《离散数学》第6章 图的基本概念

合集下载

离散数学 图论-图的基本概念20页PPT

离散数学 图论-图的基本概念20页PPT
离散数学 图论-图的基本概念
51、山Байду номын сангаас日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!

离散数学--6.1图的基本概念

离散数学--6.1图的基本概念

与vi 的关联次数为2; 若vi不是边e的端点, 则称e与vi 的关联
次数为0. 设vi,vjV, ek,elE, 若(vi,vj)E, 则称vi,vj相邻; 若ek,el有一个 公共端点, 则称ek,el相邻. 对有向图有类似定义. 设ek=vi,vj是有向图的一条边, 又称 vi是ek的始点, vj是ek的终点, vi邻接到vj, vj邻接于vi
第6章 图
• 6.1 图的基本概念 • 6.2 图的连通性
• 6.3 图的矩阵表示
• 6.4 几种特殊的图
1
6.1 图的基本概念
• 6.1.1 无向图与有向图 • 6.1.2 顶点的度数与握手定理 • 6.1.3 简单图、完全图、正则图、圈图、 轮图、方体图 • 6.1.4 子图、补图 • 6.1.5 图的同构
d e7 c
8
e1 a e4 e6 e2 b e5
e3
握手定理
定理6.1 任何图(无向图和有向图)的所有顶点度数之和都 等于边数的2倍. 证 图中每条边(包括环)均有两个端点, 所以在计算各顶点 度数之和时, 每条边均提供2度, m条边共提供2m度. 推论 任何图(无向图和有向图)都有偶数个奇度顶点 定理6.2 有向图所有顶点的入度之和等于出度之和等于边数 证 每条边恰好提供1个入度和1G=<V,E>, 其中V称为顶点集, 其元素称为 顶点或结点; E是VV的多重子集, 称为边集, 其元素称为 无向边,简称边. 有时用V(G)和E(G)分别表示V和E 例如, G=<V,E>如图所示, 其中V={v1, v2, …,v5} E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}

应用离散数学有向图

应用离散数学有向图
1 0 0 0 A 2 0 1 0
1 0 0 1 1 0 1 0
6.1有向图概述
定义 设D=<V,E>为有向图, V={v1, v2, …, vn}, 令 ={
称(pij)n n为D地可达矩阵, 记作P(D), 简记为P.
性质: P(D)主对角线上地元素全为1. D强连通当且仅当P(D)地元素全为1.
性质:
(1)
a n (1)
j1 ij
d (vi ),
i 1,2,..., n
(2)
a n (1)
i1 ij
d (v j ),
j 1,2,..., n
(3)
a(1) ij
m
D中长度为
1 的通路数
i, j
(4)
a n (1)
i1 ii
D中长度为
1 的回路数
6.1有向图概述
有向图地邻接矩阵 例:
6.2 最短路径
Dijkstra算法步骤: 1,初始化阶段,设置辅助数组Dist,其中每个分量Dist[k] 表 示当前所求得地从源点到其余各顶点 k 地最短路径。 除了起点A外,所有节点地距离Dist设置为无穷大。 一般情况下,Dist[k] = <源点到顶点 k 地边上地权值>
或者 = <源点到其它顶点地路径长度> + <其它顶点到顶点 k 地边上地权值>。 2,更新邻居地距离。
(3) 1地总个数等于-1地总个数, 且都等于m
(4) 平行边对应地列相同
6.1有向图概述
有向图地邻接矩阵
定义 设有向图D=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …,
em},

《离散数学》图基本概念

《离散数学》图基本概念

17
无向图的相邻矩阵
说明: 在无向图中,环是长度为1的圈, 两条平行边构成长度
为2的圈. 无向简单图中, 所有圈的长度3 在有向图中,环是长度为1的圈, 两条方向相反边构成 长度为2的圈. 在有向简单图中, 所有圈的长度2.
《离散数学》图基本概念
4
通路与回路(续)
定理
在n阶图G中,若从顶点vi到vj(vivj)存在通路,则从 vi到vj存在长度小于等于n1的通路.
m m
j1 ij
d(vi )
(i 1,2,..., n)
(3) mij 2m
i, j
(4) 平行边的列相同
《离散数学》图基本概念
16
v1 e1
e2
e3
e4 v2
v3
e5
v4
关联次数为可能取值为0,1,2
1 1 1 0 0
M (G ) 0
1
1
1
0
1 0 0 1 2
0
0
0
0
0
《离散数学》图基本概念
《离散数学》图基本概念
10
几点说明: Kn无点割集(完全图) n阶零图既无点割集,也无边割集. 若G连通,E为边割集,则p(GE)=2 若G连通,V为点割集,则p(GV)2
ห้องสมุดไป่ตู้
《离散数学》图基本概念
11
有向图的连通性
设有向图D=<V,E> u可达v: u到v有通路. 规定u到自身总是可达的. 可达具有自反性和传递性 D弱连通(也称连通): 基图为无向连通图 有向边改为无向边后是连通图 D单向连通: u,vV,u可达v 或v可达u D强连通: u,vV,u与v相互可达
d(u,v)=d(v,u)(对称性) d(u,v)+d(v,w)d(u,w) (三角不等式)

离散数学平面图

离散数学平面图
则满足欧拉公式 v – e + r = 2 即:6-9+r=2,解得r=5
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,

离散数学图论-图的基本概念

离散数学图论-图的基本概念
构的,记作Gl ≅ G2。
对有向图有相同的定义。
定义说明了:两个图的各结点之间,如果存在着一一对应关系 f
这种对应关系又保持了结点间的邻接关系,
那么这两个图就是同构的
在有向图的情况下, f 不但应该保持结点间的邻接关系,还应
该保持边的方向。
结点数相同边数相同
结点的度相同
但是两个图
不同构
(1) V ≠ ø 称为顶点集,其元素称为顶点或结点.
(2)E为边集,它是笛卡儿积 VⅹV的有穷多重子集,其元
素称为有向边,简称边(弧).
有向图D=<V,E> 其中 V={v1,v2,v3 }
边集合E={<v1,v2>,<v2,v1>,
<v2,v1>,<v2,v3>,<v3,v3>
<v3,v3>}
(与前面的关系的图表示相当)

条件:奇度数的结点个数应该是偶数个
(2)序列的可图化:对一个整数序列d=(d1,d2,…dn),若存在以n个顶
点的n阶无向图G,有d(vi)=di ,称该序列是可图化的。
特别的,如果得到的是简单图,称该序列是可简单图化的。
(3)定理 设非负整数列d=(d1,d2,…,dn),则d是可图化的当且
仅当
1)完全图
定义 设G为n阶无向简单图,若G中每个顶点均与其余的n—1个顶点相
邻,则称G为n阶无向完全图,简称n阶完全图,记作Kn(n≥1).
设D为n阶有向简单图,若D中每个顶点都邻接到其余的n—1个顶
点,又邻接于其余的 n—1个顶点,则称D是 n 阶有向完全图.
可画图表示(无向图5阶、有向图3阶和4阶)
子图、生成子

离散数学中的图论基础知识讲解

离散数学中的图论基础知识讲解

离散数学中的图论基础知识讲解图论是离散数学中的一个重要分支,研究的是图的性质和图中的关系。

图论在计算机科学、网络科学、运筹学等领域有着广泛的应用。

本文将从图的基本概念、图的表示方法、图的遍历算法以及一些常见的图论问题等方面进行讲解。

一、图的基本概念图是由顶点和边组成的一种数学结构。

顶点表示图中的元素,边表示元素之间的关系。

图可以分为有向图和无向图两种类型。

1. 无向图:无向图中的边没有方向,表示的是两个顶点之间的无序关系。

如果两个顶点之间存在一条边,那么它们之间是相邻的。

无向图可以用一个集合V表示顶点的集合,用一个集合E表示边的集合。

2. 有向图:有向图中的边有方向,表示的是两个顶点之间的有序关系。

如果从顶点A到顶点B存在一条有向边,那么A指向B。

有向图可以用一个集合V表示顶点的集合,用一个集合E表示有向边的集合。

二、图的表示方法图可以用多种方式进行表示,常见的有邻接矩阵和邻接表两种方法。

1. 邻接矩阵:邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否存在边。

如果顶点i和顶点j之间存在边,那么矩阵的第i行第j列的元素为1;否则为0。

邻接矩阵适用于表示稠密图,但对于稀疏图来说,会造成空间浪费。

2. 邻接表:邻接表是一种链表的数据结构,用来表示图中的顶点和边。

每个顶点对应一个链表,链表中存储与该顶点相邻的顶点。

邻接表适用于表示稀疏图,节省了存储空间。

三、图的遍历算法图的遍历是指按照某一规则访问图中的所有顶点。

常见的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

1. 深度优先搜索:深度优先搜索是一种递归的搜索算法。

从某个顶点出发,首先访问该顶点,然后递归地访问与它相邻的未访问过的顶点,直到所有的顶点都被访问过。

2. 广度优先搜索:广度优先搜索是一种迭代的搜索算法。

从某个顶点出发,首先访问该顶点,然后依次访问与它相邻的所有未访问过的顶点,再依次访问与这些顶点相邻的未访问过的顶点,直到所有的顶点都被访问过。

离散数学微课版第六章课后答案

离散数学微课版第六章课后答案

离散数学微课版第六章课后答案离散数学是一门重要的数学课程,它涉及数学中的许多基本概念,如逻辑、集合、函数和图论。

离散数学微课版第六章的主要内容是图论,图论是离散数学的重要组成部分。

本章主要讨论了图的基本概念、图的结构和图的表示方法。

图的基本概念是指图的元素,它由顶点和边组成。

顶点是图中的一个点,它可以是一个实体或一个抽象的概念,而边是两个顶点之间的关系。

图的结构是指图中顶点和边之间的关系,它可以是连通的、无向的或有向的。

连通的图中,任意两个顶点都有一条路径可以相连;无向图中,边的两个顶点之间没有方向性;有向图中,边的两个顶点之间有方向性。

图的表示方法有多种,其中最常用的是邻接矩阵和邻接表。

邻接矩阵是一个二维矩阵,它用来表示图中顶点之间的关系,如果顶点u和v之间有边,那么矩阵中的对应元素为1,否则为0;而邻接表则用一维数组来表示图中顶点之间的关系,它将每个顶点与其相邻顶点列出来,以此来表示图中的边。

离散数学微课版第六章课后答案是指离散数学微课版第六章的课后习题答案,其中包括了有关图的基本概念、图的结构和图的表示方法的习题。

答案可以帮助学生更好地理解图论的概念,并能够熟练地使用图的表示方法。

本章的课后习题答案可以帮助学生更好地理解图论,并能够熟练地使用图的表示方法。

首先,学生需要了解图的基本概念,包括顶点和边,并能够识别连通图、无向图和有向图;其次,学生需要了解图的表示方法,包括邻接矩阵和邻接表,并能够熟练地使用它们。

离散数学微课版第六章课后答案的重要性在于,它可以帮助学生更好地理解图论,并能够熟练地使用图的表示方法。

此外,它还可以帮助学生更好地学习离散数学,掌握离散数学中的重要概念和方法,从而为今后的学习和应用打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E ' E )。
生成子图—— G ' G 且 V ' V 。
导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。
(3) 平行边——关联于同一对顶点的若干条边 称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。
简单图——不含平行边和环的图。
如例1的(1)中,
第六章 图的基本概念 第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义, 2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
4、简单图,完全图,子图, 补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E E V & V , E 中元素为无向边,简称边。 有向图 D V , E E V V , E 中元素为有向边,简称边。
无向图G V , E 图 有向图D V , E
(注意方向)
2、短程线,距离。
短程线——连通或可达的两点间长度最短的
通路。
距离——短程线的长度, 记
d (Vi ,V j )
d Vi , V j
无向图 有向图
若 vi , v j 之间无通路(或不可达),规定
d (vi , v j ) d vi , v j
距离 d vi , v j 满足:
图论简介 图论是一个古老的数学分支,它起源于游戏 难题的研究。图论的内容十分丰富,应用得相当 广泛,许多学科,诸如运筹学、信息论、控制论、 网络理论、博弈论、化学、生物学、物理学、社 会科学、语言学、计算机科学等,都以图作为工 具来解决实际问题和理论问题。随着计算机科学 的发展,图论在以上各学科中的作用越来越大, 同时图论本身也得到了充分的发展。本课程在第 六、七章中介绍与计算机科学关系密切的图论的 基础内容。
E1 E2 E,则称 G1 , 2 相对于 G 互为补图, G
记 G1 G2 , 2 G1 。 G
如例3中,(5)
(6)
四、图的同构。
定义: 设两个无向图 G1 V1 , E1 , 2 V2 , E2 , G
若存在双射函数 :V1 V2 ,使得对于任意的
E (v1, v2 ),(v2 , v2 ),(v2 , v3 ),(v1, v3 ),(v1, v3 ),(v1, v4 )
图形表示如右:
v1 e1
e6
v5
e2
v2
e3
e4
e5 v3
v4
例1、(2) 有向图 D V , E , v1, v2 , v3 , v4 , v5 V
E v1 , v2 , v3 , v2 , v3 , v2 , v3 , v4 , v2 , v4 , v4 , v5 , v5 , v4 , v5 , v5
G (2)已知图 中有11条边,有1个4度顶点,4个 3度顶点,其余顶点的度数均小于等于2,问中 G 至少有几个顶点?
三、子图,补图。 1、子图定义: 设 G V , E , ' V ', E ' G 是两个图,若 V ' V ,且 E ' E ,则称 G ' 是 G 的子图,G 是 G ' 的母图,记作 G ' G 。 真子图—— G ' G且 G ' G (即V ' V 或


(1) d vi , v j 0 ,i v j 时,等号成立。 v (2) d vi , v j d v j , vk d vi , vk
d 若是无向图,还具有对称性, (vi , v j ) d (v j , vi ) 。
3、无向图的连通。
G 为连通图—— G 是平凡图,或 G 中任两点
简单回路,则从vi 到自身存在长度小于等于 n
的初级回路。
由以上定理可知,在 n 阶图中,
任何一条初级通路的长度 n 1 任何一条初级回路的长度 n
二、图的连通性。 1、连通,可达。 无向图中,从 vi 到 v j 存在通路,称 vi 到 v j 是 连通的(双向)。 有向图中,从 vi 到 v j 存在通路,称 vi 可达 v j 。
4、有向图的连通。
强连通—— D 中任一对顶点都互相可达
(双向) 连通 单向连通 —— D 中任一对顶点至少一 向可达
弱连通 ——略去D 中有向边的方向后
得到的无向图连通 强连通 单向连通 弱连通
例2、
强连通
单向连通
单向连通
弱连通
非连通图
三、点割集,边割集。
G 1、设无向图 G V , E 是连通图,若有顶点集 V ' V ,使 删除 V V V ' (将 中顶点及其关联的边都删除)后,所得子图 G 是不连 V 通的或是平凡图;而删除 中的任何真子集 后,所得子图是 V '' G G V 连通的,则称 是 的点割集.若点割集中只有一个顶点,则 V 称该点为割点.
v1 e1 v2
e3 e6
v5
e1与 v1 , v2 关联的次数均为1,
e2 与 v2 关联的次数为2, e2
边 e1 , e4 , e5 , e6 都是相邻的,
e4
e5 v3
v4
v5 为孤立点, 4 为悬挂点, v
e e6 为悬挂边,e2 为环, 4 , e5 为平行边,重数2,
G 为多重图。
4、完全图
设 V v1, v1,, vn 为图 G 的顶点集,称
d (v1 ), d (v2 ),, d (vn ) 为G 的度数序列。
2、握手定理。 定理1: 设图 G V , E 为无向图或有向图,
V v1, v1,, vn ,E m ( m为边数),

d (v ) 2 m
1 v1e1v2e5v5e7v6
2 v1e1v2e2v3e3v4e4v2e5v5e7v6 3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
长度3 初级通路
长度6 简单通路 长度6 复杂通路
(2)
图(2)中过 v 2 的回路 (从 v 2 到 v 2 )有:
1 v2e4v4e3v3e2v2 2 v2e5v5e6v4e3v3e2v2
图,称 E ' 的导出子图。
例3、
(1)
(2)
(3)
(4)
(5)
(6)
上图中,(1)-(6)都是(1)的子图, 其中(2)-(6)为真子图,(1)-(5)为生成子图。
2、补图定义。 设 G V , E 为无向完全图, 1 V , E1 , G
G2 V , E2 为无向简单图,其中 E1 E2 ,
V 记为V (G ), E记为E (G ) V 记为V ( D), E记为E ( D)
2、图的表示法。
有向图,无向图的顶点都用小圆圈表示。
无向边 ( a, b)
——连接顶点 a , b 的线段。
有向边 a, b ——以 a 为始点,以 b 为终点的有向线段。
例1、(1) 无向图 G V , E , v1, v2 , v3 , v4 , v5 V
设 G V , E 为 n 阶无向简单图,若G 中每个
顶点都与其余 n 1 个顶点相邻,则称G为n 阶
无向完全图,记作 K n 。
若有向图 D 的任一对顶点 u, v(u v),既有有向
边 u, v 又有有向边 v, u ,则称D 为有向完全图。
例如:
K4
K5
二、顶点的度数,握手定理。 1、顶点的度数 (简称度)。 无向图 G V , E , i 的度数记 d (vi ) ,指与 vi v 相关联的边的条数。 有向图 G V , E , i 的度数 v
n 1的通路。
推论:在一个 n 阶图中,若从顶点 vi 到 v j存在 通路 (vi v j ) ,则从 vi 到 v j 存在长度小于等于
n 1的初级通路。
在一个 n 阶图中,若 vi 到自身存在回路, 定理4:
则从 vi 到自身存在长度小于等于 n 的回路。
推论: 在一个 n 阶图中,若 vi 到自身存在一个
(7)
f
(5)
b
(6)
d
v3
例5、(1) 画出4个顶点,3条边的所有非同构 的无向简单图。 解:只有如下3个图:
(1.1)
(1.2)
(1.3)
例5、(2) 画出3个顶点,2条边的所有非同构 的有向简单图。 解:只有如下4个图:
第二节 通路,回路,图的连通性 内容:图的通路,回路,连通性,点割集,边割集。 重点:1、通路,回路,简单通路,回路, 初级通路,回路的定义, 2、图的连通性的概念, 3、短程线,距离的概念。
相关文档
最新文档