
故选D。
4、电磁感应现象的发现,为发电机的发明提供了理论基础,奏响了人类进入电气化时代的序曲,发现电磁感应现象的科学家是()A.欧姆B.奥斯特C.麦克斯韦D.法拉第答案:D发现电磁感应现象的科学家是法拉第。
高中物理电磁学基础练习题及答案

高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。
答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。
2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。
3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。
练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。
2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。
3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。
答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。
答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。
2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。
3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。
4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。
练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。
答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。
高中物理电磁感应测试题及参考答案
高中物理电磁感应测试题及参考答案一、单项选择题:(每题3分,共计18分)1、下列说法中正确的有:()A、只要闭合电路内有磁通量,闭合电路中就有感应电流产生B、穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流和感应电动势D、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流,但有感应电动势2、根据楞次定律可知感应电流的磁场一定是:()A、阻碍引起感应电流的磁通量;B、与引起感应电流的磁场反向;C、阻碍引起感应电流的磁通量的变化;D、与引起感应电流的磁场方向相同。
3、穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2Wb,则()A.线圈中感应电动势每秒增加2VB.线圈中感应电动势每秒减少2VC.线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2VD.线圈中感应电动势始终为2V4、在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B随时间如图2变化时,图3中正确表示线圈中感应电动势E变化的是()A. B. C. D.5、如图所示,竖直放置的螺线管与导线abcd构成回路,导线所在区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线abcd所围区域内磁场的磁感强度按下列哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用力()6.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行,现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移动过程中线框的一边a、b两点间电势差绝对值最大的是()二、多项选择题:(每题4分,共计16分)7、如图所示,导线AB可在平行导轨MN上滑动,接触良好,轨道电阻不计电流计中有如图所示方向感应电流通过时,AB的运动情况是:()A、向右加速运动;B、向右减速运动;C、向右匀速运动;D、向左减速运动。
高中物理电磁感应练习题及答案
高中物理电磁感应练习题及答案一、选择题1、在电磁感应现象中,下列说法正确的是:A.感应电流的磁场总是阻碍原磁通量的变化B.感应电流的磁场方向总是与原磁场的方向相反C.感应电流的磁场方向总是与原磁场的方向相同D.感应电流的磁场方向与原磁场方向无关答案:A.感应电流的磁场总是阻碍原磁通量的变化。
2、一导体在匀强磁场中匀速切割磁感线运动,产生感应电流。
下列哪个选项中的物理量与感应电流大小无关?A.磁感应强度B.导体切割磁感线的速度C.导体切割磁感线的长度D.导体切割磁感线的角度答案:D.导体切割磁感线的角度。
二、填空题3、在电磁感应现象中,当磁通量增大时,感应电流的磁场方向与原磁场方向_ _ _ _ ;当磁通量减小时,感应电流的磁场方向与原磁场方向 _ _ _ _。
答案:相反;相同。
31、一根导体在匀强磁场中以速度v运动,切割磁感线,产生感应电动势。
如果只增大速度v,其他条件不变,则产生的感应电动势将_ _ _ _ ;如果保持速度v不变,只减小磁感应强度B,其他条件不变,则产生的感应电动势将 _ _ _ _。
答案:增大;减小。
三、解答题5、在电磁感应现象中,有一闭合电路,置于匀强磁场中,接上电源后有电流通过,现将回路断开,换用另一电源重新接上,欲使产生的感应电动势增大一倍,应采取的措施是()A.将回路绕原路转过90°B.使回路长度变为原来的2倍C.使原电源的电动势增大一倍D.使原电源的电动势和回路长度都增大一倍。
答案:A.将回路绕原路转过90°。
法拉第电磁感应定律是电磁学中的重要规律之一,它描述了变化的磁场产生电场,或者变化的电场产生磁场的现象。
这个定律是法拉第在1831年发现的,它为我们打开了一个全新的领域——电磁学,也为我们的科技发展提供了强大的理论支持。
在高中物理中,法拉第电磁感应定律主要通过实验和理论推导来展示,让学生们能够更直观地理解这个重要的规律。
高中的学生们已经对电场和磁场的基本概念有了一定的了解,他们已经掌握了电场线和磁场线的概念,以及安培定则等基本知识。
2023人教版带答案高中物理必修三第十三章电磁感应与电磁波初步微公式版经典大题例题
2023人教版带答案高中物理必修三第十三章电磁感应与电磁波初步微公式版经典大题例题单选题1、如图所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,一半在磁场外。
若要使线框中产生感应电流,下列办法中不可行的是()A.将线框向左拉出磁场B.以ab边为轴转动(小于90°)C.以ad边为轴转动(小于60°)D.以bc边为轴转动(小于60°)答案:DA.将线框向左拉出磁场的过程中,线框的bc部分做切割磁感线的运动,或者说穿过线框的磁通量减少,所以线框中将产生感应电流,故A不符合题意;B.当线框以ab边为轴转动(小于90°)时,穿过线框的磁通量减少,所以线框中将产生感应电流,故B不符合题意;C.当线框以ad边为轴转动(小于60°)时,穿过线框的磁通量减少,所以在这个过程中,线框中会产生感应电流,故C不符合题意;D.当线框以bc边为轴转动时,如果转动的角度小于60°,则穿过线框的磁通量始终保持不变,线框中不产生感应电流,故D符合题意。
故选D。
的理解,下列说法正确的是()2、对磁感应强度的定义式B=FILA.磁感应强度B跟磁场力F成正比,跟电流强度I和导线长度L的乘积成反比B.公式表明,磁感应强度B的方向与通电导体的受力F的方向相同C.磁感应强度B是由磁场本身决定的,不随F、I及L的变化而变化D.如果通电导体在磁场中某处受到的磁场力F等于0,则该处的磁感应强度也等于0答案:C,只是比值定义,但磁感应强度B是由磁场本身决定的,不随F、I及L的变化AC.磁感应强度的定义式B=FIL而变化,A错误,C正确;B.根据左手定则,磁感应强度B的方向与通电导体的受力F的方向垂直,B错误;D.当导体与磁场平行时,受到的磁场力F=0,但该处的磁场磁感应强度并不等于0,D错误。
故选C。
3、我国是最早在航海中使用指南针的国家,郑和下西洋的船队已经装备了罗盘,如图所示。
高中物理电磁学练习题(含解析)
高中物理电磁学练习题学校:___________姓名:___________班级:___________一、单选题1.下列哪种做法不属于防止静电的危害()A.印染厂房中保持潮湿B.油罐车的尾部有一铁链拖在地上C.家用照明电线外面用一层绝缘胶皮保护D.在地毯中夹杂一些不锈钢丝纤维2.避雷针能起到避雷作用,其原理是()A.尖端放电B.静电屏蔽C.摩擦起电 D.同种电荷相互排斥3.2022年的诺贝尔物理学奖同时授予给了法国物理学家阿兰•阿斯佩、美国物理学家约翰•克劳泽及奥地利物理学家安东•蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的杰出贡献。
许多科学家相信量子科技将改变我们未来的生活,下列物理量为量子化的是()A.一个物体带的电荷量B.一段导体的电阻C.电场中两点间的电势差D.一个可变电容器的电容4.关于电流,下列说法中正确的是()A.电流跟通过截面的电荷量成正比,跟所用时间成反比B.单位时间内通过导体截面的电量越多,导体中的电流越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,其单位“安培”是导出单位5.转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。
转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A.笔杆上的点离O点越近的,做圆周运动的向心加速度越大B.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动而被甩走C.若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差D.若该同学使用的是金属笔杆,且考虑地磁场的影响,那么只有在竖直平面内旋转时,金属笔杆两端才会形成电势差6.关于电场力做功与电势差的关系,下列说法正确的是()A.M、N两点间的电势差等于将单位电荷从M点移到N点电场力做的功B.不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减少多少C.在两点间移动电荷电场力做功为零,则这两点一定在同一等势面上,且电荷一定在等势面上移动D.在两点间移动电荷,电场力做功的多少与零电势的选取有关7.图甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.〔20## ##卷〕18."人造小太阳〞托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子的运动半径不变.由此可判断所需的磁感应强度B 正比于AB .C.[答案]A[解析]由于等离子体中带电粒子的平均动能与等离子体的温度T 成正比,即.带电粒子在磁场中做圆周运动,洛仑磁力提供向心力:得.而故可得:,所以.A 正确. 2.〔20## 大纲卷〕25.<20分>如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面<xy 平面>向外;在第四象限存在匀强电场,方向沿x 轴负向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度发射出一带正电荷的粒子,该粒子在<d ,0>点沿垂直于x 轴的方向进人电场.不计重力.若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求: ⑴电场强度大小与磁感应强度大小的比值; ⑵该粒子在电场中运动的时间. 25. [答案]〔1〕〔2〕 [考点]带电粒子在电磁场中的运动、牛顿第二定律、[解析]〔1〕如图粒子进入磁场后做匀速圆周运动,设磁感应强度大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0,由洛伦兹力公式与牛顿第二定律得: 由题给条件和几何关系可知:R 0=d设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在电场中运动的时间为t ,离开电场时沿x 轴负方向的速度大小为v y .由牛顿定律与运动学公式得: 粒子在电场中做类平抛运动,如图所示 联立得〔2〕同理可得3.〔20## ##卷〕36、〔18分〕如图25所示,足够大的平行挡板A 1、A 2竖直放置,间距6L .两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面MN 为理想分界面.Ⅰ区的磁感应强度为B 0,方向垂直纸面向外,A 1、A 2上各有位置正对的小孔S 1、S 2,两孔与分界面MN 的距离均为L .质量为m 、+q 的粒子经宽度为d 的匀强电场由静止加速后,沿水平方向从S 1进入Ⅰ区,并直接偏转到MN 上的P 点,再进入Ⅱ区.P 点与A 1板的距离是L 的k 倍.不计重力,碰到挡板的粒子不予考虑.T 2T k E T ∝2v qvB m R =mv B qR =212k E mv =mvB qR ==B 201tan 2v θ02tan d v θ201tan 2Ev B θ02tan dtv θ〔1〕若k =1,求匀强电场的电场强度E ;〔2〕若2<k <3,且粒子沿水平方向从S 2射出,求出粒子在磁场中的速度大小v 与k 的关系式和Ⅱ区的磁感应强度B 与k 的关系式.36.[答案]:〔1〕 〔2〕 [解析]:〔1〕若k =1,则有: MP =L ,粒子在匀强磁场中作匀速圆周运动, 根据几何关系,该情况粒子的轨迹半径为:R =L ,粒子在匀强磁场中作匀速圆周运动,则有:粒子在匀强电场中加速,根据动能定理有: 综合上式解得:〔2〕因为2<k <3,且粒子沿水平方向从S 2射出,该粒子运动轨迹如上图所示,则从S 1到S 2的轨迹如图所示:有几何关系:,又有则整理解得:又因为: 根据几何关系有:则Ⅱ区的磁感应强度B 与k 的关系: 4. 〔2014 ##卷〕8.如图,两根平行长直导线相距2L ,通有大小相等、方向相同的恒定电流,a 、b 、c 是导线所在平面内的三点,左侧导线与它们的距离分别为、和3.关于这三点处的磁感应强度,下列判断正确的是220q 2dm B L E =20q (k L)v=2m B L +0kB 3kB =-20v qv m B R=21q d mv 2E =220q 2dmB L E =222(k )()R L R L -=-20v qv m B R=20q (k L)v=2mB L +62k 2L L x -=k L R x r=0kB 3kB =-2ll lm +q 图25A .a 处的磁感应强度大小比c 处的大B .b 、c 两处的磁感应强度大小相等C .a 、c 两处的磁感应强度方向相同D .b 处的磁感应强度为零 8. [答案]AD[解析] 根据通电直导线的磁场,利用右手螺旋定则,可知b 处场强为零,两导线分别在a 处的产生的场强都大于在c 处产生的场强,a 、c 两处的场强叠加都是同向叠加,选项AD 正确. 5. 〔2014 ##卷〕14.如图,在x 轴上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外;在x 轴下方存在匀强电场,电场方向与xoy 平面平行,且与x 轴成450夹角.一质量为m 、电荷量为q 〔q >0〕的粒子以速度v 0从y 轴上P 点沿y 轴正方向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过一段时间T 0,磁场方向变为垂直纸面向里,大小不变,不计重力.〔1〕求粒子从P 点出发至第一次到达x 轴时所需的时间; 〔2〕若要使粒子能够回到P 点,求电场强度的最大值. 14.[答案],[解析]〔1〕带电粒子在磁场中做圆周运动,设运动半径为R ,运动周期为T ,根据洛伦兹力公式与圆周运动规律,有依题意,粒子第一次到达x 轴时,运动转过的角度为,所需时间t 1为 求得 〔2〕粒子进入电场后,先做匀减速运动,直到速度减小为0,然后沿原路返回做匀加速运动,到达x 轴时速度大小仍为v 0,设粒子在电场中运动的总时间为t 2,加速度大小为a ,电场强度大小为E ,有 得 根据题意,要使粒子能够回到P 点,必须满足 得电场强度最大值6. <2014 ##卷〕14.<16分> 某装置用磁场控制带电粒子的运动,工作原理如图所示.装置的长为L ,上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B 、方向与纸面垂直且相反,两磁场的间距为d .装置右端有一收集板,M 、N 、P 为板上的三点,M 位于轴线上,N 、P 分别位于下方磁场的上、下边界上.在纸面内,质量为m 、电荷量为-q 的粒子以某一速度从装置左端的中点射入,方向与轴线成300角,经过上方的磁场区域一次,恰好到达P 点.改变粒子入射速度的大小,可以控制粒子到达收集板上的位置.不计粒子的重力.<1> 求磁场区域的宽度h ;qBmt 451π=002qT mv E =π45qBmt 451π=qEmv t 022=OO '<2>欲使粒子到达收集板的位置从P 点移到N 点,求粒子入射速度的最小变化量Δv ; <3>欲使粒子到达M 点,求粒子入射速度大小的可能值. 14.[答案]〔1〕 〔2〕 〔3〕[考点]带电粒子在磁场中的运动、洛伦兹力、牛顿第二定律 [解析]〔1〕设粒子的轨道半径为r 根据题意 且解得 〔2〕改变入射速度后粒子在磁场中的轨道半径为,由题意可知 解得 设粒子经过上方磁场n 次 由题意可知且解得〔20## ##卷〕7. 〔20##全国卷1〕15.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是 A .安培力的方向可以不垂直于直导线 B .安培力的方向总是垂直于磁场的方向C .安培力的大小与通电直导线和磁场方向的夹角无关D .将直导线从中点折成直角,安培力的大小一定变为原来的一半 15.[答案]:B[解析]:由左手定则安培力方向一定垂直于导线和磁场方向,A 错的B 对的;F =BIL sinθ,安培力大小与磁场和电流夹角有关,C 错误的;从中点折成直角后,导线的有效长度不等于导线长度一半,D 错的8. 〔20##全国卷1〕16.如图,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场<未画出>.一带电拉子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝23(3)(1)32L d 3()64qB L d m 3(3) (11)13qB L Ld n n m n d<,取整数03sin303cos30Lr d 01cos30)h r (-23(3)(1)32hL d 'r 2mvqvB r2''mv qv B r 03sin304'sin30r r 3'()64qB L v v v d m 0(22)cos30(22)sin30n L n d nr 2n n nmv qv B r 3(3) (11)13nqB L L v d n n m n d<,取整数板后到达PQ 的中点O .已知拉子穿越铝板时,其动能损失一半,这度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为 A .2B .C .1D . 16.[答案]:D[解析]:动能是原来的一半,则速度是原来的倍,又由得上方磁场是下方磁场的倍,选D .10. 〔20## ##卷〕24.如图甲所示,间距为d ,垂直于纸面的两平行板P 、Q 间存在匀强磁场.取垂直与纸面向里为磁场的正方向,磁感应强度的变化规律如图乙所示.t =0时刻,一质量为m ,带电荷量为+q 的粒子〔不计重力〕,以初速度由Q 板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当和取某些特定值时,可使t =0时刻射入的粒子经时间恰能垂直打到P 板上〔不考虑粒子反弹〕.上述m ,q ,d ,为已知量.(1)若,求 (2)若,求粒子在磁场中运动的加速度大小.(3)若,为使粒子仍能垂直打到P 板上,求 24、[答案]〔1〕〔2〕〔3〕;[解析]解:〔1〕设粒子做圆周运动的半径为R ,由牛顿第二定律得①据题意由几何关系得 R 1=d ② 联立①②式得③ 〔2〕设粒子做圆周运动的半径为R 2,加速度大小为a ,由圆周运动公式得222212rv m qvB 2=2120v 0B B T t ∆0v 12B t T ∆=0B 32B t T ∆=004mv B qd=B T 00=mv B qd 203v a d=0d =3B T v π01d=arcsin 242v B T π+()200mv qv B R=00=mv B qd④ 据题意由几何关系得⑤联立④⑤式得⑥〔3〕设粒子做圆周运动的半径为R ,周期为T ,由圆周运动公式得⑦ 由牛顿第二定律得⑧由题意知,代入⑧式得 d =4R ⑨ 粒子运动轨迹如图所示,O 1、O 2为圆心,连线与水平方向的夹角为,在每个T B 内,只有A 、B 两个位置才有可能垂直击中P 板,且均要求,由题意可知⑩设经历完整T B 的个数为n 〔n =0,1,2,3……〕 若在A 点击中P 板,据题意由几何关系得错误!当n =0时,无解 错误! 当n =1时,联立⑨错误!式得错误!联立⑦⑨⑩错误!式得错误!当时,不满足的要求 错误!202v a R =23R d =203v a d=02RT v π=2000mv qv B R=004=mv B qdθ02πθ<<2=22B T T πθπ+2(sin )R R R n d θ++=1=(sin =)62πθθ或0d=3B T v π2n ≥0090θ<<若在B 点击中P 板,据题意由几何关系得错误!当n =1时,无解 错误! 当n =1时,联立⑨错误!式得错误!联立⑦⑨⑩错误!式得错误!当时,不满足的要求 错误!11. 〔20## ##卷〕10.在如图所示的竖直平面内,水平轨道CD 和倾斜轨道GH 与半径的光滑圆弧轨道分别相切于D 点和G 点,GH 与水平面的夹角,过G 点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度;过D 点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度.小物体质量、电荷量,收到水平向右的推力的作用,沿CD 向右做匀速直线运动,到达D 点后撤去推力.当到达倾斜轨道低端G 点时,不带电的小物体在GH 顶端静止释放,经过时间与相遇.和与轨道CD 、GH 间的动摩擦因数均为,取,,物体电荷量保持不变,不计空气阻力.求:(1)小物体在水平轨道CD 上运动的速度v 的大小; (2)倾斜轨道GH 的长度s .10.[解析](1)由对P1受力分析可得:竖着方向受力平衡:N +qvB =mg ……① 水平方向受力平衡:F =N ……② 联立①②可得:v =4m /s2sin 2(sin )R R R R n d θθ+++=11arcsin (sin =)44θθ=或01d=arcsin 242v B T π+()2n ≥0090θ<<m r 449=︒=37θT B 25.1=C N E /1014⨯=1P kg m 3102-⨯=C q 6108-⨯+=N F 31098.9-⨯=1P 2P s t 1.0=1P 1P 2P 5.0=μ2/10s m g =6.037sin =︒8.037cos =︒1P μ(2)P1从D 到G 由于洛伦兹力不做功,电场力做正功,重力做负功由动能定理可知: qEr -mgr <1-cos >=mv -m ……③ P1过G 点后做匀变速直线运动的加速度设为a ,则; qEcos -mg -<mgcos +qE 〕=ma ……④ P2质量设为m 在GH 上做匀加速直线运动的加速度a ,则: m g -m gcos =m a ……⑤ P1和P2在GH 上的时间相同位移之和为S ,所以: S =v t +a t +a t ……⑥ 联立各式,可得:S =0.56m17.〔2014 〕16.带电粒子a 、b 在同一匀强磁场中做匀速圆周运动,他们的动量大小相等,a 运动的半径大于b 运动的半径.若a 、b 的电荷量分别为q a 、q b ,质量分别为m a 、m b ,周期分别为T a 、T b .则一定有A .q a <q bB . m a <m bC . T a <T bD . 16.[答案]A[考点]带电粒子在匀强磁场中的运动、圆周运动的规律、动量[解析]带电粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律有:,因为两个粒子的动量相等,且,所以,A 项正确;速度不知道,所以质量关系不确定,B 项错误;又因为,质量关系不知道,所以周期关系不确定,CD 项错误.20.〔12分〕两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l .导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0〔见图〕.若两导体棒在运动中始终不接触,求: 〔1〕在运动中产生的焦耳热最多是多少. 〔2〕当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? 解析:20.参考解答:θsin θ21G 2212D v 1θθsin μθθsin 1222θsin μ2θ22G 21122122a b a bq qm m <2v mvqBv m r r qB=⇒=a b r r >a b q q <2mT qBπ=ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用作减速运动,cd 棒则在安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 作匀速运动.〔1〕从初始至两棒达到速度相同的过程中,两棒总动量守恒,有:mv 0=2mv ①根据能量守恒,整个过程中产生的总热量:222041)2(2121mv v m mv Q =-=② 〔2〕设ab 棒的速度变为初速度的43时,cd 棒的速度为'v ,则由动量守恒可知: '4300mv v m mv += ③此时回路中的感应电动势和感应电流分别为Bl v v )'43(0-=ε④RI 2ε=⑤此时cd 棒所受的安培力:IBl F =⑥cd 棒的加速度:mF a =⑦ 由以上各式,可得:mRv l B a 4022=⑧22.〔13分〕如图所示,两条互相平行的光滑导轨位于水平面内,距离为l =0.2m,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T.一质量为m=0.1Kg 的金属直杆垂直放置在在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的作用下作匀变速直线运动,加速度大小为a=2m/s 2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且接触良好.求: 〔1〕电流为零时金属杆所处的位置;〔2〕电流为最大值的一半时施加在金属杆上外力F 的大小和方向;〔3〕保持其他条件不变.而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系.解析:22.〔1〕感应电动势ε=BLV,I =ε/R ∴I =0时,v =0∴x =a v 2/20=1m , ①〔2〕最大电流RBLv I m =R BLvI I m 22'==安培力f=N Rv L B Bl I 02.02022/==②向右运动时F +f =ma ,F =ma -f =0.18N ,方向与X 轴相反③ 向左运动时F -f =ma ,F =ma +f =0.22N , 方向与X 轴相反④<3>开始时,v =v 0,f =I m BL=R v L B 022F +f =ma ,F +ma -f =ma -R v L B 022 ⑤∴当v 022L B maR〈=10m/s 时,F >0, 方向与X 轴相反 ⑥ 当v 022LB maR〉=10m/s 时,F <0,方向与X 轴相同 ⑦24.〔18分〕如图所示,在y >0的空间中存在匀强电场,场强沿y 轴负方向;在y <0的空间中,存在匀强磁场,磁场方向垂直xy 平面〔纸面〕向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y =h 处的点P 1时速率为v 0,方向沿x 轴正方向;然后,经过x 轴上x =2h 处的P 2点进入磁场,并经过y 轴上y =h 2-处的P 3点.不计重力.求 〔l 〕电场强度的大小.〔2〕粒子到达P 2时速度的大小和方向. 〔3〕磁感应强度的大小.24.〔1〕粒子在电场、磁场中运动的轨迹如图所示.设粒子从P 1到P 2的时间为t ,电场强度的大小为E ,粒子在电场中的加速度为a ,由牛顿第二定律与运动学公式有qE =ma ① v 0t = 2h ②h at =221③ 由①、②、③式解得qhmv E 220=④〔2〕粒子到达P 2时速度沿x 方向的分量仍为v 0,以v 1表示速度沿y 方向分量的大小,v 表示速度的大小,θ表示速度和x 轴的夹角,则有.11 / 11 ah v 221=⑤2021v v v +=⑥ 01tan v v =θ⑦ 由②、③、⑤式得v 1=v 0⑧由⑥、⑦、⑧式得02v v =⑨︒=45θ⑩〔3〕设磁场的磁感应强度为B ,在洛仑兹力作用下粒子做匀速圆周运动,由牛顿第二定律rv m qvB 2=⑾ r 是圆周的半径.此圆周与x 轴和y 轴的交点分别为P 2、P 3.因为OP 2=OP 3,θ=45°,由几何关系可知,连线P 2P 3为圆轨道的直径,由此可求得r =h 2⑿由⑨、⑾、⑿可得。