PAN基碳纤维

合集下载

pan基碳纤维膨胀系数

pan基碳纤维膨胀系数

pan基碳纤维膨胀系数1. 引言碳纤维是一种轻质高强度的材料,具有优异的力学性能和导电性能,在航空航天、汽车制造、体育器材等领域得到广泛应用。

其中,pan基碳纤维是最常见的一种碳纤维,其性能受到许多因素的影响。

本文将重点探讨pan基碳纤维的膨胀系数及其相关内容。

2. 碳纤维的构成与制备碳纤维主要由聚丙烯腈(PAN)等有机物为原料制备而成。

首先,将PAN原料进行拉伸和预氧化处理,形成预氧化纤维。

然后,在高温下进行炭化处理,将预氧化纤维转变为具有高度有序结构的碳纤维。

3. 膨胀系数的定义与测量方法膨胀系数(Coefficient of Thermal Expansion)描述了材料在温度变化时长度或体积变化的程度。

对于pan基碳纤维而言,其膨胀系数可分为线膨胀系数和体膨胀系数两种。

线膨胀系数表示单位长度的纤维在温度变化时的变化量,而体膨胀系数表示单位体积的纤维在温度变化时的变化量。

测量pan基碳纤维的膨胀系数可以采用多种方法,常见的有热膨胀法和光栅法。

热膨胀法通过在材料上施加热量,测量其长度或体积随温度变化的关系,从而得到膨胀系数。

光栅法则利用激光干涉原理,测量光栅镜片与样品之间的相对位移,进而计算出样品的膨胀系数。

4. 影响pan基碳纤维膨胀系数的因素pan基碳纤维的膨胀系数受多种因素影响,主要包括以下几个方面:4.1 纤维结构pan基碳纤维具有高度有序结构,其晶格结构和分子排列方式会对膨胀系数产生影响。

晶格结构越完整、分子排列越有序,纤维的膨胀系数通常较低。

4.2 纤维取向纤维的取向也会对膨胀系数产生影响。

当纤维取向均匀时,其膨胀系数较小;而当纤维存在偏离主方向的取向时,膨胀系数会增大。

4.3 温度变化范围pan基碳纤维的膨胀系数通常是随温度变化而变化的。

在不同温度范围内,其膨胀系数可能会呈现不同的趋势。

4.4 纤维表面处理对pan基碳纤维进行表面处理可以改善其界面性能和力学性能,同时也会对膨胀系数产生一定影响。

聚丙烯腈(PAN)基碳纤维复合材料

聚丙烯腈(PAN)基碳纤维复合材料
聚丙烯腈基(PAN)碳纤维复合材料
班级:1013241 姓名:董鸿文
学号:101324108
材料化学课程论文
碳纤维复合材料
碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等 人造纤维戒合成纤维为原料,经预氧化、碳化、石墨化等过 程制得含碳量达90%以上的无机纤维材料。
1 2
3
沥青基
粘胶基
聚丙烯腈基(PAN)
PAN链的无规则螺旋结构
PAN纤维→预氧化→碳化→石墨化→PAN基碳纤维
PAN碳纤维原丝微观图
【1】PAN碳纤维原丝截面图
【2】PAN纤维截面SEM照
【3】PAN碳纤维表面结构
PAN碳纤维复合材料的应用
1.航空航天:航天飞机、运载 火箭、导弹卫星、民用商业飞 机
2.体育休闲:球杆球拍、箭弓、 鱼竿、自行车
参考文献
[1]徐樑华:高性能PNA基碳纤维国产化进展及发展趋势[J].中国材料进展, 2012,31(10):7-13 [2]陈利,孙颖,马明:高性能纤维域成形体的研究[J].中国材料进展,2012, 31(10):21-29 [3]韩克清,严斌,余木火:碳纤维及其复合材料高效低成本制备技术进展[J].中 国材料进展,2012,31(10):30-35 [4]郭敏怡:我国高性能碳纤维产业发展现状不展望[M].军民两用技术不产品, 2012,2:53-58 [5]郑宁来:中国航天公司研制成功碳纤维新产品[J].合成纤维,2011,40 (7):14-15 [6]贺福:研制高性能碳纤维已是当务之急[J].高科技纤维不应用,2010,35(1): 14-18 [7]钱伯章:国内外碳纤维应用领域、市场需求以及碳纤维产能的进展[J].高科技 纤维不应用,2010,35(2):29-33 [8]赵稼祥:世界PAN基碳纤维的生产不需求以及对发展我国碳纤维的启示[J].新 材料产业,2010,9:25-31

沥青基碳纤维和pan碳纤维

沥青基碳纤维和pan碳纤维

沥青基碳纤维和pan碳纤维1.引言1.1 概述在概述部分,我们将介绍沥青基碳纤维和PAN碳纤维的基本概念和背景信息。

沥青基碳纤维和PAN碳纤维都是目前广泛应用于不同领域的高性能纤维材料。

沥青基碳纤维是以改性沥青为基材,在高温条件下碳化得到的连续纤维。

它具有较高的热稳定性、力学性能和疲劳性能,被广泛应用于航空航天、汽车制造、建筑材料等领域。

沥青基碳纤维的制备方法主要包括沥青改性、纺丝、碳化等工艺步骤。

PAN碳纤维是以聚丙烯腈(PAN)为主要原料制备得到的连续纤维。

它具有高强度、高模量和优异的特性,被广泛应用于航空航天、船舶、运动器材等领域。

PAN碳纤维的制备方法主要包括聚合纺丝、胶纺丝、气相重聚和高温碳化等工艺步骤。

本文将重点介绍沥青基碳纤维和PAN碳纤维的特性和制备方法,并探讨它们在不同领域的应用。

通过对比分析两种碳纤维的特点,我们可以更好地理解它们的适用范围和优势。

此外,我们也将展望沥青基碳纤维和PAN碳纤维在未来的发展方向,以期为相关领域的研究和应用提供参考和指导。

在接下来的章节中,我们将详细介绍沥青基碳纤维和PAN碳纤维的特性、制备方法和应用领域。

通过全面的研究和讨论,我们可以为碳纤维材料的发展和应用提供更深入的了解和见解。

1.2文章结构文章结构部分的内容可以写成以下形式:1.2 文章结构本文将以两个主要部分来探讨沥青基碳纤维和PAN碳纤维。

首先,我们将详细介绍沥青基碳纤维,包括其特性和制备方法。

接着,我们将探讨沥青基碳纤维在不同领域的应用。

其次,我们将转向PAN碳纤维,同样介绍其特性和制备方法,并讨论其应用领域。

最后,我们将通过对沥青基碳纤维和PAN碳纤维进行比较,总结两者的差异和优势。

此外,我们还将展望未来发展方向,探讨这两种碳纤维在新兴领域中的应用前景。

通过本文的阅读,读者将可以深入了解沥青基碳纤维和PAN碳纤维的特性、制备方法及其在不同领域的应用,为碳纤维领域的研究和开发提供有价值的参考。

PAN碳纤维讲解

PAN碳纤维讲解

聚丙烯腈(PAN)碳纤维黄洛玮1103860621摘要:聚丙烯晴基碳纤维是一种力学性能优异的新材料,具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。

本文简要介绍了其结构,制备方法,性能,应用领域及其前景。

关键词:PAN基碳纤维碳纤维结构 PAN基碳纤维制备 PAN基碳纤维性能 PAN基碳纤维应用前景1.概述碳纤维是一种力学性能优异的新材料,它不仅具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。

聚丙烯碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。

碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。

PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。

2.PAN碳纤维结构碳纤维属于聚合的碳,它是由有机物经固相反应转化为三维碳化合物,碳化历程不同,形成的产物结构也不同。

碳纤维和石墨纤维在强度和弹性模量上有很大差别,这主要是由于其结构不同,碳纤维是由小的乱层石墨晶体所组成的多晶体,含碳量约75%~95%;石墨纤维的结构与石墨相似,含碳量可达98%~99%,杂志少。

碳纤维的含碳量与制造纤维过程中碳化和石墨化过程有关。

PAN选用的原因:1、PAN结构式:这是迄今发展高性能碳纤维最受人瞩目先驱体2、选用PAN原因:a、PAN纤维分子易于沿纤维轴取向;b、碳化收率(1000℃~1500℃)为50%~55%;c、在脱除碳以外的杂原子时其骨架结构很少破坏;d、在180℃附近存在塑性,便于纺丝后的改性处理和经受高温碳化处理。

聚丙烯腈(PAN)基碳纤维复合材料

聚丙烯腈(PAN)基碳纤维复合材料
生产工艺改进
针对PAN基碳纤维复合材料生产过程中存在的能耗高、污染重等问题 ,研究者们不断改进生产工艺,提高生产效率和环保性。
未来发展趋势预测与挑战分析
高性能化
未来PAN基碳纤维复合材料将继续向高性能化方向发展, 以满足高端应用领域对材料性能的更高要求。
绿色环保
随着环保意识的提高,PAN基碳纤维复合材料的绿色生产 将成为未来发展的重要趋势,包括采用环保原料、优化生 产工艺等。
耐疲劳性
碳纤维复合材料具有良好 的耐疲劳性能,能够承受 长期的交变载荷作用。
热稳定性及耐候性评估
热稳定性
PAN基碳纤维在高温下能 够保持较好的稳定性,不 易发生热分解或氧化反应 。
耐候性
碳纤维复合材料具有良好 的耐候性能,能够抵抗紫 外线、酸雨等自然环境的 侵蚀。
耐腐蚀性
由于碳纤维的化学稳定性 较高,因此它对于多种化 学物质都具有良好的耐腐 蚀性。
汽车工业领域应用
轻量化
碳纤维复合材料具有密度小、比 强度高、比模量高等优点,是实 现汽车轻量化的理想材料,可用
于车身、底盘等结构件。
安全性
碳纤维复合材料在碰撞时能够吸收 大量能量,提高汽车的安全性。
舒适性
碳纤维复合材料具有良好的阻尼性 能,能够降低汽车行驶过程中的振 动和噪音,提高乘坐舒适性。
体育器材领域应用
聚丙烯腈(PAN)基碳纤维复合 材料的制备工艺主要包括原丝 制备、预氧化、碳化、石墨化 等步骤,通过控制工艺参数可 以得到不同性能的复合材料。
聚丙烯腈(PAN)基碳纤维复合 材料在航空航天、汽车、体育 器材、建筑等领域具有广泛的 应用前景,如飞机结构件、汽 车轻量化部件、高性能运动器 材等。
02
CATALOGUE

聚丙烯腈(PAN)基碳纤维复合材料及其在大飞机上的应用

聚丙烯腈(PAN)基碳纤维复合材料及其在大飞机上的应用

聚丙烯腈(PAN)基碳纤维复合材料及其在大飞机上的应用徐志鹏北京化工研究院摘要自2007年国务院公布国产大飞机战略以来,这一领域的发展获得了持续的关注。

然而当今的国际大飞机市场被波音和空客两大公司所垄断,国产大飞机想要赢得市场面临多方面的挑战,其中之一就是高性能复合材料的应用。

聚丙烯腈基碳纤维复合材料诞生五十多年以来,发展迅猛,已经从传统的航空航天领域逐渐向汽车、风电等领域拓展市场,未来市场潜力巨大。

而目前中国仅能生产相当于T300,T700性能的碳纤维,不仅无法满足国产大飞机的材料需求,而且该领域的技术短板也限制了很多行业的发展。

本文在综合了前人研究成果的基础上,介绍了碳纤维的发展历程,PAN基碳纤维的关键技术和碳纤维复合材料在商用大飞机上的应用情况。

笔者认为,有市场竞争力的国产大飞机必须大量使用高质量的碳纤维复合材料,而突破PAN基碳纤维复合材料技术壁垒的关键在于生产高质量的碳原丝,其技术突破点在于干喷湿纺和凝胶纺丝生产技术的掌握与改进。

关键字:PAN基碳纤维,大飞机,碳原丝,干喷湿纺, 凝胶纺丝ABSTRACTLarge Plane Project has been fascinating Chinese public for years since its first announcement by State Council in 2007. China-made large plane is now facing varieties of challenge, while Boeing and Airbus are on the monopoly of market, one of the main challenge is the application of carbon fiber composite material. PAN based carbon fiber composite has witnessed a boost since it’s born in the past 50years, and now is expanding its application from space project to automobile and wind power generation projects. Carbon fiber industry in China cannot satisfy the demand of large plane project and many other industrial demands, because we can only made carbon fiber as well as T300 and T700 by our self. This article introduced the history of carbon fiber, key technology of PAN based carbon fiber and how PAN based carbon fiber is used in commercial large aircrafts. The author of this article believes the China-made large plane must use plenty of carbon fiber based composite to win the market and the key technology we need to break through is dry-wet spinning and gel spinning technique to make high performance PAN-based carbon fiber precursor.Key words: PAN based carbon fiber, large plane, carbon fiber precursor前言国产大飞机战略自发布以来,引发了广泛的关注。

PAN碳纤维

PAN碳纤维

东邦Tenax:对其PAN原丝和碳纤维生产工艺和技术进行了重大创新,使生产效率提高 10~100倍。
东丽:丙烯腈(AN)与依糠酸(IA)在DMSO溶剂中进行溶液聚合时,加入少量平均 相对分子质量(Mz)约为580万的PAN然后将该聚合液通入氨气制成纺丝原液制得直 径为2.1μm、强度为7.2 GPa、模量为470GPa、抗压缩强度为1.6 GPa的超级碳纤维。
,是钢的7~9倍
。抗拉伸模量在 23000~43000M pa亦远高于钢。
基碳纤维密度在
1.75~1.93g/cm3 之间。
国际形势
PAN的选用
聚丙烯腈(PAN)在1961年通过Shindoin首次被认定作为碳纤维合适 的前驱体。 PAN的结构
PAN的影响因素: a、PAN纤维分子易于沿纤维轴取向; b、碳化收率(1000℃~1500℃)为50%~55%; c、在脱除碳以外的杂原子时其骨架结构很少破坏; d、在180℃附近存在塑性,便于纺丝后的改性处理和经受高温碳化 处理。 丙烯腈(AN)可以聚合本体聚合,悬浮液聚合,溶液聚合,并在乳液 通过将自由自由基,离子或原子转移自由基聚合。
聚丙烯腈基(PAN)碳纤维复 合材料
班级:11031101材料化学 姓名:黄洛玮 学号:1103860621
PAN碳纤维介绍
PAN的选取原因 PAN碳纤维的制备
PAN碳纤维的前景及国际形势
碳纤维复合材料
碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等 人造纤维或合成纤维为原料,经预氧化、碳化、石墨化等过 程制得含碳量达90%以上的无机纤维材料。
美国Hexcel公司
中国的碳纤维发展速度有待提高,需要我们继续不懈的努力
参考文献:
CarbonFibers:PrecursorSystems,Processing,Structure,and Properties.---------------------ErikFrank,LisaM.Steudle,DenisIngildeev,JohannaM.Spç rl,and MichaelR.Buchmeiser*

PAN碳纤维

PAN碳纤维

聚丙烯腈(PAN)碳纤维黄洛玮1103860621摘要:聚丙烯晴基碳纤维是一种力学性能优异的新材料,具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。

本文简要介绍了其结构,制备方法,性能,应用领域及其前景。

关键词:PAN基碳纤维碳纤维结构 PAN基碳纤维制备 PAN基碳纤维性能 PAN基碳纤维应用前景1.概述碳纤维是一种力学性能优异的新材料,它不仅具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。

聚丙烯碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。

碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。

PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。

2.PAN碳纤维结构碳纤维属于聚合的碳,它是由有机物经固相反应转化为三维碳化合物,碳化历程不同,形成的产物结构也不同。

碳纤维和石墨纤维在强度和弹性模量上有很大差别,这主要是由于其结构不同,碳纤维是由小的乱层石墨晶体所组成的多晶体,含碳量约75%~95%;石墨纤维的结构与石墨相似,含碳量可达98%~99%,杂志少。

碳纤维的含碳量与制造纤维过程中碳化和石墨化过程有关。

PAN选用的原因:1、PAN结构式:这是迄今发展高性能碳纤维最受人瞩目先驱体2、选用PAN原因:a、PAN纤维分子易于沿纤维轴取向;b、碳化收率(1000℃~1500℃)为50%~55%;c、在脱除碳以外的杂原子时其骨架结构很少破坏;d、在180℃附近存在塑性,便于纺丝后的改性处理和经受高温碳化处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚丙烯腈及沥青基碳纤维的工艺流程
1.聚丙烯腈碳纤维:
聚丙烯腈碳纤维是以聚丙烯腈纤维为原料制成的碳纤维,主要作复合材料用增强体。

无论均聚或共聚的聚丙烯腈纤维都能制备出碳纤维。

为了制造出高性能碳纤维并提高生产率,工业上常采用共聚聚丙烯腈纤维为原料。

对原料的要求是:杂质、缺陷少;
细度均匀,并越细越好;强度高,毛丝少;纤维中链状分子沿纤维轴取向度越高越好,通常大于80%;热转化性能好。

生产中制取聚丙烯腈纤维的过程如下:
1)原丝的制备:先由丙烯腈和其他少量第二、第三单体(丙烯酸甲
醋、甲叉丁二脂等)通过水相悬浮聚合、溶液聚合、乳液聚合或本体聚合共聚生成共聚聚丙烯腈树脂(分子量高于 6~8万),然后树脂经溶剂(硫氰酸钠、二甲基亚砜、硝酸和氯化锌等)溶解,形成粘度适宜的纺丝液,经湿法、干法或干-湿法进行纺丝,再经水洗、牵伸、干燥和热定型即制成聚丙烯腈纤维。

直径12um 左右。

2)原丝的预氧化:若将聚丙烯腈纤维直接加热易熔化,不能保持
其原来的纤维状态。

因此,制备碳纤维时,首先要将聚丙烯腈纤维放在空气中或其他氧化性气氛中进行低温热处理,即预氧化处理。

预氧化处理是纤维碳化的预备阶段,过程中所发生的反应包括环化、脱氢及氧化,最后形成耐热梯型高分子。

一般将纤维在空气下加热至约270℃,保温0.5h~3h,聚丙烯腈纤
维的颜色由白色逐渐变成黄色、棕色,最后形成黑色的预氧化纤维。

3)碳化:将预氧化纤维在氮气中进行高温处理(l600℃),即碳化
处理,则纤维进一步产生交联环化、芳构化转化成稠环及缩聚等反应,并脱除氢、氮、氧原子,纤维中的含碳量从60%增加到95%,最后形成二维碳环平面网状结构和层片粗糙平行的乱层石墨结构的碳纤维,直径在6-7um。

4)石墨化:在氦气或氩气的保护下,碳纤维经过进一步高温处理,
得到石墨纤维。

石墨化纤维处理是将碳纤维放在2500-3000℃
的高温下,可得到含碳量在99%以上的更高模量的碳纤维。

5)表面处理:为方便碳纤维在复合材料中的应用,后期在碳纤维
表面增加活性基团等后处理。

2.沥青基碳纤维
通用型沥青基碳纤维一般只能做复合材料增强剂、吸附剂、文文体用品等,因此对沥青的预处理没有太高的要求。

而高性能沥青基碳纤维的生产原料为中间相沥青。

选择中间相沥青的生产方法主要根据原料的性质和组成确定。

热聚合工序是生产中间相碳纤维的关键工序,其工艺条件是研究重点。

由于通用型碳纤维的研究比较多,并且应用更广,所以下面就主要介绍一下通用型沥青基碳纤维制备过程。

(1)原料沥青的精制:沥青中,特别是煤焦油沥青中常含有游
离炭和固体杂质,它们在纺丝过程中可能堵塞纺丝孔,细小颗粒残留在纤维中则是碳纤维的断裂源。

为此,必须对沥青进行精制,以除去这些不溶物杂质。

通常采取的方法是在沥青中加入一定量的溶剂,并将沥青加热到100℃以上,用不锈钢网或耐热玻璃纤维等进行过滤;在热过滤过程中,还必须用一定的氮气进行保护,防止过滤时沥青的氧化。

(2) 沥青的调制:沥青调制的目的一是除去沥青中的轻组份,
防止在纺丝过程中产生气泡,造成丝的断裂;二是提高软化点,使分子量分布均匀。

调制是通过沥青的热缩聚、加氢预处理、溶剂萃取的方法制取可纺沥青。

调制的一般方法是空气吹扫法和热
缩聚法。

(3) 纺丝工艺:沥青的熔纺与一般的高分子不同,它们在极短的时间内固化后就不能再进行牵伸,得到的沥青纤维十分脆弱,因此,在纺丝时就要求能纺成直径在l5μm以下的低纤度纤维,以提高最终碳纤维的强度。

碳纤维的纺丝方法主要有挤压法、离心法、熔吹法、涡流法。

挤压法是用高压泵将熔化的高温液体沥青压入喷丝头,挤出成细丝;离心法是将熔化的高温沥青液体在高速旋转的离心转鼓内通过离心力作用被甩出立即凝固成纤维丝;熔吹法是将熔化的高温沥青液体送到喷丝头内,沥青液体从小孔压出后立即被高速流动的气体冷却和携带牵伸成纤维丝;涡流法是将高温液体沥青由热气流在其流出的切线方向吹出并被牵伸,所纺出的纤维具有不规则的卷曲。

温度依赖性使纤维成形时的纺丝温度变得非常重要。

纺丝温度的微小变化可导致纺丝压力波动很大。

因而,纺丝温度可控制纺丝操作的稳定性,甚至最终碳纤维的性能。

除此之外,挤出流速、收丝速度及这两者的比值(牵伸比)都会影响着碳纤维的机械性值。

现在纺丝的方法有熔喷法和熔纺法。

(4)沥青纤维的不熔化处理:沥青纤维必须通过炭化,充分除去其中非碳原子,最终发展碳元素所固有的特性;但由于沥青的可溶性和粘性,在刚开始加温时就会粘合在一起,而不能形成单丝的碳纤维,所以必须先进行碳纤维的预氧化处理。

另外预氧化还可以提高沥青纤维的力学性能,增加炭化前的抗拉强度。

沥青
纤维在氧化过程中发生了十分显著的化学变化和物理变化,其中最主要的变化是分子之间产生了交联,使纤维具有不溶解、不熔融的性能。

(5) 沥青基碳纤维的碳化和石墨化:不熔化后沥青纤维应送到惰性气氛中进行炭化或石墨化处理,以提高最终力学性能。

炭化是指在1200℃左右进行处理,而石墨化则是在接近3000℃的条件下进行。

炭化时,单分子间产生缩聚,同时伴随着脱氢、脱甲烷、脱水反应,由于非碳原子不断被脱除,炭化后的纤维中碳含量可达到92%以上,碳的固有特性得到发展,单丝的拉伸强度、模量增加。

随着碳纤维应用领域的拓宽,比如说将其组装成锂离子电池和超级电容器,使得对其性质的要求更高,于是进一步石墨化便变得不可缺少,进一步增加碳含量。

(6)沥青基碳纤维的后处理:为进一步提高沥青纤维与复合基体的亲合力和粘结力,还必须对沥青纤维进行表面处理,以消除表面杂质,并在纤维表面形成微孔,增加表面能。

但是这方面由于要根据具体的实际需要而定,因此方法的种类很多。

现在主要处理方法有空气氧化法、液相氧化法等。

相关文档
最新文档