计算机测控系统抗干扰技术
测控系统原理第7章习题解答

测控系统原理第7章习题解答第7章习题解答1、电路输⼊阻抗⾼,是否容易接收⾼频噪声⼲扰?为什么?答:电路输⼊阻抗⾼,是容易接收⾼频噪声⼲扰。
因为电路所接收的⾼频噪声⼲扰的电压与噪声⼲扰的频率成正⽐,与电路的输⼊阻抗成正⽐。
2、接地⽅式有⼏种?各适⽤于什么情况?答:接地⽅式有单点接地(串联单点接地和并联单点接地)和多点接地两种⽅式。
单点接地主要⽤于低频系统,不能⽤于⾼频信号系统。
因为这种接地系统中地线⼀般都⽐较长,在⾼频情况下,地线的等效电感和各个地线之间杂散电容耦合的影响是不容忽视的。
当地线的长度等于信号波长(光速与信号频率之⽐)的奇数倍时,地线呈现极⾼阻抗,变成⼀个发射天线,将对邻近电路产⽣严重的辐射⼲扰。
多点接地⽅式多⽤于⾼频系统。
多点接地不能⽤在低频系统中,因为各个电路的地电流流过地线汇流排的电阻会产⽣公共阻抗耦合噪声。
3、信号传输线屏蔽层接地点应怎样选择?答:当放⼤器接地⽽信号源浮地时,屏蔽层的接地点应选在放⼤器的低输⼊端,此时出现在放⼤器输⼊端之间的噪声电压⼏乎为零。
当信号源接地⽽放⼤器浮地时,信号传输线的屏蔽应接到信号源的低端,此时出现在放⼤器输⼊端之间的噪声电压⼏乎为零。
4、何谓“接地环路”?它有什么危害?应怎样避免?答:当信号源和系统地都接⼤地时,两者之间构成的环路称为接地环路,如下图所⽰, 通常信号源和系统之间的距离可达数⽶⾄数⼗⽶,由于⼤地电阻和地电流的影响,将使这两个接地点之间存在电位差——地电压G V 。
由等效电路下图(b )可见,地电压G V 在系统的两输⼊端将形成⼲扰电压N V ,⽽且N V ⼤⼩⼏乎接近G V ,因此其影响不可忽略。
为了避免形成接地环路产⽣⼲扰,应改为⼀点接地,并保持信号源与地隔离,如上图(a )所⽰。
图中Rsg 为信号源对地的漏电阻,由等效电路上图(b )可见,由于Rsg ⾮常⼤,地电压G V 在系统的两输⼊端将形成⼲扰电压N V 将远远⼩于G V ,⽐信号源接地时的⼲扰电压⼤有改善。
PLC在DX-100中波发射机自动化系统应用中的抗干扰问题

PLC在DX-100中波发射机自动化系统应用中的抗干扰问题赵军摘要:本文分析了PLC在发射机自动化系统应用中电磁干扰的主要来源,指出了在自动化工程应用时,必须综合考虑控制系统的抗干扰性能,最后结合工程提出了几种有效的抗干扰措施。
关键词:中波发射机;PLC控制系统;干扰来源;抗干扰措施1概述随着科学技术的发展,PLC在工业控制中的应用越来越广泛。
PLC控制系统的可靠性直接影响到工业企业的安全生产和经济运行,而系统的抗干扰能力则是关系到整个系统可靠运行的关键。
电台发射机自动化系统中使用了各种类型的PLC有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多都处在强电电路和强电设备所形成的恶劣电磁环境中,既有强大的35kV或11OkV的高电压干扰,又有中短波甚至微波等高频电磁场的干扰,为了防止各种干扰,系统中采取了硬件和软件相结合的抗干扰方法,现介绍如下。
2电磁干扰源的主要来源2.1干扰源的分类影响PLC控制系统的干扰源大都产生在电流或电压剧烈变化的环境中,由于电荷的剧烈移动,产生了噪声源,即干扰源。
干扰源的类型通常按干扰产生的原因、噪声干扰模式和噪声的波形性质的不同进行划分。
其中,按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰等。
共模干扰和差模干扰是一种比较常用的分类方法。
共模干扰主要是指信号对地的电位差,是由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加而形成,共模电压有时较大,特别是采用隔离性能差的配电器的供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上,共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏,这种共模干扰可为直流、亦可为交流;差模干扰是指作用于信号两极间的干扰电压,主要是由空间电磁场在信号间藕合感应及由不平衡电路转换的共模干扰所形成的电压,这种干扰直接叠加在信号上,直接影响测量精度与控制精度。
计算机测控系统的软件抗干扰技术研究

O 引 言
影响计算机测控系统可靠、安全运行 的主要原因是来 自系统内外的各种电气干扰。干扰源产生的干 扰通 过耦 合通 道对 测控 系统 发生 电磁 干扰 。干扰作 用 于测控 系统 的输入 通道 ,能使模 拟 信号 失真 ,数 字 信号出错 ;干扰作用于测控系统的输 出通道 ,能使输 出信号混乱 ,不能正常反应 系统工作的真实输出。 干扰作用于测控系统核心 ,能使计算机的 C U得到错误的地址信息 ,引起程序计数器 P P c出错 ,导致程 序 失控 。许 多在实 验 室运行 良好 的测 控 系统 安装 到工业 现 场 ,常 常 由于干 扰 的原 因 ,使 系统 不 能正 常运 行 。常用的抗干扰技术主要有硬件抗干扰和软件抗干扰。但是微机控制系统的抗干扰不可能完全依靠硬 件来解决 。在许多复杂的控制环境下,软件抗 干扰往往能取得事半功倍 的效果 。因而软件抗干扰技术亦 越 来越 受 到工控 软件 设计人 员 的重视 。 微机软件抗干扰措施的出发点是:微机不仅在正常工作时能充分发挥智能作用 ,而且在系统因受干 扰而破坏正常工作时也应发挥其智能作用。如果采用硬件与软件结合的方法 ,充分 发挥软件智能作用 ,
维普资讯
第2 3卷 第 1期
20 0 7年 1月
昆明冶金高等专科学校 学报
J un f n n tl ry C l g o ra o migMeal g ol e l Ku u e
Vo. 3 1 2 No 1 .
Jn 2 0 a.07
减轻意外事故的发生 。介绍 了干扰对计算机测控 系统的影 响 ,计 算机 测控 系统软 件抗 干扰 的前提 条件及 其常见
的 干扰 现 象 以 及 软件 抗 干 扰措 施 。
关键词 : 算机 ; 计 测控 系统;抗 干扰 ;可靠性设 计
单片机测控系统的抗干扰技术

目 的是从电路上把干扰源和容易被干扰的部分隔离开来。
常用 的隔离方式包括光 电隔离 、 器隔离 、 变压 继电器 隔离 等 ,
顶板 离层及支护状况 的装置 。该顶 板监 测仪采 用微 电子控
另外在布线上也应该注意隔离。YD —17 J 1 2V数字化顶板 监测仪中我们运用布线隔离等技术, 将微弱信号处理电路与 易产生噪声污染的电路分开设计, 实践证明运行效果良 好。
4 4 软件设计的抗 干扰 措施 .
制技术 , 用高精度的位移传感器采集巷道顶板的下沉量 , 主 要由隔爆兼本安型电源、 信号处理单元、 模拟转换单元、 逻辑 分析单元和显示单元组成均运用了先进的集成处理芯片, 对 稳定性要求较高, 工作原理如图 l J 1 2V数字化顶 。Y D —17 板监测仪随着掘进机的掘进安装在刚掘好的顶板上 , 掘进
微机系统中, 由于R M存储器是可以读 的, A 因此在
干扰的侵害下,A 中的数据有可能被窜改。这样会导致 RM
某些元器件的工作状态和程序状态 的改变 。 收稿 日 :05 2 8 作者 期 20 —1 —1 申永明 男 4 岁 l 工程师
机性, 采用硬件措施只能抑制某个频率段的干扰 , 仍有一些 干扰会浸入系统。因此, 不但要求硬件有高性能的抗干扰能
成严 重的后果 主要表现在下列几方面 :
11 数据采集误差大 .
主要是指电动机启动电流以及晶闸管交流器等设备产
生涌流引起的噪声 。 这些干扰对微机测控 系统的稳定性有严重的影响 , 是需 要解决的主要问题 。
当干扰侵入微机系统测量单元模拟信号的输入通道时,
它叠加在有用 的信 号上 , 数据采集 误差加 大 , 会使 特别 是 当
《计算机测控技术》课程综合复习资料

《计算机测控技术》课程综合复习资料一、填空题1.若连续信号的最高频率为wmax,按采样定理要求采样频率ws应大于()。
答案:2wmax2.采样定理的描述为:若信号的最高频率为fmax,只要采样频率f大于最高频率的()倍,采样信号就能唯一复现原信号。
实际应用中,一般取f>5~10fmax。
答案:23.若系统欲将一个D/A转换器输出的模拟量参数分配至几个执行机构,需要接入()器件完成控制量的切换工作。
答案: 反多路开关4.DAC的分辨率指()电压与最大输出电压之比答案:最小输出5.在10位A/D转换器中,设满量程为±5V,试写出模拟量为0V时,所对应的数字量为()H。
答案:2006.在10位A/D转换器中,设满量程为±5V,试写出模拟量为-2.5V时,所对应的数字量为()H。
答案:1007.由于计算机只能接收数字量,所以在模拟量输入时需经()转换。
答案:D/A转换器8.ADC0809是一种带有8通道模拟开关的8位()式A/D转换器。
答案:逐次逼近9.8位的A/D转换器分辨率为()。
答案:1/(28-1)10.变送器输出的信号为()或4~20mA的统一信号。
答案:0~10mA11.步进电机的()指的是完成一个磁场周期性变化所需脉冲数。
答案:拍数12.步进电机的相数指的是()。
答案:线圈组数13.按动力区分,执行机构最常用的类型是()。
答案:气动型14.按动力区分,()型的执行机构相对价格昂贵,体积较大。
答案:液动型15.DAC0832的工作方式有()、单缓冲方式、双缓冲方式。
答案:直通方式16.微机的三总线是()、地址总线、控制总线。
答案:数据总线17.计算机控制系统的监控过程包括三个步骤:()、实时决策、实时控制。
答案:实时数据采集18.采样保持器可实现以下功能:在采样时,其输出()输入;而在保持状态时,输出值不变。
答案:等于19.控制系统的()指的是响应的最大偏移量与终值的差,与终值比的百分数。
计算机控制系统复习资料(精简版 列出重点知识点)

第一章概论,讲述计算机控制系统的发展过程;计算机控制系统在日常生活和科学研究中的意义;计算机控制系统的组成及工作原理;计算机控制的特点、优点和问题;与模拟控制系统的不同之处;计算机控制系统的设计与实现问题以及计算机控制系统的性能指标。
1.计算机控制系统与连续模拟系统类似,主要的差别是用计算机系统取代了模拟控制器。
2.计算机系统主要包括:.A/D转换器,将连续模拟信号转换为断续的数字二进制信号,送入计算机;.D/A转换器,将计算机产生的数字指令信号转换为连续模拟信号(直流电压)并送给直流电机的放大部件;.数字计算机(包括硬件及相应软件),实现信号的转换处理以及工作状态的逻辑管理,按给定的算法程序产生相应的控制指令。
3.计算机控制系统的控制过程可以归结为:.实时数据采集,即A/D变换器对反馈信号及指令信号的瞬时值进行检测和输入;.实时决策,即计算机按给定算法,依采集的信息进行控制行为的决策,生成控制指令;.实时控制,即D/A变换器根据决策结果,适时地向被控对象输出控制信号。
4.计算机控制系统就是利用计算机来实现生产过程自动控制的系统。
5.自动控制,是在没有人直接参与的情况下,通过控制器使生产过程自动地按照预定的规律运行。
6.计算机控制系统的特性系统规模有大有小系统类型多种多样系统造价有高有低计算机控制系统不断推陈出新7.按功能分类1)数据处理系统2)直接数字控制(DDC)3)监督控制(SCC)4)分散型控制5)现场总线控制系统按控制规律分类1)程序和顺序控制2)比例积分微分控制(PID)3)有限拍控制4)复杂控制5)智能控制按控制方式分类1)开环控制2)闭环控制9.计算机控制系统的结构和组成控制算法软件网络硬件11.硬件平台运算处理与存储部分:CPU,存储器(RAM,ROM,EPROM,FLASH-ROM,EEPROM以及磁盘等),时钟,中断,译码,总线驱动等。
输入输出接口部分:各种信号(模拟量,开关量,脉冲量等)的锁存、转换、滤波,调理和接线,以及串行通讯等。
智能仪表常用的软件抗干扰措施

智能仪表常用的软件抗干扰措施在实际应用中,干扰信号可能影响到智能仪表的CPU、程序计数器(PC)或RAM等,导致程序运行失常。
因此,在设计智能仪表时除了在硬件方面采取抗干扰措施外,必须考虑软件的抗干扰措施。
干扰对软件的影响有两个方面,即程序运行失常和数据受干扰而发生变化。
单片机系统受到干扰后,会使RAM、程序计数器或总线上的数字信号错乱,从而引发一系列不良后果。
CPU得到错误的数据,就会使运行操作出错,导致错误结果,并将错误一直传递下去,形成一系列错误。
如果CPU获得错误地址信息,会使程序失控,即便此后程序恢复到正常状态,但是已经造成不良后果,埋下隐患,最终导致后续程序出错。
同时,如果干扰改变RAM以及特殊功能寄存器的状态,可能导致数值误差,改变程序状态,引起误动作。
软件抗干扰的任务在于CPU抗干扰技术和输入输出的抗干扰技术两方面。
前者主要是防止因干扰造成的程序“跑飞”,后者主要是消除信号中的干扰以便提高系统准确度。
1、数字滤波技术随机干扰会使仪表产生随机误差。
随机误差是指在相同条件下测量某一量时,其大小符号作无规律变化的误差,但随机误差在多次测量中服从统计规律。
在硬件设计中可以模拟滤波器来削弱随机误差,但是它在低频、甚低频时实现较困难。
数字滤波可以完成模拟滤波的功能,而且与模拟滤波相比,它具有如下优势:数字滤波是用程序实现的,无须添加硬件,可靠性高,稳定性好,不存在阻抗匹配的问题,而且多个输入通道可以共用,从而降低系统硬件成本;可以根据需要选择不同的滤波方法或改变滤波器的参数,使用灵活方便;数字滤波器可以对频率很低的信号进行滤波,而模拟滤波由于受电容容量的限制,频率不能太低。
常用的数字滤波算法有程序判断滤波、中值滤波、算术平均值滤波、滑动平均值滤波、加权滑动平均滤波、一阶惯性滤波等。
(1)程序判断滤波经验说明,许多物理量的变化都需要一定时间,相邻两次采样值之间的变化有一定的限度。
程序判断滤波的方法,便是根据生产经验,确定出相邻两次采样信号之间可能出现的偏差ΔY。
单片机测控系统中的软件抗干扰技术

244 •电子技术与软件工程 Electronic Technology & Software Engineering单片机技术• SCM Technology【关键词】单片机 抗干扰技术 数字滤波技术1 引言如图1所示,单片机测控系统是在程序化管理下形成的测控系统,它可以在工业生产过程中提高机械控制的效率。
但是,工业现场环境复杂,具有电磁功能的大量设备频繁启动、停止,产生的干扰影响了单片机系统的正常运行。
本文针对单片机测控系统中的抗干扰问题,单片机测控系统中的软件抗干扰技术文/陈欣从软件抗干扰技术方面进行了分析和研究,并提出了解决方案。
工业单片机测控系统的常见影响如下:1.1 干扰加大数据采集的误差测试系统通道的输入部分受到干扰信号的入侵,有用信号和外来干扰信号相互叠加,加剧了该通道数据采集的误差。
尤其在当前系统输入的是小电压信号时,数据干扰的现象更加严重。
1.2 干扰使数据发送变化单片机系统中的程序是存放在存储器EPROM 中,这些程序不易发生变化。
但是单片机系统的RAM 数据区是可以读写的,它可能会受到读入信息的干扰从而发生变化。
因为干扰渠道的区别,以及数据性质的区别,单片机系统受损害的情况也各不相同,可能造成控制失灵,也可能造成数值误差,更严重的会改变单片机系统某些部件(如串行口、定时器/计数器等)的运行状态等。
1.3 干扰使控制状态失灵在单片机系统中,控制状态依赖于特定条件的输入状况和处理结果,干扰的侵入会造成条件状态错误,引起虚假的信号,从而加大输出控制的误差,甚至控制失常。
1.4 干扰使程序运行失常单片机系统正常运行的前提是CPU 正常工作,如果干扰信号影响到了CPU ,则程序计数器不能正常运行,从而引起系统混乱、控制失灵,即通常说的程序“跑飞”。
现在使用的单片机抗干扰技术主要分为硬件与软件两类。
硬件抗干扰技术固然可以降低系统受干扰的程度,但是成本较高,灵活性不足,而且容易受电磁干扰。