“互感和自感”教学设计
中职自感和互感教学设计

中职自感和互感教学设计中职自感和互感教学设计可分为以下几个部分:目标设定、课堂教学活动设计、课堂评价和教师反思。
一、目标设定中职自感和互感教学的目标是培养学生的自我意识和社交能力,让他们能够感知自己的情感、需要和价值,同时也能认识和尊重他人的感受和需求。
此外,还要培养学生的合作精神和沟通能力,激发他们的创造力和解决问题的能力。
二、课堂教学活动设计1. 创设情境:通过引入真实的生活情境或角色扮演,激发学生的兴趣和积极参与。
2. 多元表达方式:为学生提供多样化的表达方式,如绘画、写作、讨论等,让学生可以通过各种途径表达自己的情感和需求。
3. 合作学习:通过小组合作学习的方式,让学生相互合作、互相支持,培养他们的合作精神和团队意识。
4. 观摩学习:引导学生观摩他人的表现,并进行反思和评价,从中学习他人的优点和经验,并将其运用到自己的实践中。
5. 角色扮演:通过角色扮演的方式,模拟真实的情境,让学生体验到不同的角色和他人的感受,促进学生的共情能力和理解他人的需求。
6. 反思和讨论:设计反思和讨论环节,帮助学生对自己的情感和体验进行总结和思考,并与他人进行交流和分享。
三、课堂评价中职自感和互感教学的评价应注重学生的主观感受和表达能力,以及他们对他人的理解和尊重。
可采用如下评价方式:1. 个人作品评价:对学生的个人作品进行评价,如绘画、写作等,注重表现出的情感和主题的质量。
2. 观察记录评价:对学生在课堂活动中展示的行为和表现进行观察记录,并给予反馈。
3. 小组合作评价:评价学生在小组合作中的表现,包括他们的合作精神、沟通能力和解决问题的能力。
4. 交流评价:通过讨论和交流的方式,评价学生对他人感受和需求的理解和尊重程度。
四、教师反思在教学过程中,教师应及时关注学生的学习成果和情感体验,鼓励学生的积极参与和表达,并根据学生的不同需求和进展情况进行调整和反思。
教师还应通过观察学生的学习情况和听取学生的反馈,不断改进和完善自己的教学策略,提高教学效果。
高中物理互感与自感的教案设计

高中物理互感与自感的教案设计一、教学目标1. 让学生理解互感和自感的概念,知道它们是电磁感应现象的特殊情况。
2. 让学生掌握互感和自感的大小计算公式,并能运用到实际问题中。
3. 培养学生运用物理知识解决实际问题的能力。
二、教学重点1. 互感和自感的概念。
2. 互感和自感的大小计算公式。
三、教学难点1. 互感和自感的大小计算公式的推导。
2. 如何在实际问题中运用互感和自感的大小计算公式。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、讨论,探索互感和自感的现象和规律。
2. 运用多媒体辅助教学,通过动画、图片等形式,形象地展示互感和自感的过程。
3. 结合实际例子,让学生通过计算和分析,掌握互感和自感的大小计算公式。
五、教学内容1. 互感与自感的概念介绍。
2. 互感与自感的大小计算公式推导。
3. 互感与自感在实际问题中的应用实例。
教案内容:一、导入(5分钟)1. 通过复习电磁感应的基本概念,引导学生回顾法拉第电磁感应定律。
2. 提问:在电磁感应现象中,有没有特殊情况?二、互感与自感概念的引入(10分钟)1. 讲解互感的概念:当两个导体相互靠近时,其中一个导体的电流变化会在另一个导体中产生感应电动势。
2. 讲解自感的概念:导体自身的电流变化在自身产生的感应电动势。
三、互感与自感的大小计算公式(10分钟)1. 推导互感的大小计算公式:M = μ₀N₁N₂L / (2 π f l),其中M为互感系数,N₁和N₂为两个线圈的匝数,L为线圈的自感系数,f为交流电的频率,l为两个线圈之间的距离。
2. 推导自感的大小计算公式:L = μ₀N²/ l,其中L为自感系数,N为线圈的匝数,l为线圈的长度。
四、互感与自感在实际问题中的应用(10分钟)1. 举例说明互感在变压器中的应用。
2. 举例说明自感在电容器充电和放电过程中的作用。
五、课堂小结(5分钟)2. 强调互感与自感在实际生活中的应用。
高中物理自感互感教案

高中物理自感互感教案一、教学目标1. 理解并掌握自感和互感的概念;2. 能够应用自感和互感的原理解释现象;3. 能够进行实验观察、测量和分析电磁现象。
二、教学重点与难点重点:自感和互感的概念、原理和应用;难点:自感和互感的数学表达和计算。
三、教学内容1. 自感和互感的概念;2. 自感和互感的原理;3. 自感和互感的应用;4. 实验探究:利用螺线管和铁芯线圈测量自感和互感。
四、教学过程1. 概念引入通过引入变压器的原理和结构,引导学生思考变压器中的自感和互感是如何发生的,并引出自感和互感的概念。
2. 知识讲解讲解自感和互感的定义、原理、计算公式和实际应用,引导学生理解自感和互感的重要性和作用。
3. 实验探究利用螺线管和铁芯线圈进行实验观察和测量,让学生亲身体验自感和互感的实际效果,并帮助他们掌握自感和互感的测量方法和计算技巧。
4. 拓展应用通过举例应用自感和互感的场景,如变压器、感应电机等,让学生了解自感和互感在电磁学中的广泛应用。
五、教学总结通过本节课的学习,学生将深入理解自感和互感的概念和原理,并能够应用自感和互感的知识解释各种电磁现象。
同时,通过实验探究和实际应用,学生将培养实验观察、数据分析和问题解决的能力。
六、作业布置1. 阅读相关教材,复习自感和互感的知识点;2. 思考并回答自感和互感在变压器中的作用是什么;3. 完成相关练习题,巩固自感和互感的计算方法。
七、教学反思通过本节课的教学,学生能够全面掌握自感和互感的概念、原理和应用,同时培养实验探究和问题解决的能力。
下节课要继续引导学生深入了解电磁学知识,拓展应用场景,激发学生的兴趣和创造力。
提高互感与自感理解的教案设计

提高互感与自感理解的教案设计教学目的:1.了解互感与自感的概念。
2.掌握提高互感与自感理解的方法。
3.学会运用所掌握的方法来提高自身的互感与自感能力。
教学内容:1.什么是互感?互感是指在交往中,人与人之间能够感知、感受对方的情感状态、心理感受以及意图和需要,并能够做出适当的反应。
互感不仅是人际交往的重要组成部分,而且是人类社会和谐发展的重要基石。
2.什么是自感?自感是指个人对自身心理状态、感受和需要的感知和认知。
自感与互感是相辅相成的,只有人们具备了自我感知的能力,才能更好地从他人眼中观察自己,从而实现互感。
3.提高互感与自感的方法3.1倾听对方的需要和情感互感是建立在关注他人需要的基础上的,因此在交往中,要倾听对方的意愿和情感,积极回应他人的需求和情感。
3.2关注自身的情感状态和需求只有了解自己的情感状态和需求,才能更好地与他人交流。
因此,在交往中,要时刻关注自己的情感状态和需求,及时调整自己的情绪,以获得更好的交往效果。
3.3建立良好的人际关系建立良好的人际关系,是提高互感和自感的重要途径。
建立良好的人际关系,可以让人们更好地理解他人,更好地得到他人的理解和支持,从而促进互感和自感的建立。
4.课堂训练4.1分组训练将学生随机分组,让他们进行角色扮演,模拟不同场景下的互感与自感。
例如,有的小组可以扮演在公共场合举行集会,而另一些小组可以扮演在私人场合聚会的场景。
在模拟过程中,让学生互相交流,加强互感与自感的训练。
4.2情感体验在教室里,教师可以通过给学生贴纸、笔记本、海报等形式,让学生表达自己的内心情感。
学生可以自由发挥,表达自己的任何感受和情感。
在分享的过程中,让学生互相倾听和理解,加深互感与自感能力的训练。
5.教学效果评估通过课堂训练和情感体验的活动,教师可以对学生的互感和自感能力进行评估。
评估方面可以通过问卷、讨论和观察等方式来进行,以了解学生互感和自感能力的提高情况,并及时调整教学方法。
高中物理自感和互感教案

高中物理自感和互感教案在高中物理的电磁学部分,自感和互感是两个重要的概念,它们不仅揭示了电磁感应的基本规律,而且在实际应用中也有着广泛的作用。
为了帮助学生更好地理解和掌握这两个概念,以下是一份精心设计的高中物理自感和互感教案范本。
一、教学目标1. 理解自感和互感的基本概念。
2. 掌握自感电动势和互感电动势的产生条件。
3. 了解自感和互感在实际应用中的例子。
4. 能够进行自感和互感相关的实验操作和分析。
二、教学内容1. 自感现象- 定义:当导体中的电流发生变化时,由于磁场的变化而在导体自身产生的电动势。
- 自感电动势的表达式:\( \varepsilon = -L \frac{dI}{dt} \),其中L为自感系数。
- 自感现象的应用:延迟开关、电磁铁等。
2. 互感现象- 定义:当两个电路相互靠近时,一个电路中的电流变化引起的磁场变化,会在另一个电路中产生电动势。
- 互感电动势的表达式:\( varepsilon = M \frac{dI}{dt} \),其中M为互感系数。
- 互感现象的应用:变压器、无线充电技术等。
三、教学方法1. 采用启发式教学,通过问题引导学生思考自感和互感的本质。
2. 结合实验演示,直观展示自感和互感现象。
3. 利用多媒体教学资源,如动画、视频等,增强学生的感性认识。
4. 鼓励学生进行小组讨论,共同解决实际问题。
四、教学过程1. 引入新课:通过日常生活中的例子(如手电筒的开关)引出自感现象。
2. 讲授新知:详细解释自感和互感的定义、表达式和应用。
3. 实验操作:指导学生完成自感和互感的实验,观察并记录实验现象。
4. 案例分析:讨论自感和互感在实际中的应用案例,深化理解。
5. 小结回顾:总结自感和互感的重点知识,回答学生的疑问。
五、作业与评价1. 布置相关习题,巩固自感和互感的理论知识。
2. 要求学生撰写实验报告,提高实验分析能力。
3. 通过小测验检验学生对自感和互感概念的掌握情况。
互感和自感公开课教案教学设计课件资料

互感和自感公开课教案教学设计课件资料一、教学目标1. 知识与技能:让学生了解互感和自感的概念,理解它们在电路中的应用。
2. 过程与方法:通过实验和案例分析,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生对电磁感应现象的兴趣,培养学生的创新意识和团队合作精神。
二、教学内容1. 互感现象:介绍互感的概念,解释互感现象的产生原因,展示互感在电路中的应用。
2. 自感现象:介绍自感的概念,解释自感现象的产生原因,展示自感在电路中的应用。
3. 互感和自感的区别与联系:分析互感和自感的异同,引导学生理解它们在电路中的相互作用。
4. 实验演示:安排实验,让学生观察和体验互感和自感现象,加深对概念的理解。
5. 案例分析:分析实际电路中的应用实例,让学生学会运用互感和自感知识解决实际问题。
三、教学过程1. 导入新课:通过展示电磁感应现象的图片,引发学生的好奇心,激发学习兴趣。
2. 讲解互感现象:简要介绍互感的概念,解释互感现象的产生原因,展示互感在电路中的应用。
3. 讲解自感现象:简要介绍自感的概念,解释自感现象的产生原因,展示自感在电路中的应用。
4. 互感和自感的区别与联系:分析互感和自感的异同,引导学生理解它们在电路中的相互作用。
5. 实验演示:安排实验,让学生观察和体验互感和自感现象,加深对概念的理解。
6. 案例分析:分析实际电路中的应用实例,让学生学会运用互感和自感知识解决实际问题。
7. 课堂小结:回顾本节课的主要内容,强调互感和自感在电路中的应用。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 实验报告:评估学生在实验过程中的观察、分析和总结能力。
3. 课后作业:检查学生对互感和自感知识的理解和应用能力。
五、教学资源1. 课件:制作精美的课件,展示互感和自感的相关图片、图表和动画。
2. 实验器材:准备互感和自感实验所需的器材,如线圈、电流表、电压表等。
大学物理自感和互感教案

教学目标:1. 理解自感和互感的概念,掌握其产生的原理。
2. 掌握自感系数和互感系数的计算方法。
3. 了解自感和互感在实际生活中的应用。
教学重点:1. 自感和互感的概念及其产生原理。
2. 自感系数和互感系数的计算方法。
教学难点:1. 自感和互感系数的计算。
教学过程:一、导入1. 引导学生回顾电磁感应现象,提出问题:当电流通过线圈时,为什么会在相邻的线圈中产生感应电动势?2. 引导学生思考自感和互感的区别。
二、自感和互感概念及原理1. 自感现象:当一个线圈中的电流发生变化时,它产生的变化磁场不仅在相邻的电路中激发出感应电动势,在其本身也会激发出感应电动势,这种现象叫做自感现象。
2. 互感现象:当一个线圈中电流变化时,在另一个线圈中产生感应电动势的现象,称为互感现象。
3. 自感和互感的原理:根据法拉第电磁感应定律,感应电动势的大小与磁通量的变化率成正比。
三、自感系数和互感系数的计算1. 自感系数(L):自感系数表示线圈本身特征,与线圈的形状、尺寸、匝数等因素有关。
自感系数的计算公式为:L = μ₀μrN²l/A,其中μ₀为真空磁导率,μr为相对磁导率,N为匝数,l为线圈长度,A为线圈截面积。
2. 互感系数(M):互感系数表示两个线圈之间的相互影响程度,与两个线圈的形状、尺寸、匝数等因素有关。
互感系数的计算公式为:M = μ₀μrN₁N₂l₁l₂/4πr²,其中N₁、N₂分别为两个线圈的匝数,l₁、l₂分别为两个线圈的长度,r为两个线圈中心距离。
四、自感和互感在实际生活中的应用1. 变压器:利用互感原理,实现电压的升高或降低。
2. 镇流器:利用自感原理,稳定电流,防止电流过大损坏电器。
3. 电磁感应传感器:利用自感和互感原理,实现非电量电量的转换。
五、课堂小结1. 总结自感和互感的概念、原理及计算方法。
2. 强调自感和互感在实际生活中的应用。
六、课后作业1. 求解一个线圈的自感系数和互感系数。
互感和自感说课稿

互感和自感说课稿一、教材分析11 本节课在教材中的地位和作用“互感和自感”是高中物理电磁学部分的重要内容,它既是对电磁感应现象的进一步深入理解,也是后续学习交变电流、电磁波等知识的基础。
111 教学目标知识与技能目标:学生能够理解互感和自感现象的概念,掌握互感和自感电动势的计算方法,了解自感系数的影响因素。
过程与方法目标:通过实验观察和分析,培养学生的观察能力、逻辑推理能力和科学探究精神。
情感态度与价值观目标:激发学生对物理学科的兴趣,培养学生严谨的科学态度和团队合作精神。
112 教学重难点重点:互感和自感现象的概念及规律,自感电动势的计算。
难点:对自感现象的理解和分析,自感系数的影响因素。
二、学情分析21 学生已有的知识基础学生已经学习了电磁感应现象的基本规律,对法拉第电磁感应定律有了一定的理解和掌握。
211 学生的学习能力和特点高中生具备一定的逻辑思维能力和抽象思维能力,但对于较为抽象的物理概念和现象,仍需要通过实验和具体实例来加深理解。
三、教法与学法31 教法讲授法:讲解互感和自感的基本概念和规律。
实验法:通过演示实验,让学生直观地观察互感和自感现象。
讨论法:组织学生讨论实验现象,引导学生分析和总结规律。
311 学法自主学习:学生通过预习,初步了解互感和自感的概念。
合作学习:分组进行实验,共同探讨实验结果,培养合作能力。
探究学习:在教师的引导下,学生对实验现象进行深入探究,培养创新思维。
四、教学过程41 引入新课通过展示生活中常见的变压器、日光灯等实例,引入互感和自感现象,激发学生的学习兴趣。
411 讲解互感现象结合实验,讲解互感现象的定义、产生条件和应用。
412 探究自感现象进行自感现象的演示实验,让学生观察灯泡在电路接通和断开瞬间的亮度变化。
413 分析自感电动势引导学生根据电磁感应定律,分析自感电动势的产生原因和大小计算方法。
414 讨论自感系数组织学生讨论自感系数的影响因素,通过实验对比,加深学生的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“互感和自感”教学设计一、教学设计思路“自感和互感”是人教版选修3-2第4章《电磁感应》第6节的内容,两者是电磁感应现象的两个重要实例,本质上都是由于电流变化引起的电磁感应现象。
本节课为了让学生经历必要的认知过程,尝试利用“延迟判断”的探究教学策略,适当改进演示实验,变陈述性问题为设计性问题,让学生积极参与物理规律的发现和推理过程,主要的特色体现在以下几个方面:1.对于“互感”的教学,采用“电磁炉”和“Mp4”两个实验从能量和信息两个角度引出互感及其应用,充分激发学生探索规律的积极性。
2.对于“自感”的教学,采用“积木式”的结构,在教学过程中随着问题的展开,逐步“装备”其实验装置,让学生在质疑、猜测和不断探究中了解实验中发生的物理过程。
二、前期分析本节教学内容包括互感现象、自感现象和磁场的能量三个部分,是在学生学习了产生感应电流的条件、楞次定律和法拉第电磁感应定律后教学的,是电磁感应现象具体运用的两个实例。
因此,对互感、自感现象的研究,既是对电磁感应规律的巩固和深化,也为以后学习交流电、电磁波奠定了知识基础。
同时,互感、自感现象知识与人们日常生活、生产技术有着密切的关系,因此,学习该部分知识有着重要的现实意义。
学生已经学习了分析电路结构,知道了判断产生电磁感应的条件、判断感应电流的方向,以及感应电动势的大小的计算等电磁感应的规律,已经学会对互感现象的分析,但头脑中没有互感这个概念,也没有意识到当线圈通过变化的电流时,线圈本身也会产生电磁感应现象。
学习中对自感现象的解释以及分析相关的自感现象的特点是学生遇到的最大挑战。
学生已经具备一定的探究、合作学习的能力,已经掌握了一定的科学方法和实验技能。
本校具备完善的实验设施与条件,有优越的多媒体和网络。
重点与难点:1.教学重点:自感现象和自感系数,2.教学难点:分析自感现象产生的原因和特点。
三、教学目标1.知识与技能:图1:电磁炉实验 图2 :Mp4实验 (1)知道互感和自感现象。
(2)能够利用电磁感应有关规律分析断电、通电时自感现象的原因。
(3)能说出自感电动势大小的影响因素、自感系数的单位及其决定因素。
(4)会运用互感和自感的原理应用和防止。
2.过程与方法:(1)通过对实验的观察讨论和体验,解释实验中发生的物理过程,具备观察、分析和推理能力。
(2)通过分析电路结构和实验探究,体会比较研究这一物理学常用的重要方法。
3.情感与价值观:(1)认识互感和自感是电磁感应现象的两种现象,体验特殊现象的普遍性。
(2)领悟科学家对科学执着和对名利的淡漠的科学献身精神。
四、教学准备电磁炉、线圈、小灯泡、MP4、音箱、自制自感现象演示仪、电流传感器以及干电池、导线、小线圈若干组。
五、教学过程1.互感现象将一个与小灯泡连接的自制线圈放到一块绝缘毛巾上(内有电磁炉),如图1,发现小灯泡发光了。
针对这一实验提出问题:两个线圈没有直接用导线相连,为什么当电磁炉中大线圈电流变化时,与小线圈相连的小灯泡会亮?引导学生利用所学知识分析实验现象,提出互感概念,并指出互感就是一种电磁感应现象。
提出问题:不直接用导线与MP4连接,能否利用互感知识让音箱响起MP4中动听的歌曲呢?你觉得还需要什么器材?怎么做?有没有办法让声音变响(变轻)?将MP4与一个线圈相连,音箱与另一线圈相连,如图2,音箱果然传出了好听的歌曲,当手持MP4回路靠近和远离音箱回路时,声音会变响(变轻)。
让学生主动参与本实验的设计和操作。
例举变压器、磁性天线等生活实例让学生感觉到互感现象在生活中随处可见,通过互感实现了能量和信息的传递。
2.自感现象为了让实验电路的结构及实验中所发生的物理过程清楚地展示,从互感中拆除一个线圈后的原始电路讲起,先理论分析通电时是否存在电磁感应,再设计实验电路进行验证,然后通过激发学生的认知冲突,讨论并改进实验电路,并利用所学的知识解释实验现象,从而引出自感的概念,断电自感的教学也用类似方法。
最后,借助传感器更加准确直观地反映实验规律。
整个教学流程如图3所示。
(1)通电自感①提出猜想 问:互感现象中有一个共同的特点是A 线圈中电流的变化引起B 线圈中产生电磁感应现象,那么,如果拿掉其中一个线圈,另一个线圈自身还会出现电磁感应现象吗?引导学生利用所学的知识得出:自身电流变化→线圈自身内部磁场变化→线圈自身内部 磁通量变化→电磁感应现象发生。
②设计电路能否用实验的方法来验证呢?我们该如何设计实验电路让我们能观察到这个线圈的电磁感应现象呢?选择什么测量器材更便于我们观测?引导学生根据上述的问题得出需要接入一个更直观反映电流变化的器件——小灯泡,根据它的亮度变化来反映电流的变化。
③激发思维要让电流变化不难,比如将开关闭合(方便且变化明显),你认为通电瞬间可能观察到什么实验现象?小灯泡的亮度如何变化?是瞬间变亮还是逐渐变亮呢?你做出这种预测的依据是什么?启发学生利用楞次定律去分析,引发思维冲突。
④改进电路从实验中看到延迟现象了吗?为什么?大家分析一下,谈谈自己的看法。
线圈中到底有图3:自感教学流程没有电磁感应现象?当我们相信理论分析应该没问题时,那是不是延迟的时间太短,我们肉眼观察不出来呢?应该怎么办呢?你觉得应该通过什么办法来改进实验?利用生活中赛跑的实例引导学生用比较法改进为如图4实验电路。
⑤解释现象 利用楞次定律分析,强调线圈此时相当于一个电源,正是线圈的这种阻碍作用,延迟A 灯变亮的时间。
⑥得出概念指出自感也是一种电磁感应现象。
(2)断电自感①预测现象问:线圈中电流增大时,会产生自感电动势,那么线圈中电流减小时,又会怎么样呢?我想答案是肯定的,是否也能用实验的方法得到证实呢?要达到电流减小的目的,只需要断开开关,此时从电路结构上看,A 、B 两灯组成一个回路,当电流减小时,如果线圈会产生自感电动势,根据楞次定律势必将阻碍电流的减小,你能预测一下断电瞬间可能观察到的实验现象吗?两灯是一起瞬间熄灭还是一起延迟熄灭呢?引导学生利用楞次定律去分析,为再次引发思维冲突做准备。
②改进电路我们没有观察到预期的实验现象,小灯泡熄灭真的没有出现延迟吗?是不是我们观察的方法有缺陷,如何改进实验电路让我们能观察到更明显的实验现象?引导学生分析电路结构,综合考虑(构成回路又安全)想到将A 灯移到导线回路,与线圈一起并联在电源两端的改进实验电路如图5。
③解释现象A 灯出现了“闪亮”说明什么?既然与开关已经断开, 为什么通过A 灯的电流能比原先还要亮呢?到底谁在起作用呢?线圈相当于一个电源,阻碍电流的减小,起到让A 灯延迟熄灭的作用。
闪亮恰好说明延迟。
哪位同学能解释这一现象的原因?引导学生利用楞次定律分析,强调线圈此时相当于一个电源,正是线圈中产生的这种阻图4:通电自感演示电路图5:断电自感演示电路碍作用,延迟A 灯熄灭的时间。
④引出新知既然与电源已经断绝关系,但我们还是能够看到灯泡出现闪亮,延迟熄灭,那么这个能量从哪里来呢?引导能量很可能储存于磁场中(磁场能),开关断开时,线圈中的电流从有到无,其中的磁场也是从有到无,此时线圈充当电源,阻碍电流减少,把磁场中的能量转化成电能。
(3)自感电动势及自感系数①规律总结通过实验和分析,发现线圈中电流发生变化时,线圈会产生自感电动势,那么自感电动势在电路中到底起到了什么作用?引导学生体会当原电流增加时,自感电动势起到“反抗”作用;当原电流减少时,自感电动势起到“补偿”作用,总结得到自感电动势的作用是阻碍原电流的变化。
启发学生“线圈不允许通过它的电流发生突变”,这一点有点像力学中物体的“惯性。
并强调“阻碍”不是“阻止”,增加的最终还是得增加,减少的最终还是要减少,自感电动势延缓了电流变化的时间,体现了它“赖皮”的特性。
②理论探究自感电动势的大小与什么因素有关呢?引导学生运用法拉第电磁感应定律,对于给定的线圈回路(面积不变),磁通量的变化是由于磁场变化引起的,而磁场变化又是由于电流变化而变化,得到B I E t t t φ∆∆∆∞∞∞⇒∆∆∆ I E L t∆=∆ ③自主学习自感系数大小的物理意义、决定因素、单位及科学家亨利的介绍。
(4)用传感器研究自感现象启发学生知道通过灯泡亮度的变化定性地来研究自感现象,但是不能准确地反映这一短暂过程中的电流大小如何变化、电流的方向有没有变化,通过借助传感器可以准确直观地反映电流大小和方向变化的规律。
为了方便比较,将流过电阻和线圈的电流变化图象显示到同一幅i-t 图中图6:传感器演示自感现象(甲) (乙)如图6。
针对图象讨论相关问题:①比较分析通电时、稳定后、断电时的电流大小和方向的变化情况,并作出相应的解释。
②体会到借助传感器我们可以将断电时没有明显观察到的自感现象非常直观地呈现出来。
③改变滑动变阻器的阻值,稳定后比较流过线圈和变阻器的电流关系,观察并解释开关断开瞬间图象的特征。
可以解释出现“闪亮”的原因。
(5)体验自感依据所学的自感知识,利用简单的实验器材擦出 电火花实验和体验电击感如图7,启发学生通过这样的实验现象想象生活中关于自感的应用和防止。
(煤气 灶的电子点火器,日光灯中的镇流器,油浸开关,绕线电阻的双线绕法)3.课堂小结学习了电磁感应现象的两个实例——互感和自感,知道什么是互感,通过互感实现能量与信息的传递。
知道什么是自感,明确自感电动势的作用和大小由自感系数和电流变化快慢共同决定。
但不管互感、自感都是由于变化的磁场所引起的电磁感应现象,都可以结合电路结构和利用楞次定律去分析解释。
六、形成性评价1.关于自感电动势,下列说法正确的是( )A .线圈中电流恒定不变,自感电动势也不变B .线圈中电流恒定不变,自感电动势为零C .自感电动势的方向总是与原电流方向相反D .自感电动势的方向可能与原电流方向相同2.关于自感系数,下列说法中正确的是( )A .其他条件相同,线圈越长,自感系数越大B .其他条件相同,线圈匝数越多,自感系数越大C .其他条件相同,电流变化越快,自感系数越大D .其他条件相同,有铁芯的线圈比没有铁芯的线圈自感系数大3.如图8是一种延时继电器的示意图。
铁芯上有两个线圈A 和B.线圈A跟电源连接,线圈B 的两端接在一起,构成一个闭合电路。
在拉开开关S 的时候,弹簧K 并不能立即将衔铁D 拉起,使触头C (连接工作电路)立即离开;而是过一段短时间后触头C 才能离开,延时继电器图7:体验自感实验参考电路就是这样得名的。
(1)当开关断开后,为什么电磁铁还会继续吸住衔铁一段短时间?(2)如果线圈B不闭合,是否会还会有延时效果?为什么?4.如图9所示,L是自感系数很大的线圈,但其自身的电阻较小,则:(1)当开关S由断开变为闭合时,A灯泡的亮度将如何变化?(2)当开关S由闭合变为断开时,A灯泡的度又将如何变化?(3)做一做图10这个实验以检验你的预测。