(完整版)数字图像处理期末考试试题
数字图像期末考试试题

数字图像期末考试试题# 数字图像处理期末考试试题## 一、选择题(每题2分,共20分)1. 在数字图像处理中,灰度化处理通常使用以下哪种方法?A. 直接取RGB三个通道的平均值B. 只取红色通道C. 只取绿色通道D. 只取蓝色通道2. 边缘检测是图像处理中的一个重要步骤,以下哪个算法不是边缘检测算法?A. Sobel算子B. Canny算子C. Laplacian算子D. Gaussian模糊3. 在图像增强中,直方图均衡化的目的是什么?A. 增加图像的对比度B. 减少图像的噪声C. 改善图像的色彩D. 锐化图像的边缘4. 以下哪个是图像滤波中常用的高通滤波器?A. 高斯滤波器B. 均值滤波器C. Laplacian滤波器D. 中值滤波器5. 在图像分割中,阈值分割法是基于什么原理?A. 图像的纹理特征B. 图像的灰度分布C. 图像的颜色分布D. 图像的几何形状## 二、简答题(每题10分,共30分)1. 简述数字图像的基本属性及其在图像处理中的重要性。
2. 描述图像锐化的基本步骤,并解释为什么锐化可以提高图像的可读性。
3. 解释什么是图像的傅里叶变换,并简述其在图像处理中的应用。
## 三、计算题(每题25分,共50分)1. 给定一个大小为 \( 256 \times 256 \) 的灰度图像,其像素值范围从0到255。
计算该图像的直方图,并说明如何根据直方图进行图像的对比度增强。
2. 假设有一个图像,其尺寸为 \( 100 \times 100 \) 像素,且每个像素的灰度值为 \( g(x, y) \)。
请写出使用高斯滤波器对图像进行平滑处理的公式,并描述其对图像噪声的影响。
## 四、综合应用题(共30分)1. 描述如何使用Canny边缘检测算法进行图像边缘的提取,并解释其算法的步骤和原理。
2. 给出一个实际应用场景,说明如何利用图像分割技术来解决该场景中的问题。
## 五、论述题(共30分)1. 论述数字图像处理在医学成像领域的应用,并讨论其对提高诊断准确性的潜在影响。
武汉大学《数字图像处理》期末考试试卷及答案

武汉大学《数字图像处理》期末考试试卷及答案一、选择题(每题2分,共20分)1. 下列哪个选项不属于数字图像处理的范畴?A. 图像增强B. 图像复原C. 图像编码D. 数据挖掘答案:D2. 在数字图像处理中,下列哪个算子不是边缘检测算子?A. 罗伯茨算子B. 拉普拉斯算子C. 高斯算子D. 中值滤波器答案:D3. 下列哪个颜色模型不是设备无关的?A. RGBB. CMYKC. HSVD. Lab答案:B4. 以下哪种图像采样方法会导致图像失真?A. 最近邻插值B. 双线性插值C. 双三次插值D. 上述都不会导致图像失真答案:D5. 以下哪个算法不属于图像分割的方法?A. 阈值分割B. 区域生长C. 水平集方法D. 快速傅里叶变换答案:D二、填空题(每题2分,共20分)6. 数字图像处理的主要任务包括:________、________、________。
答案:图像增强、图像复原、图像编码7. 图像增强的目的是使图像的________增强,改善图像的________。
答案:视觉效果、视觉效果8. 在图像处理中,________算子可以用于边缘检测。
答案:Sobel算子9. RGB颜色模型中的R、G、B分别代表________、________、________。
答案:红色、绿色、蓝色10. 图像编码的目的是________。
答案:减少图像数据量,便于存储和传输三、简答题(每题10分,共30分)11. 简述图像增强的目的是什么?请列举三种常见的图像增强方法。
答案:图像增强的目的是使图像的视觉效果增强,改善图像的质量。
常见的图像增强方法有:直方图均衡化、对比度增强、锐化处理。
12. 简述图像复原的目的是什么?请列举两种常见的图像复原方法。
答案:图像复原的目的是从退化图像中恢复出原始图像。
常见的图像复原方法有:逆滤波、维纳滤波。
13. 简述图像分割的目的是什么?请列举三种常见的图像分割方法。
答案:图像分割的目的是将图像划分为若干具有相似特性的区域。
数字图像处理期末考试及答案.doc

《数字图像处理》复习指南选择题I 、 采用幕次变换进行灰度变换时,当幕次取大于1时,该变换是针对如下哪一类图像进 彷曾强。
(B )A 图像整体偏暗 B图像整体偏亮 C 图像细节淹没在暗背景中 D图像同时存在过亮和过喑背景 2、图像灰度方差说明了图像哪一个属性 (B )A 平均灰度B 图像对比度 图像整体亮度 D 图像细节计算机显示器主要采用哪一种彩色模型(A )A 、RGB B 、CMY 或 CMYK采用模板[-1 IIP 主要检测(A 3、4、 C 、HSI D 、HSV )方向的边缘。
D.1350 C ) D .中值滤波 A.水平 B.450 C.垂直5、 下列算法中属于图象锐化处理的是:( A.低通滤波 B.加权平均法 C.高通滤波6、 维纳滤波器通常用于( C )A^去噪 B 、减小图像动态范围7、彩色图像增强时, 型。
A. C. 8、 A. C. 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以便引入一些低频分量。
这样的滤波器叫( B )A.巴特沃斯高通滤波器B.高频提升滤波器C.高频加强滤波器D.理想高通滤波器10、图象与灰度直方图间的对应关系是(A.一一对应B.多对一C. 一对多 II 、 下列算法中属于图象锐化处理的是:( A.低通滤波 B.加权平均法 C.高通滤波12、一幅256*256的图像,若灰度级数为16, A. 256K B.512K C. IM C.2M 13、 一幅灰度级均匀分布的图象,其灰度范围在[0, 255],则该图象的信息量为:(D )C 、复原图像D 、平滑图像 )处理可以采用RGB 彩色模 B. D. 同态滤波 中值滤波直方图均衡化加权均值滤波 旦滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。
逆滤波 B.维纳滤波约束最小二乘滤波 D.同态滤波B ) D.都不C ) D.中值滤波 则存储它所需的比特数是:(A )a. 0b.255c.6d.814、下列算法中属于局部处理的是:(D)a.灰度线性变换b.二值化c.傅立叶变换d.中值滤波15、下列算法中属于点处理的是:(B)a.梯度锐化b.二值化c.傅立叶变换d.中值滤波16、下列算法中属于图象平滑处理的是:(C)a.梯度锐化b.直方图均衡c.中值滤波placian增强17、设灰度图中每一个像素点由1个字节表示,则可表示的灰度强度范围是(B) A. 128 B. 256 C. 36 D. 9618.对椒盐噪声抑制效果最好的是下列那种图像增强技术?(D )A低通滤波B Laplace微分C邻域平均D中值滤波19.将图像“name.tif”存储到文件中的命令(C )A、imread('name.tif') Bload C、imwrite('name.tif') D、imshow('name.tif')20.计算机显示设备使用的颜色模型是(A )A.RGBB. HSVC. CMYD.以上都不对21.下列关于直方图的叙述错误的是(D )A.描绘了各个灰度级像素在图像中出现的概率B.描述图像中不同灰度级像素出现的次数C.没有描述出像素的空间关系D.直方图均衡化不能增强图像整体对比度的效果22.锐化滤波器的主要用途不包括( B)A.突出图像中的细节增强被模糊了的细节B.超声探测成像分辨率低可以通过锐化来使图像边缘模糊C.图像识别中分割前的边缘提取D.锐化处理恢夏过度钝化、暴光不足的图像23.假设f(x,y)是一幅图像,则下列有关f(x,y)的傅里叶变换说法中不正确(C )A.在原点的傅里叶变换等于图像的平均灰度级B.一个二维傅里叶变换可以由两个连续一维的傅里叶运算得到C.图像频率域过滤可以通过卷积来实现D.傅里叶变换具有线性移不变性24.列有关图像复原和图像增强的说法错误的是(D )A.与图像增强不同,图像复原的目的是提供给用户喜欢接收的图像B.图像增强主要是一个客观过程,而图像复原主要是一个主观过程C.图像增强被认为是一种对比度拉伸,图像反原技术追求恢笈原始图像的一种近似估计值D.图像复原技术只能使用频率域滤波器实现A、box模板B、中值滤波器27、对一幅二值图像做腐蚀的结果(B )A、图像面积放大B、图像面值缩小28、下列算法中属于局部处理的是(D )A、灰度线性变换B、二值化C^ gauss模板C、图像面积不变C、傅里叶变换D、prewittD、图像边界变圆D、中值滤波25、下列哪一个模板可用于图像平滑(AA 、1/91/91/9B、111C、1/31/31/3D、・-1-1 1/91/91/91-811/31/31/3-18-1 1/91/91/91111/31/31/3-1-1-126、对于含有孤立线噪声的图像,既要保证图像的边缘,又要去除噪声应该用那种滤波器(B)判别正确、错误1.图像按其亮度等级的不同,可以分为二值图像和灰度图像两种。
数字图像处理试题集(终版)

第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为_像素_。
2. 数字图像处理可以理解为两个方面的操作:一是从图像到图像的处理,如图像增强等;二是_从图像到非图像的一种表示_,如图像测量等。
3. 数字图像处理可以理解为两个方面的操作:一是_从图像到图像的处理_,如图像增强等;二是从图像到非图像的一种表示,如图像测量等。
4. 图像可以分为物理图像和虚拟图像两种。
其中,采用数学的方法,将由概念形成的物体进行表示的图像是虚拟图像_。
5. 数字图像处理包含很多方面的研究内容。
其中,_图像重建_的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的5种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
4. 简述数字图像处理的至少5种应用。
①在遥感中,比如土地测绘、气象监测、资源调查、环境污染监测等方面。
②在医学中,比如B超、CT机等方面。
③在通信中,比如可视电话、会议电视、传真等方面。
④在工业生产的质量检测中,比如对食品包装出厂前的质量检查、对机械制品质量的监控和筛选等方面。
数字图像处理_期末考试及答案(三篇)

《数字图像处理》试卷答案(2009级)一、名词解释(每题4分,共20分)1.灰度直方图:灰度直方图(histogram)是灰度级的函数,它表示图象中具有每种灰度级的象素的个数,反映图象中每种灰度出现的频率。
它是多种空间域处理技术的基础。
直方图操作能够有效用于图像增强;提供有用的图像统计资料,其在软件中易于计算,适用于商用硬件设备。
灰度直方图性质:1)表征了图像的一维信息。
只反映图像中像素不同灰度值出现的次数(或频数)而未反映像素所在位置。
2)与图像之间的关系是多对一的映射关系。
一幅图像唯一确定出与之对应的直方图,但不同图像可能有相同的直方图。
3)子图直方图之和为整图的直方图。
2.线性移不变系统:一个系统,如果满足线性叠加原理,则称为线性系统,用数学语言可作如下描述:对于,若T[a+b]=aT[]+bT[]=a+b(2.15)则系统T[·]是线性的。
这里,、分别是系统输入,、分别是系统输出。
T[·]表示系统变换,描述了输入输出序列关系,反映出系统特征。
对T[·]加上不同的约束条件,可定义不同的系统。
一个系统,如果系统特征T[·]不受输入序列移位(序列到来的早晚)的影响,则系统称为移不变系统。
由于很多情况下序号对应于时间的顺序,这时也把“移不变”说成是“时不变”。
用数学式表示:对于y(n)= T[x(n)] 若y(n-)=T[x(n-)] (2.16)则系统是移不变的。
既满足线性,又满足移不变条件的系统是线性移不变系统。
这是一种最常用、也最容易理论分析的系统。
这里约定:此后如不加说明,所说的系统均指线性移不变/时不变系统,简称LSI/LTI系统。
3.图像分割:为后续工作有效进行而将图像划分为若干个有意义的区域的技术称为图像分割(Image Segmentation)而目前广为人们所接受的是通过集合所进行的定义:令集合R代表整个图像区域,对R的图像分割可以看做是将R分成N个满足以下条件的非空子集R1,R2,R3,…,RN;(1)在分割结果中,每个区域的像素有着相同的特性(2)在分割结果中,不同子区域具有不同的特性,并且它们没有公共特性(3)分割的所有子区域的并集就是原来的图像(4)各个子集是连通的区域4.数字图像处理:数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
(完整)数字图像处理考试卷以及答案

数字图像处理一、填空题(每题1分,共15分)1、列举数字图像处理的三个应用领域 医学 、天文学 、 军事2、存储一幅大小为10241024⨯,256个灰度级的图像,需要 8M bit 。
3、亮度鉴别实验表明,韦伯比越大,则亮度鉴别能力越 差 。
4、直方图均衡化适用于增强直方图呈 尖峰 分布的图像。
5、依据图像的保真度,图像压缩可分为 无损压缩 和 有损压缩6、图像压缩是建立在图像存在 编码冗余 、 像素间冗余 、 心理视觉冗余 三种冗余基础上.7、对于彩色图像,通常用以区别颜色的特性是 色调 、 饱和度亮度 。
8、对于拉普拉斯算子运算过程中图像出现负值的情况,写出一种标定方法:min max min ((,))*255/()g x y g g g --二、选择题(每题2分,共20分)1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增强.( B )A 图像整体偏暗B 图像整体偏亮C 图像细节淹没在暗背景中D 图像同时存在过亮和过暗背景2、图像灰度方差说明了图像哪一个属性。
( B )A 平均灰度B 图像对比度C 图像整体亮度D 图像细节3、计算机显示器主要采用哪一种彩色模型( A )A 、RGB B 、CMY 或CMYKC 、HSID 、HSV4、采用模板[—1 1]T 主要检测( A )方向的边缘。
A.水平B.45° C 。
垂直 D.135°5、下列算法中属于图象锐化处理的是:( C )A.低通滤波B.加权平均法C.高通滤波D. 中值滤波6、维纳滤波器通常用于( C )A 、去噪B 、减小图像动态范围C 、复原图像D 、平滑图像7、彩色图像增强时, C 处理可以采用RGB 彩色模型。
A. 直方图均衡化B. 同态滤波C 。
加权均值滤波 D. 中值滤波8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱.A 。
逆滤波B 。
维纳滤波 C. 约束最小二乘滤波 D 。
【数字图像处理】期末复习资料及期末模拟试卷(含答案)doc(DOC)

Digital Image Processing Examination1. Fourier Transform problem.1) F or an image given by the function f(x,y)=(x+y)3 where x,y are continuous varibales; evaluatef(x,y)δ(x-1,y-2) and f(x,y)* δ(x-1,y-2),where δ is the Dorac Delta function.2) F or the optical imaging system shoen below,consisting of an image scaling and two forwardFourier transforms show that the output image is a scale and inverted replica of the original3) three binary images (with value 1 on black areas and value 0 elsewhere) are shown below. Sketch the continuous 2D FT of these images(don’t do this mathematically, try to use instead the convolution theorem and knowledge of FTs of common functions)2. The rate distortion function of a zero memory Gaussian source of arbitary mean and variance σ2 with respect to the mean-square error criterion is⎪⎩⎪⎨⎧≥≤≤=2220log 21)(σσσD D for D D Ra) Plot this functionb) What is D max c) If a distortion of no mor than 75% of the source’s variance is allowed, what is the maximumcompression that can be achieved?3. The PDF of an image is given by Pr(r) as shown below. Find the transform toconvert the image's PDF to Pr(z). Assume continuity, and find the transform in terms of r and z. Explain the transformation.4. A certain inspection application gathers black & white images of parts as they travel along a con-veyor belt. It is necessary to sort the parts into two categories: parts with holes and parts with-out holes. An example of an image that might be taken by the inspection camera is shown at the right. Propose a method to identify and locate the objects of each category in the image so that they can be picked up by a robotic system and placed in different bins. Assume that the imaging system knows where each image pixel is located on the conveyor belt at every point in time.Provide an annotated flow chart of the algorithm you propose.5.In a given application, an averaging mask is applied to input images to reduce noise and then aLaplacian mask is applied to enhance small details. Would mathematics predict that the result should be the same if the order of the operations were reversed? What practical issues would be encountered in computer implementation?Digital Image Processing Examination1. A preprocessing step in an application of microscopy is concerned with the issue ofisolating individual round particles from similar particles that overlap in groups of two or more.Assuming that all particles are of the same size, propose a morphological algorithm that will produce an image that contains only the isolated (non-overlapping) particles that are not in contact with the boundary of the image.2. An image represented by a continuous function f(x, y) is w = 2 cm wide and h = 3 cm high. The imageis to be converted to an array of pixels by a scanner whose response is zero above 80 lines/centimeter in both the horizontal and vertical directions. The discrete image is represented by an array ˆf(n, m) where n and m take on integer values, 0 ~ n ~ N - 1, 0~ m ~ M-1.(a)Determine suitable values for N and M.(b)Assume that ˆf(n, m) = f(na, mb). Determine the values of a and b.(c)Determine constants A, B, C, D, E such that the DFT of fˆ can be expressed as)(00) ,() , (EvmDuniBnCmemnfAvu F+-==∑∑=(d)Find numbers (P1, P2) such that F(u + jP1, v + kP2) = F(u, v) for any integers j, k, u, v.3. The arithmetic decoding process is the reverse of the encoding procedure. Decode the message 0.23355 given the coding model.4. The gradient of a function f (x) is defined as⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∇y f x f G G f y xComputationally, the first derivative is implemented by calculating the difference between adjacent pixels.(a) Is the following a linear operator?2122⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇y f x f f (b) State how would you implement the above operator using differences between pixels.(c) A Sobel operator uses two masks, Hx and Hy to process an image. Explain why are two masksneeded and what do they measure?(d)Write down the masks Hx and Hy, and identify them in the followingfigures:5. The three images shown were blurred using square averaging masks of sizes n=23, 25 , and 45, respectively. The vertical bars on the left lower part of (a) and (c) are blurred, but a clear separation exists between them. However, the bars have merged in image (b), in spite of the fact that the mask that produced this image is significantly smaller than the mask that produced image (c). explain this.Digital Image Processing Examination1. An image array f(m, n) of size M1 × N1 is to be convolved with a filter array h(m, n) of size M2 × N2 to produce a new image array g(m, n).1)Write a pseudo code program that describes a method to compute g(m, n) throughthe use of Fourier transforms. The result should be the same size as would beachieved with direct convolution.2)Modify the algorithm so that it does the correlation f ~ h rather than theconvolution.2. You have the job of designing an algorithm that will count the number of objects with holes and the number of objects without holes in images of the kind shown here. Assume that the images are binary with 0 corresponding to black and 1 correspondingto white. The imaging system is of low quality and produces images that are corrupted with salt and pepper noise.The objects do not overlap or touch, but may be close to each other in any direction.They may be of any shape or size. The algorithm should not be confused by the salt and pepper noise, and should not count noise pixels as objects.Write a pseudo-code description of your algorithm. You may also include a block diagram and other information to make it understandable to a programmer. State any assumptions you make, such as: “Objects must contain at least 50 pixels.”least 50 pixels.”3. Suppose that an image has the gray-level probability density functions shown. Here, p 1(z) corresponds to objects and p 2(z) corresponds to the background. Assume that p 1=p 2 and find the optimal threshold between object and back ground pixels.4. The Sobel operator computes the following quantity at each location (x, y) in an image array, A:Gx[j,k]=(A[j+1,k+1]+2A[j+1,k]+A[j+1,k-1])-(A[j-1,k+1]+2A[j-1,k]+A[j-1,k-1]) Gy[j,k]=(A[j-1,k-1]+2A[j,k-1]+A[j+1,k-1])-(A[j-1,k+1]+2A[j,k+1]+A[j+1,k+1]) G[j,k] = |Gx[j,k]| + |Gy[j,k]|The position of A[j, k] is column j and row k of the array.The operation is implemented as the convolution of the image array A with two masks, Mx and My followed by the magnitude operation.1) Write a 3 × 3 array for each mask, Mx and My.2) What mathematical operation on an image array is approximated by the Sobeloperator? Show how the Sobel operator is related to the mathematical operation.5. Answer the following questions about morphological image processing.(a) Shown below are two tables with expressions that relate to binary morphological image processing. Associate each expression in the left table with one from the right table.(b) A well-known morphological algorithm uses the following iteration with a structuring element B.(1) Initialize X[p] = 1 for some pixel A p ∈(2) A B X Y )(⊕=(3) If X Y ≠ then set X = Y and repeat (2)An original set A is shown in (A) and an initial pixel p 2 A is shown in (B). The result after one iteration of the algorithm with structuring element⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010111010Bis shown in (C). Fill in the result of the next two iterations by marking theappropriate pixels for the set Y in (D) and (E). In frame (F) show the result for Y that would be reached after a large number of iterations.Digital Image Processing Examination1. Consider the edge model depicted below. Sketch the gradient and Laplacian of the signal. It is not needed to compute exact numerical values in your answer. Plot of approximate shapes of the responses will be sufficient.2. The white bars in the test pattern shown are 7pixels wide and 210 pixels high. The separation between bars is 17 pixels. What would this image look like after application of .1) A 3*3 arithmetic mean filter?2) A 7*7 median filter.3) A 9*9 contraharmonic mean filter with Q=13. The video coding system introduced in the class utilizes several major components –inter-frame motion estimation, motion compensated prediction, DCT, Huffman coding,and quantization.(a)When an encoded signal can be used to reconstruct the exact value of theoriginal signal, we say the encoding method is lossless; otherwise, it’s calledlossy. A lossy coding technique introduces distortion to the signal.Which component in the above video coding system is lossy?(b)The motion compensation process in the encoder generates a motion vectorand prediction errors for each image block in the video signal. Suppose duringthe transmission of the encoded video stream, one motion vector is lost (e.g.,due to the network erasure error). What will be the visual effects of suchtransmission errors on the decoded image sequence?4.Consider a black-and-white image consisting of round and rectangular objects, as shown in the image below. Assume the sizes of the objects are fixed and known. We also know that the width and length of the rectangles are larger than the diameter of the circles. None of the rectangles are tilted. In general, the objects may overlap with each other.Design a morphological operation based system to automatically detect all the instances of the rounds objects that overlap with rectangular objects.5. An image A, represented by an N × M array of bytes, has a uniform brightnesshistogram. It is desired transform A into an image B in a way that produces a triangular brightness histogram2550,36240][≤≤=k k MNk h bDescribe a process that will accomplish the transformation. If possible, derive an equation for the transformation function. At a minimum, sketch the transformation function and indicate how you would use it in a program to compute the array B.模拟试卷一1.对将一个像素宽度的8通路转换到4通路提出一种算法。
数字图像处理试题及答案

数字图像处理试题及答案一、选择题1. 数字图像的基本属性包括:A. 分辨率B. 颜色深度C. 存储格式D. 所有以上答案:D2. 在数字图像处理中,灰度化处理的目的是:A. 减少数据量B. 增强图像对比度C. 转换彩色图像为黑白图像D. 以上都是答案:A3. 下列哪个不是图像的几何变换?A. 平移B. 旋转C. 缩放D. 噪声滤除答案:D二、简答题1. 简述数字图像的采样过程。
答案:数字图像的采样过程是将连续的模拟图像转换为离散的数字图像。
这个过程包括两个步骤:空间采样和量化。
空间采样是按照一定的间隔在图像上取样,量化则是将采样点的连续值转换为有限的离散值。
2. 描述边缘检测在图像处理中的作用。
答案:边缘检测在图像处理中的作用是识别图像中物体的边界。
它是图像分割、特征提取和图像理解的基础。
通过边缘检测,可以将图像中的不同区域区分开来,为进一步的图像分析提供重要信息。
三、计算题1. 给定一幅数字图像,其分辨率为1024×768,颜色深度为24位,计算该图像的存储大小(以字节为单位)。
答案:图像的存储大小 = 分辨率的宽度× 高度× 颜色深度 / 8。
所以,1024 × 768 × 24 / 8 = 2,097,152 字节。
2. 如果对上述图像进行灰度化处理,存储大小会如何变化?答案:灰度化处理后,颜色深度变为8位(每个像素一个灰度值),所以存储大小变为1024 × 768 × 8 / 8 = 786,432 字节。
四、论述题1. 论述数字滤波器在图像去噪中的应用及其优缺点。
答案:数字滤波器在图像去噪中起着至关重要的作用。
常见的滤波器有低通滤波器、高通滤波器和带通滤波器等。
低通滤波器可以去除图像中的高频噪声,保留低频信息,但可能会导致图像细节丢失。
高通滤波器则可以增强图像的边缘和细节,但可能会放大噪声。
带通滤波器则可以同时保留图像的某些频率范围,但设计复杂度较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理期末考试试题
一、单项选择题(每小题1分,共10分)
( d )1.一幅灰度级均匀分布的图象,其灰度范围在[0,255],则该图象的信息量为:
a. 0
b.255
c.
6 d.8
( b )2.图象与灰度直方图间的对应关系是:
a.一一对应
b.多对一
c.一对多
d.都不对
( d )3.下列算法中属于局部处理的是:
a.灰度线性变换
b.二值化
c.傅立叶变换
d.中值滤波
( b )4.下列算法中属于点处理的是:
a.梯度锐化
b.二值化
c.傅立叶变换
d.中值滤波
( d ) 5.一曲线的方向链码为12345,则曲线的长度为
a.5
b.4
c.5.8
3 d.6.24
( c )6. 下列算法中属于图象平滑处理的是:
a.梯度锐化
b.直方图均衡
c. 中值滤波
placia n增强
( b )7.下列图象边缘检测算子中抗噪性能最好的是:
a.梯度算子
b.Prewitt算子
c.Roberts算子
d. Laplacian算子( c )8.采用模板[-1 1]主要检测____方向的边缘。
a.水平
b.45°
c.垂直
d.135°
( d )9.二值图象中分支点的连接数为:
a.0
b.1
c.
2 d.3
( a )10.对一幅100´100像元的图象,若每像元用8bit表示其灰度值,经霍夫曼编码后压缩图象的数据量为40000bit,则图象的压缩比为:
a.2:1
b.3:1
c.4:1
d.1:2
二、填空题(每空1分,共15分)
1.图像锐化除了在空间域进行外,也可在频率域进行。
2.图像处理中常用的两种邻域是4-邻域和8-邻域。
3.直方图修正法包括直方图均衡和直方图规定化两种方法。
4.常用的灰度内插法有最近邻元法、双线性内插法和(双)三次内插法。
5.多年来建立了许多纹理分析法,这些方法大体可分为统计分析法和结构分析法两大类。
6.低通滤波法是使高频成分受到抑制而让低频成分顺利通过,从而实现图像平滑。
7.检测边缘的Sobel算子对应的模板形式
为和。
7.(不分先后)
-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1
8.一般来说,采样间距越大,图象数据量少,质量差;反之亦然。
三、名词解释(每小题3分,共15分)
1.数字图像是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。
2.图像锐化是增强图象的边缘或轮廓。
3.从图象灰度为i的像元出发,沿某一方向θ、距离为d的像元灰度为j同时出现的概率P(i,j,θ,d),这样构成的矩阵称灰度共生矩阵。
4.细化是提取线宽为一个像元大小的中心线的操作。
5.无失真编码是指压缩图象经解压可以恢复原图象,没有任何信息损失的编码技术。
四、判断改错题(每小题2分,共10分)
(√ ) 1. 灰度直方图能反映一幅图像各灰度级像元占图像的面积比。
(×) 2. 直方图均衡是一种点运算,图像的二值化则是一种局部运算。
改正:直方图均衡是一种点运算,图像的二值化也是一种点运算。
或:直方图均衡是一种点运算,图像的二值化不是一种局部运算。
(× ) 3. 有选择保边缘平滑法可用于边缘增强。
改正:有选择保边缘平滑法不可用于边缘增强。
或:有选择保边缘平滑法用于图象平滑(或去噪)。
(√ ) 4. 共点直线群的Hough变换是一条正弦曲线。
(√ ) 5. 边缘检测是将边缘像元标识出来的一种图像分割技术。
五、简答题(每小题5分,共20分)
1.简述线性位移不变系统逆滤波恢复图像原理。
答:设退化图象为g(x,g),其傅立叶变换为G(u,v),若已知逆滤波器为1/H(u,v)则对G(u,v)作逆滤波得F(u,v)=G(u,v)/H(u,v)(2分)
对上式作逆傅立叶变换得逆滤波恢复图象f(x,y)
f(x,y)=IDFT[F(u,v)]
以上就是逆滤波恢复图象的原理。
(2分)
若存在噪声,为避免H(u,v)=0,可采用两种方法处理。
(0.5分)
②H(u,v)=0时,人为设置1/H(u,v)的值;
②使1/H(u,v)具有低同性质。
即
H-1(u,v)=1/H(u,v)当D≤D
(0.5分)
H-1(u,v)=0当D>D
2.图像锐化与图像平滑有何区别与联系?
答:图象锐化是用于增强边缘,导致高频分量增强,会使图象清晰;(2分)图象平滑用于去噪,对图象高频分量即图象边缘会有影响。
(2分)
都属于图象增强,改善图象效果。
(1分)
3.伪彩色增强与假彩色增强有何异同点?
答:伪彩色增强是对一幅灰度图象经过三种变换得到三幅图象,进行彩色合成得到一幅彩色图像;假彩色增强则是对一幅彩色图像进行处理得到与原图象不同的彩色图像;主要差异在于处理对象不同。
(4)
相同点是利用人眼对彩色的分辨能力高于灰度分辨能力的特点,将目标用人眼敏感的颜色表示。
(1分)4.梯度法与Laplacian算子检测边缘的异同点?
答:梯度算子和Laplacian检测边缘对应的模板分别为
-1 -1 1 1
1 1 -4 1
1
(梯度算子)(Laplacian算
子)(2分)
梯度算子是利用阶跃边缘灰度变化的一阶导数特性,认为极大值点对应于边缘点;而Laplacian算子检测边缘是利用阶跃边缘灰度变化的二阶导数特性,认为边缘点是零交叉点。
(2分)相同点都能用于检测边缘,且都对噪声敏感。
(1分)
六、计算题(共30分,每小题分标在小题后)
1. 对数字图像f(i,j)(图象1)进行以下处理,要求:
1) 计算图像f(i,j)的信息量。
(10分)
2) 按下式进行二值化,计算二值化图象的欧拉数。
(10分)
0 1321321
05762576
16061631
26753565
32272616
26502352
12321242
31231201
解:1)统计图象1各灰度级出现的频率结果为
p(0)=5/64»0.078;
p(1)=12/64»0.188; p(2)=16/64=0.25; p(3)=9/64»0.141
p(4)=1/64»0.016;
P(5)=7/64»0.109; p(6)=10/64»0.156; p(7)=4/64»0.063
(4分,每个1分)
信息量为»2.75(bit)(写出表达式3分;结果正确3分)
2)对于二值化图象,
若采用4-连接,则连接成分数为4,孔数为1,欧拉数为4-1=3;(5分)若采用8-连接,则连接成分数为2,孔数为2,欧拉数为2-2=0;(5分)
2. 计算图像2在Δx=1, Δy=0度的灰度共生矩阵。
(10分)
解:图像2在Δx=1, Δy=0度的灰度共生矩阵为
1/12 1/24 1/24 1/12
1/24 0 1/12 1/12
1/24 1/12 1/12 1/12
1/12 1/12 1/12 0。