九年级数学上册知识点归纳
九年级上册数学总结知识点

九年级上册数学总结知识点一、集合的概念与运算1. 集合的定义和表示方法2. 集合间的包含关系3. 集合的运算:并集、交集、差集、补集4. 集合的性质:全集、空集、互斥集、互不相交集二、函数与方程1. 函数的定义和性质2. 函数图像的基本性质3. 一次函数与二次函数4. 方程的基本概念:根、解、方程的种类5. 方程的解法:代入法、消元法、配方法、因式分解法三、三角形与相似1. 三角形的分类与性质:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形2. 直角三角形的勾股定理和斜边定理3. 相似三角形的判定条件4. 相似三角形的性质:比例关系、类比比例、全等定理四、函数的图像与性质1. 函数图像的基本变换:平移、伸缩、翻转2. 二次函数的图像特征:顶点、对称轴、开口方向3. 绝对值函数和分段函数的图像特征4. 函数的单调性与极值点的求解五、平面坐标系与图形1. 平面直角坐标系的建立与使用2. 线段的长度计算3. 点和直线的位置关系:同一直线、垂直、平行、相交等4. 常见图形的性质与计算:矩形、正方形、三角形、圆六、数据的处理与统计1. 数据的收集和整理2. 统计量的计算:平均数、中位数、众数、极差3. 数据的图表展示:条形图、折线图、散点图4. 概率的基本概念与计算七、圆的性质与计算1. 圆的基本概念与性质:圆心、半径、直径、弧长、扇形面积2. 圆的相关角和切线的性质3. 弧度制与度数制的换算4. 圆的计算问题:弧长问题、扇形面积问题八、空间图形与几何体1. 空间图形的投影与视图2. 空间中的点、线、面的性质与判定3. 空间中的几何体:正方体、长方体、圆柱体、圆锥体、球体4. 空间几何体的计算:体积、表面积等以上是九年级上册数学的主要知识点总结,通过掌握这些知识,可以帮助学生更好地理解和应用数学知识,提升数学解题能力。
通过反复练习和思考,相信学生们能够更加熟练地掌握这些知识,取得更好的成绩。
九年级数学上册知识点总结

2021/11/14
1
第21章 一元二次方程
1.一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知 数的最高次数是2(二次).
一般形式:ax2+bx+c=0 (a≠0)
• 二次项:ax2
• 二次项系数:a
• 一次项:bx
• 一次项系数:b
• 常数项:c
2.根:一元二次方程的解
个图形重合,那么就说这两个图形关于这个点对称或中心对称
• 对称中心:O 对称点:旋转后能够重合的对应点 •4
2021/11/14
12
23章 旋转
• 5.中心对称图形:把一个图形绕着某一点O旋转180°,旋转后的图形
能够与原来的图形重合,那么这个图形就是中心对称图形
• 6.关于原点对称的点的坐标
• P(x,y)
减小
增大
<0
向下
y轴
原点
y随x增大而 y随x增大而
增大
减小
2021/11/14
7
22章 二次函数
• 3.y=a(x-h)2+k的图象和性质(与y=ax2具有相同的形状)
a
ห้องสมุดไป่ตู้
开口 h>0
h<0
k>0
k<0
顶点 对称轴 对称轴 对称轴
左侧 右侧
>0
向上 右移 左移 上移 下移 (h,k) x=k
y随x增 y随x增
2021/11/14
20
24章 圆
•
2021/11/14
21
概率初步
•
2021/11/14
22
2021/11/14
九年级上册数学知识点总结

九年级上册数学知识点总结一、整数和有理数整数是由正整数、负整数和0组成,可以进行加、减、乘、除等运算。
有理数是整数和分数的集合,分数是整数和整数的比值。
整数和有理数的运算规律与整数运算相同,包括加法、减法、乘法和除法。
二、代数与方程1.代数表达式代数表达式是用字母和数字通过运算符号连接起来的数学式子,可以用来表示数值关系和算式运算。
2.方程与不等式方程是等号连接的两个代数表达式,表示两个量相等的关系。
不等式是不等号连接的两个代数表达式,表示两个量大小关系。
3.一元一次方程一元一次方程是只含有一个未知数,并且该未知数的最高次数为1的方程。
可以使用逆运算的原则,通过加减乘除等运算解得未知数的值。
4.二元一次方程组二元一次方程组是包含两个未知数、两个方程的方程组。
可以使用消元法或代入法解方程组。
三、平面图形与坐标系1.平面图形平面图形包括线段、角、三角形、四边形等。
通过计算边长、角度和面积等属性,可以解决与平面图形相关的问题。
2.坐标系与平面直角坐标系坐标系是由两个相互垂直的直线来确定的,用于描述点在平面上的位置。
平面直角坐标系是最常见的坐标系,包括横轴和纵轴,用数字来表示点的位置。
四、利率与利息利率指一定时期内利息与本金的比率,表示资金的增长速度。
利息是利率乘以本金得到的收益。
五、统计与概率1.抽样调查抽样调查是通过从总体中随机选择一部分样本进行调查,从而获得总体特征的方法。
2.频数与频率频数是指某个事件发生的次数或某个数据出现的次数。
频率是指某事件发生的概率或某数据出现的概率。
六、函数与图像1.函数与映射函数是两个集合之间的对应关系,每个自变量都有唯一的函数值与之对应。
2.函数图像函数图像是表达函数在坐标系中的图形,可以通过绘制函数的图像来研究函数的性质和变化规律。
七、几何变换几何变换包括平移、旋转、镜像和放缩等操作,通过改变图形的位置、角度和形状,可以研究图形的性质和变化规律。
八、三角函数三角函数是用来研究角的一种数学函数,包括正弦、余弦、正切等。
数学九年级上册每章知识点

数学九年级上册每章知识点第一章:有理数1. 有理数的概念和分类- 有理数的定义- 正数、负数和零的分类- 有理数的大小比较2. 有理数的加法和减法- 有理数的加法原则- 有理数的减法原则3. 有理数的乘法和除法- 有理数的乘法原则和性质- 有理数的除法原则和性质4. 有理数的运算性质- 加法和减法的交换律、结合律和分配律- 乘法和除法的交换律、结合律和分配律第二章:线性方程和一次不等式1. 变量和代数式- 变量的概念- 代数式的概念和性质2. 一元一次方程- 一元一次方程的定义和基本形式- 解一元一次方程的方法3. 一元一次不等式- 一元一次不等式的定义和基本形式- 解一元一次不等式的方法4. 实际问题与一元一次方程或不等式- 将实际问题转化成一元一次方程或不等式- 解决实际问题的步骤和方法第三章:多项式与因式分解1. 代数式的加减法- 代数式的加法原则和性质- 代数式的减法原则和性质2. 一元多项式- 一元多项式的定义和基本形式- 一元多项式的加减法原则3. 一元多项式的乘法- 一元多项式的乘法原则和性质- 一元多项式的乘法公式4. 因式分解- 因式分解的定义和基本方法- 因式分解的应用第四章:平面直角坐标系与图形初步1. 平面直角坐标系- 平面直角坐标系的概念和构造- 坐标表示和坐标轴上的点2. 点、线和线段- 点的坐标和图形的位置关系- 直线和线段的定义和表示3. 直角和垂线- 直角的概念和判定条件- 垂线的概念和判定条件4. 三角形和四边形- 三角形的分类和性质- 四边形的分类和性质第五章:相似与全等1. 平行线与比例- 平行线的概念和判定条件- 比例的概念和性质2. 相似三角形- 相似三角形的定义和判定条件- 相似三角形的性质和应用3. 全等三角形- 全等三角形的定义和判定条件- 全等三角形的性质和应用4. 相似和全等图形的应用- 利用相似和全等图形求解实际问题- 利用相似和全等图形进行图形的设计以上是数学九年级上册每章的知识点概述。
九年级上册数学知识点

九年级上册数学知识点一、有理数1. 整数2. 分数3. 小数二、代数表达式和简单方程1. 代数表达式的定义与运算2. 一元一次方程3. 方程的解4. 解一元一次方程的基本方法三、图形的性质和变换1. 空间几何图形- 三角形- 四边形- 多边形2. 平面镜像与旋转- 线对称与点对称- 图形的旋转四、概率和统计1. 概率的定义与计算- 随机事件- 事件发生的概率计算 2. 统计与表示- 数据的收集与整理- 平均数与中位数五、函数1. 函数的概念与表示2. 线性函数- 函数的增减性与最值 - 线性函数的图像与性质六、几何初步1. 直线、射线和线段2. 角及其性质3. 平行线和平行四边形七、相似与全等三角形1. 相似三角形- 相似三角形的判定与性质 - 相似三角形的应用2. 全等三角形- 全等三角形的判定与性质 - 全等三角形的应用八、立体几何初步1. 空间几何体的性质- 点、线、面的关系- 空间几何体的视图2. 投影与截面- 立体图形的投影- 立体图形的截面九、二次根式与实数1. 二次根式的性质与运算- 平方根与立方根- 二次根式的四则运算2. 实数的定义与运算- 有理数与无理数的概念- 实数的加减乘除运算十、解直角三角形1. 直角三角形的概念与性质2. 利用三角函数解直角三角形以上是九年级上册数学的主要知识点,通过对这些知识的系统学习,你将掌握数学中的基本概念、方法和技巧。
在实际应用中,这些知识将为你提供解决问题的工具和途径。
希望你能够认真学习,不断提高自己的数学能力。
九年级上册数学知识点归纳

九年级上册数学知识点归纳一、代数基础1.1 代数式与多项式•代数式的概念和基本性质•多项式的定义、次数、最高次项、最高次系数和降次1.2 整式运算•基本运算法则(加、减、乘、除)•多项式的因式分解1.3 方程与不等式•一元一次方程的定义、解法及应用一元二次方程的定义、解法及应用•一元一次不等式和一元二次不等式的定义、解法及应用二、平面几何2.1 点、直线、角、三角形•点、直线、射线、线段的定义•角的概念、性质和分类•三角形的定义、分类、性质(三角形角度定理、三角形边长关系定理)2.2 四边形和多边形•四边形的定义、性质(平行四边形、菱形、矩形、正方形、梯形)•多边形的定义和性质(对称性、全等性、相似性)2.3 圆的基本性质•圆的定义、圆心、半径、直径、弦、弧、圆周角•圆的切线和切点的概念和性质三、立体几何3.1 空间图形的概念和性质•空间图形的分类(点、线、面、体)•空间图形的基本性质(包括线段长度、角度大小、面积和体积)3.2 空间坐标系的建立和应用•空间坐标系的建立(右手法则)•空间坐标系中点、距离、中点公式、斜率公式3.3 空间几何体的计算•立体图形的表面积和体积的计算方法(包括长方体、正方体、棱锥、棱台、球)四、数与函数4.1 实数的概念和性质•实数的分类、基本性质(包括代数性质、有序性、完备性)4.2 一次函数的概念和性质•一次函数的定义、函数图像、图像特征、斜率、截距、变化规律和应用4.3 二次函数的概念和性质•二次函数的定义、函数图像、图像特征、参数的关系及其应用•二次函数解析式的确定方法五、统计与概率5.1 数据的收集和整理•数据的收集方法及其优缺点•数据的整理方法(频率分布表、直方图、折线图、饼图)5.2 概率的概念和基本性质•随机性和概率、概率的基本性质•事件及其概率的计算方法、频率和概率5.3 统计量•数值型数据的统计量(包括极差、平均数、中位数、众数、标准差)•统计推断的基本思想和应用(区间估计、假设检验)以上是九年级上学期数学知识点的归纳,希望对大家有所帮助。
九年级数学上册重要知识点总结

九年级数学上册重要知识点总结九年级数学上册重要知识点总结「篇一」圆的面积s=π×r×r其中,π是周围率,约等于3.14r是圆的半径。
圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。
圆的面积公式为:S=πR2(R的平方).S代表圆的面积,r为圆的半径。
椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的`差。
椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
九年级数学上册重要知识点总结「篇二」1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab九年级数学上册重要知识点总结「篇三」1.直线与圆有唯一公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
九年级上册数学知识点归纳

九年级上册数学知识点归纳九年级上册数学知识点归纳一圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线局部。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的根本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
9、中,A(某1,y1)、B(某2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册知识点归纳(北师大版)第一章 特殊平行四边形第二章 一元二次方程第三章 概率的进一步认识第四章 图形的相似第五章 投影与视图第六章 反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的 两顶点连成的线段叫做它的对角线。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形..... ...1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
一组邻边相等菱形一个内角为直角(或对角线相等)平行四边形一组邻边相等且一个内角为直角(或对角线互相垂直平分)正方形..※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1认识一元二次方程※只含有一个未知数的整式方程,且都可以化为ax2bx c 0(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。
※把ax2bx c0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
2用配方法求解一元二次方程①配方法 <即将其变为(x m)20的形式>※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成(x m)⑥两边开方求其根。
0的形式;3用公式法求解一元二次方程②公式法x b b22a4ac(注意在找abc时须先把方程化为一般形式)4用因式分解法求解一元二次方程③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)5一元二次方程的根与系数的关系※根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程无实数根。
※如果一元二次方程ax2bx c0的两根分别为x、x,则有:1 2x1x2bax x12ca。
※一元二次方程的根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x、x的对称式的值,特别注意以下公式:1 2①x1x22(x1x)222x x1 2②11x x11x x x x1 2 1 2③(x1x)22(x1x)224x x1 2④|x1x | (x2 1x)224x x1 2⑤(|x| |x|) 12(x1x)222x x1 22|x x |1 2⑥x1x32(x1x)323x x(x1 2 1x)2⑦其他能用x1x或x x2 1 2表达的代数式。
(3)已知方程的两根x、x,可以构造一元二次方程:1 2x2 (x1x)x x x2 1 2......222 3(4)已知两数x、x的和与积,求此两数的问题,可以转化为求一元二次方程1 2x2 (x1x)x x x2 1 2的根6应用一元二次方程※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
※处理问题的过程可以进一步概括为:问题分析抽象方程求解检验解答第三章概率的进一步认识用树状图或表格求概率相关知识点链接:频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。
概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。
必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间。
【知识点1】频率与概率的含义在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即频率频数总次数把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。
【知识点2】通过实验运用稳定的频率来估计某一时间的概率在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。
我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。
【知识点3】利用画树状图或列表法求概率(重难点)第四章图形的相似1成比例线段一.线段的比※1.如果选用同一个长度单位量得两条线段A B, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成A mB n.※2.四条线段a、b、c、d中,如果a与b的比等于c与d的比,即做成比例线段,简称比例线段.aabb,那么这四条线段a、b、c、d叫※3. 注意点:①a:b=k,说明 a 是 b 的 k 倍;②由于线段 a 、b 的长度都是正数,所以 k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;a b④除了 a=b 之外,a:b ≠b:a, 与 互为倒数;b aa ca c ⑤比例的基本性质:若 , 则 ad=bc; 若 ad=bc, 则b db d_A_图1_C _B2 平行线分线段成比例※1. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.ABBC 如图 2, l // l // l ,则 . DE EFC _B _ A _D _E _F __l1_ _l2_ _l3_二. 黄金分割※1. 如图 1,点 C 把线段 AB 分成两条线段 AC 和 BC,如果AC BC AB AC_图2,那么称线段 AB 被点 C 黄金分割,点 C叫做线段 AB 的黄金分割点,AC 与 AB 的比叫做黄金比. AC :AB5 1 20.618:1※2.黄金分割点是最优美、最令人赏心悦目的点.3 相似多边形¤1. 一般地,形状相同的图形称为相似图形.※2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比. ※1. 在相似多边形中,最为简单的就是相似三角形.※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3. 全等三角形是相似三角的特例,这时相似比等于 1. 注意:证两个相似三角形,与证两个全等三角形一 样,应把表示对应顶点的字母写在对应的位置上.※4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5. 相似三角形周长的比等于相似比.※6. 相似三角形面积的比等于相似比的平方.※相似多边形的周长等于相似比;面积比等于相似比的平方.4 探索三角形相似的条件※1. 相似三角形的判定方法:1 23一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.①两角对应相等;②两边对应成比例,且夹角相等;③三边对应成比例.①一个锐角对应相等;②两条边对应成比例:a.两直角边对应成比例;b.斜边和一直角边对应成比例.※2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2,l//l//l,则1 23ABBCDEEF.※3.平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 5相似三角形的判定定理的证明6利用相似三角形测高7相似三角形的性质8图形的位似第五章投影与视图A)三视图主视图——从正面看到的图左视图——从左面看到的图俯视图——从上面看到的图画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等.虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线.B)投影物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。
在同一时刻,物体高度与影子长度成比例.物体的三视图实际上就是该物体在某一平行光线(垂直于投影面的平行光线)下的平行投影.探照灯,手电筒,路灯,和台灯的光线可以看成是从一点出发的光线,像这样的光线所形成的投影称为中心投影皮影和手影都是在灯光照射下形成的影子.它们是中心投影。
C)视点、视线、盲区的定义以及在生活中的应用。
. . .眼睛所在的位置称为视点,由视点发出的光线称为视线,眼睛看不到的地方称为盲区第六章反比例函数知识点1反比例函数的定义一般地,形如y kx(k为常数,k 0)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x是自变量,y是x的反比例函数;⑵自变量x的取值范围是x 0的一切实数,函数值的取值范围是y0;⑶比例系数k0是反比例函数定义的一个重要组成部分;⑷反比例函数有三种表达式:①y kx(k 0),②y kx1(k0),③x y k(定值)(k 0);⑸函数y kx(k0)与xky(k0)是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。