2020-2021学年重庆市九龙坡区九年级上学期期末考试数学试卷
2023届重庆市九龙坡区七校联考九年级数学第一学期期末教学质量检测模拟试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为( )A .10mB .12mC .15mD .40m2.平面直角坐标系内与点P (﹣2,3)关于原点对称的点的坐标是( )A .(3,﹣2)B .(2,3)C .(2,﹣3)D .(﹣3,﹣3)3.在Rt △ABC 中,∠C=90°,∠A=α,AC=3,则AB 的长可以表示为( ) A .3cos α B .3sin α C .3sinα D .3cosα4.顺次连接矩形各边中点得到的四边形是( )A .平行四边形B .矩形C .菱形D .正方形 5.二次函数2y ax bx c =++的图像如图所示,下面结论:①0a >;②0c ;③函数的最小值为3-;④当4x >时,0y >;⑤当122x x <<时,12y y <(1y 、2y 分别是1x 、2x 对应的函数值).正确的个数为( )A .2B .3C .4D .56.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=07.在Rt △ABC 中,∠C =90°,∠B =25°,AB =5,则BC 的长为( )A .5sin25°B .5tan65°C .5cos25°D .5tan25°8.如图,在正方形ABCD 中,AB=2,P 为对角线AC 上的动点,PQ ⊥AC 交折线A D C --于点Q ,设AP=x ,△APQ的面积为y ,则y 与x 的函数图象正确的是( )A .B .C .D .9.在比例尺为1:100000的城市交通图上,某道路的长为3厘米,则这条道路的实际距离为( )千米. A .3 B .30 C .3000 D .0.310.用求根公式计算方程2320x x -+=的根,公式中b 的值为( )A .3B .-3C .2D .32- 二、填空题(每小题3分,共24分)11.如图,在▱ABCD 中,点E 在DC 边上,若12DE EC =,则BF EF的值为_____.12.如图,直角三角形的直角顶点在坐标原点,若点A 在反比例函数4y x =的图像上,点B 在反比例函数k y x =的图像上,且23tan BAO ∠=,则k =_______.13.已知⊙O 的周长等于6πcm ,则它的内接正六边形面积为_____ cm 214.根据下列统计图,回答问题:该超市10月份的水果类销售额___________11月份的水果类销售额(请从“>”“=”或“<”中选一个填空).15.如图,在Rt ABC ∆中,90ACB ∠=︒,4AC cm =,3BC cm =.将ABC ∆绕点A 逆时针旋转,使点C 落在边AB 上的E 处,点B 落在D 处,则B ,D 两点之间的距离为__________cm ;16.如图,已知平行四边形ABCD 中,AE ⊥BC 于点E ,以点B 为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的度数为 .17.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为_____.18.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .三、解答题(共66分)19.(10分)如图,直线l 的解析式为y =34x ,反比例函数y =x k (x >0)的图象与l 交于点N ,且点N 的横坐标为1.(1)求k 的值;(2)点A 、点B 分别是直线l 、x 轴上的两点,且OA =OB =10,线段AB 与反比例函数图象交于点M ,连接OM ,求△BOM 的面积.20.(6分)如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______;②若3BE BQ ==,求BP 的长;(2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径: ②若O 与矩形ABCD 的一边相切,求O 的半径.21.(6分)如图,ABCD 中,45B ∠=︒. 以点A 为圆心,AB 为半径作A 恰好经过点C .()1CD 是否为A 的切线?请证明你的结论.()2DEF 为割线,30ADF ∠=. 当2AB =时,求DF 的长.22.(8分)如图,在平面直角坐标系中,直线AB 与x 轴交于点B ,与y 轴交于点A ,直线AB 与反比例函数y =m x (m >0)在第一象限的图象交于点C 、点D ,其中点C 的坐标为(1,8),点D 的坐标为(4,n ).(1)分别求m 、n 的值;(2)连接OD ,求△ADO 的面积.23.(8分)如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交⊙O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若BC=3,CD=4,求平行四边形OABC 的面积.24.(8分)如图,在△ABC 中,点P 、D 分别在边BC 、AC 上,PA ⊥AB ,垂足为点A ,DP ⊥BC ,垂足为点P ,AP BP PD CD=.(1)求证:∠APD =∠C ;(2)如果AB =3,DC =2,求AP 的长.25.(10分)计算:22sin30cos60cos 45︒+︒-︒;26.(10分)阅读材料:以下是我们教科书中的一段内容,请仔细阅读,并解答有关问题.公元前3世纪,古希腊学家阿基米德发现:若杠杆上的两物体与支点的距离与其重量成反比,则杠杆平衡,后来人们把它归纳为“杠杆原理”,通俗地说,杠杆原理为:阻力×阻力臂=动力×动力臂(问题解决)若工人师傅欲用撬棍动一块大石头,已知阻力和阻力臂不变,分别为1500N和0.4m.(1)动力F(N)与动力臂l(m)有怎样的函数关系?当动力臂为1.5m时,撬动石头需要多大的力?(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少?(数学思考)(3)请用数学知识解释:我们使用棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.参考答案一、选择题(每小题3分,共30分)1、C【解析】根据同时同地物高与影长成正比,列式计算即可得解.【详解】设旗杆高度为x米,由题意得,1.8325x,解得:x=15,故选C.【点睛】本题考查了相似三角形的应用,熟知同时同地物高与影长成比例是解题的关键.2、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数即可.【详解】解:由题意,得点P (-2,3)关于原点对称的点的坐标是(2,-3),故选C .【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3、A【解析】Rt ∆ABC 中,∠C =90°,∴cos A =AC AB, ∵A α∠=,AC =3, ∴cosα=3AB, ∴AB=3cos α , 故选A.【点睛】考查解直角三角形的知识;掌握和一个角的邻边与斜边有关的三角函数值是余弦值的知识是解决本题的关键. 4、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形ABCD 中,,AC BD ∴=,,,E F G H 分别为四边的中点,1//,,2EF BD EF BD ∴=1//,,2GH BD GH BD = 1,2FG AC = //,,EF GH EF GH ∴=∴ 四边形ABCD 是平行四边形, 11,,,22AC BD EF BD FG AC === ,EF FG ∴=∴ 四边形EFGH 是菱形.故选C .【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定. 5、C【分析】由抛物线开口方向可得到a >0;由抛物线过原点得c=0;根据顶点坐标可得到函数的最小值为-3;根据当x <0时,抛物线都在x 轴上方,可得y >0;由图示知:0<x <2,y 随x 的增大而减小;【详解】解:①由函数图象开口向上可知,0a >,故此选项正确;②由函数的图像与y 轴的交点在(0,0)可知,0c ,故此选项正确;③由函数的图像的顶点在(2,3)-可知,函数的最小值为3-,故此选项正确;④因为函数的对称轴为2x =,与x 轴的一个交点为(0,0),则与x 轴的另一个交点为(4,0),所以当4x >时,0y >,故此选项正确;⑤由图像可知,当2x <时,y 随着x 的值增大而减小,所以当122x x <<时,122x x <<,故此选项错误; 其中正确信息的有①②③④.故选:C .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y=ax 2+bx+c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线x=2b a-,;抛物线与y 轴的交点坐标为(0,c );当b 2-4ac >0,抛物线与x 轴有两个交点;当b 2-4ac=0,抛物线与x 轴有一个交点;当b 2-4ac <0,抛物线与x 轴没有交点.6、C【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =1.故选C .考点:由实际问题抽象出一元二次方程.7、C【分析】在Rt △ABC 中,由AB 及∠B 的值,可求出BC 的长.【详解】在Rt △ABC 中,∠C =90°,∠B =25°,AB =5,∴BC =AB•cos ∠B =5cos25°.故选:C .【点睛】本题考查了解直角三角形的问题,掌握解直角三角形及其应用是解题的关键.8、B【分析】因为点P 运动轨迹是折线,故分两种情况讨论:当点P 在A —D 之间或当点P 在D —C 之间,分别计算其面积,再结合二次函数图象的基本性质解题即可.【详解】分两种情况讨论:当点Q 在A —D 之间运动时,212y x =,图象为开口向上的抛物线; 当点Q 在D —C 之间运动时,如图Q1,P1位置,1112y x PQ = 114590DCA Q PC ∠=︒∠=︒, 111Q P PC AC ∴== 2AB =22AC ∴=1122Q P x∴=- 211111=(22)2222y x PQ x x x x ∴=-=-+ 由二次函数图象的性质,图象为开口向下的抛物线,故选:B .【点睛】本题考查二次函数图象基本性质、其中涉及分类讨论法、等腰直角三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.9、A【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【详解】解:设这条道路的实际长度为x ,则1100000=3x , 解得x=300000cm=3km .∴这条道路的实际长度为3km .故选A .【点睛】本题考查成比例线段问题,能够根据比例尺正确进行计算,注意单位的转换10、B【分析】根据一元二次方程的定义来解答:二次项系数是a 、一次项系数是b 、常数项是c .【详解】解:由方程2320x x -+=根据一元二次方程的定义,知一次项系数b=-3,故选:B .【点睛】本题考查了解一元二次方程的定义,关键是往往把一次项系数-3误认为3,所以,在解答时要注意这一点.二、填空题(每小题3分,共24分)11、32【分析】由DE 、EC 的比例关系式,可求出EC 、DC 的比例关系;由于平行四边形的对边相等,即可得出EC 、AB 的比例关系,易证得EFC ∽BFA ,可根据相似三角形的对应边成比例求出BF 、EF 的比例关系. 【详解】解:12DE EC =,23EC DC ∴=; 四边形ABCD 是平行四边形,//AB CD ∴,AB CD =;ABF ∴∽CEF ;BF AB EF EC ∴=; 32AB CD EC EC ==, 32BF EF ∴=. 故答案为:32.【点睛】此题主要考查了平行四边形的性质以及相似三角形的判定和性质.灵活利用相似三角形性质转化线段比是解题关键. 12、169- 【分析】构造一线三垂直可得BCO ODA ∆∆∽,由相似三角形性质可得2BCO AOD B S S AO O ∆∆⎛⎫= ⎪⎝⎭,结合23tan BAO ∠=得出22439BCO AOD S S ∆∆⎛⎫== ⎪⎝⎭,进而得出89BOC S ∆=,即可得出答案. 【详解】解:过点B 作BC x ⊥轴于点C ,过点A 作AD x ⊥轴于点D , 90BOA ∠=︒,90BOC AOD ∴∠+∠=︒,90AOD OAD ∠+∠=︒,BOC OAD ∴∠=∠,又90BCO ADO ∠=∠=︒,BCO ODA ∴∆∆∽,∴2BCO AOD B S S AO O ∆∆⎛⎫= ⎪⎝⎭ ∴23BO tan BAO AO =∠=, ∴49BCO AOD S S ∆∆=, 点A 在反比例函数4y x=的图像上, ∴11222AD DO xy ⨯⨯==, 148299BCO AOD S BC CO S ∆∆∴⨯⨯===, ∴169k = 经过点B 的反比例函数图象在第二象限,故反比例函数解析式为:169yx=-.即169k=-.故答案为:169 -.【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,掌握反比例函数中k的几何意义和构造一线三垂直模型得相似三角形,从而正确得出89BCOS∆=是解题关键.13、273 2【分析】首先过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:如图,过点O作OH⊥AB于点H,连接OA,OB,∴AH=12 AB,∵⊙O的周长等于6πcm,∴⊙O的半径为:3cm,∵∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∴AH=32 cm,∴22OA AH-=332,∴S正六边形ABCDEF=6S△OAB=6×12×333273273【点睛】本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键.14、>【分析】根据统计图,分别求出该超市10月份的水果类销售额与11月份的水果类销售额,比较大小即可.【详解】∵10月份的水果类销售额为6020%12⨯=(万元),11月份的水果类销售额为7015%10.5⨯=(万元), ∴10月份的水果类销售额>11月份的水果类销售额.故答案是:>【点睛】本题主要考查从统计图种提取信息,通过观察统计图,得到有用的信息,是解题的关键.15【分析】利用勾股定理算出AB 的长,再算出BE 的长,再利用勾股定理算出BD 即可.【详解】∵AC=4,BC=3,∠C=90°,∴AB=5,∴EB=5-4=1,∴=故答案为: .【点睛】本题考查勾股定理的应用,关键在于通过旋转找到等量关系.16、160°.【分析】根据平行四边形的性质得∠ABC=∠ADC=60°,AD ∥BC ,则根据平行线的性质可计算出∠DA′B=130°,接着利用互余计算出∠BAE=30°,然后根据旋转的性质得∠BA′E′=∠BAE=30°,于是可得∠DA′E′=160°.【详解】解:∵四边形ABCD 为平行四边形,∴∠ABC=∠ADC=60°,AD ∥BC ,∴∠ADA′+∠DA′B=180°,∴∠D A′B=180°﹣50°=130°,∵AE ⊥BE ,∴∠BAE=30°,∵△BAE 顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=130°+30°=160°.故答案为160°.【点睛】本题考查旋转的性质,掌握旋转的性子,数形结合是本题的解题关键.17、60°【解析】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°18、1.【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这1个格点,故答案为1.考点:圆的有关性质.三、解答题(共66分)19、(1)27;(2)2【分析】(1)把x=1代入y=34x,求得N的坐标,然后根据待定系数法即可求得k的值;(2)根据勾股定理求得A的坐标,然后利用待定系数法求得直线AB的解析式,再和反比例函数的解析式联立,求得M的坐标,然后根据三角形面积公式即可求得△BOM的面积.【详解】解:(1)∵直线l经过N点,点N的横坐标为1,∴y=34×1=92,∴N (1,92), ∵点N 在反比例函数y =x k (x >0)的图象上, ∴k =1×92=27;(2)∵点A 在直线l 上,∴设A (m ,34m ), ∵OA =10,∴m 2+(34m )2=102,解得m =8, ∴A (8,1),∵OA =OB =10,∴B (10,0),设直线AB 的解析式为y =ax +b ,∴8m n 610m n 0+=⎧⎨+=⎩,解得330m n =-⎧⎨=⎩, ∴直线AB 的解析式为y =﹣3x +30, 解33027y x y x =-+⎧⎪⎨=⎪⎩得127x y =⎧⎨=⎩或93x y =⎧⎨=⎩, ∴M (9,3),∴△BOM 的面积=11032⨯⨯=2. 【点睛】本题考查了反比例函数与一次函数的交点,一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式和一次函数的解析式,求得A 、M 点的坐标是解题的关键.20、(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、2553,35630、5. 【解析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O与矩形ABCD的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ是直径,E在圆上,∴∠PEQ=90°,∴PE⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图,BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 23x (舍去),225 23x,∴ON=25 53,∴O 半径为25 53.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x (舍去),263032x,∴OM=35630,∴O 半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,2553,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.21、(1)CD是A的切线,理由详见解析;(2)DF【分析】(1)根据题意连接AC ,利用平行四边形的判定与性质进行分析证明即可; (2)由题意作AH DF ⊥于H ,连接AF ,根据平行四边形的性质以及勾股定理进行分析求解.【详解】解:()1CD 是A 的切线.理由如下.连接AC ,如下图,AB AC =,145B ∴∠∠︒==.290∴∠︒= ABCD 是平行四边形,//AB CD ∴.3290∴∠∠︒==.CD AC ∴⊥CD ∴是A 的切线()2作AH DF ⊥于H ,连接AF ,如上图,由()1,222BC ==ABCD 是平行四边形22AD BC ∴==30ADF ∠︒=, 122AH AD ∴==. 22 6DH AD AH ∴-==2AF =, 222FH AF AH ∴-==. 62DF ∴=.【点睛】本题考查平行四边形和圆相关,熟练掌握平行四边形的判定与性质以及圆的相关性质是解题的关键.22、(1)m =8,n =1.(1)10【分析】(1)把()18C ,代入解析式可求得m 的值,再把点D (4,n )代入即可求得答案;(1)用待定系数法求得直线AB 的解析式,继而求得点A 的坐标,再利用三角形面积公式即可求得答案.【详解】(1)∵反比例函数m y x =(m >0)在第一象限的图象交于点()18C ,, ∴81m =, ∴8m =,∴函数解析式为8y x=, 将()4D n ,代入8y x =得,824n ==. (1)设直线AB 的解析式为y kx b =+,由题意得842k b k b +=⎧⎨+=⎩, 解得:210k b =-⎧⎨=⎩, ∴直线AB 的函数解析式为210y x +=﹣, 令0x =,则10y =, ∴()010A ,, ∴1104202ADO S =⨯⨯=. 【点睛】本题考查了用待定法求函数解析式及三角形面积公式,熟练掌握待定法求函数解析式是解题的关键.23、(1)证明见解析;(2)平行四边形OABC 的面积S=1【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据全等三角形的性质求出CE=CD=4,根据平行四边形性质求出OA=3,根据平行四边形的面积公式求出即可.试题解析:(1)连接OD ,∵OD=OA ,∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC ,又∵OE=OD ,OC=OC ,∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°,即OD ⊥DC ,∴CD 是⊙O 的切线;(2)∵△EOC ≌△DOC ,∴CE=CD=4,∵四边形OABC 是平行四边形,∴OA=BC=3,∴平行四边形OABC 的面积S=OA×CE=3×4=1.考点:1、全等三角形的性质和判定;2、切线的判定与性质;3、平行四边形的性质.24、(1)见解析;(23【分析】(1)通过证明Rt △ABP ∽Rt △PCD ,可得∠B=∠C ,∠APB=∠CDP ,由外角性质可得结论; (2)通过证明△APC ∽△ADP ,可得=AP AD AC AP,即可求解. 【详解】证明:(1)∵PA ⊥AB ,DP ⊥BC ,∴∠BAP =∠DPC =90°, ∵=AP BP PD CD∴=AP PD BP CD , ∴Rt △ABP ∽Rt △PCD ,∴∠B =∠C ,∠APB =∠CDP ,∵∠DPB =∠C+∠CDP =∠APB+∠APD ,∴∠APD =∠C ;(2)∵∠B =∠C ,∴AB =AC =3,且CD =2,∴AD =1,∵∠APD =∠C ,∠CAP =∠PAD ,∴△APC ∽△ADP , ∴=AP AD AC AP, ∴AP 2=1×3=3∴AP .【点睛】本题考查了相似三角形的判定和性质,熟练掌握和应用是解题的关键.25、1【分析】根据特殊角的三角函数值代入即可求解.【详解】22sin30cos60cos 45︒+︒-︒2112222⎛⎫=⨯+- ⎪ ⎪⎝⎭ 11122=+- 1=【点睛】此题主要考查实数的计算,解题的关键是熟知特殊角的三角函数值.26、(1)400N ;(2)1.5米;(3)见解析【分析】(1)根据杠杆定律求得函数的解析式后代入l=1.5求得力的大小即可;(2)将求得的函数解析式变形后求得动力臂的大小,然后即可求得增加的长度;(3)利用反比例函数的知识结合杠杆定律进行说明即可.【详解】试题解析:(1)、根据“杠杆定律”有FL=1500×0.4, ∴函数的解析式为F=600L , 当L=1.5时,F=6001.5=400, 因此,撬动石头需要400N 的力; (2)、由(1)知FL=600, ∴函数解析式可以表示为:L=600F , 当F=400×12=200时,L=3,3﹣1.5=1.5(m ),因此若用力不超过400N的一半,则动力臂至少要加长1.5米;(3)因为撬棍工作原理遵循“杠杆定律”,当阻力与阻力臂一定时,其乘积为常数,设其为k,则动力F与动力臂L的函数关系式为F=KL,根据反比例函数的性质可知,动力F随动力臂l的增大而减小,所以动力臂越长越省力.考点:反比例函数的应用。
2019-2020学年重庆市九龙坡区九年级(上)期末数学试卷

2019-2020学年重庆市九龙坡区九年级(上)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球2.(4分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(4分)用配方法解方程x2﹣2x﹣1=0时,配方后所得的方程为()A.(x+1)2=2B.(x﹣1)2=2C.(x+1)2=0D.(x﹣1)2=04.(4分)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(﹣2,﹣3)B.(2,﹣3)C.(2,3 )D.(﹣2,3)5.(4分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(4分)在函数的图象上有三个点(x1,y1),(x2,y2)、(x3,y3),若x1>x2>0>x3,下列各式中,正确的是()A.y3>y2>y1B.y3>y1>y2C.y1>y2>y3D.y1>y3>y27.(4分)如图,点A,B,C都在⊙O上,∠A=∠B=20°,则∠AOB等于()A.40°B.60°C.80°D.100°8.(4分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A.a<0B.b>0C.a+b+c=0D.4a﹣2b+c>09.(4分)若点A(x1,5),B(x2,5)是函数y=x2﹣2x+3上两点,则当x=x1+x2时,函数值y为()A.2B.3C.5D.1010.(4分)已知x=1是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根,则m的值为()A.1B.﹣1或2C.﹣1D.011.(4分)如图,点A、B为直线y=x上的两点,过A、B两点分别作y轴的平行线交双曲线(x>0)于点C、D两点.若BD=2AC,则4OC2﹣OD2的值为()A.5B.6C.7D.812.(4分)在某中学的迎国庆联欢会上有一个小嘉宾抽奖的环节,主持人把分别写有“我”、“爱”、“祖”、“国”四个字的四张卡片分别装入四个外形相同的小盒子并密封起来,由主持人随机地弄乱这四个盒子的顺序,然后请出抽奖的小嘉宾,让他在四个小盒子的外边也分别写上“我”、“爱”、“祖”、“国“四个字,最后由主持人打开小盒子取出卡片,如果每一个盒子上面写的字和里面小卡片上面写的字都不相同就算失败,其余的情况就算中奖,那么小嘉宾中奖的概率为()A.B.C.D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.(4分)抛物线y=x2+8x+2的对称轴为直线.14.(4分)关于x的一元二次方程x2﹣4x+2m=0的一个根x1=4,则另一个根x2=.15.(4分)已知一条抛物线y=2(x﹣3)2+1,以下说法:①对称轴为x=3,当x>3时,y随x的增大而增大;②y最大值=1;③顶点坐标为(﹣3,1);④开口向上.其中正确的是.(只填序号)16.(4分)如图,Rt△ABC中,∠A=90°,∠B=30°,AC=6,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分面积为.(结果保留π)17.(4分)如图,△AOB中,∠AOB=90°,AO=6,BO=8,将△AOB绕顶点O逆时针旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则△OBB1的面积为.18.(4分)在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了次.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(8分)(1)(x﹣3)2+2x(x﹣3)=0(2)3x2﹣6x+1=0.20.(8分)电影《我和我的祖国》在国庆档热播,预售票房成功破两亿,堪称热度最高的爱国电影,周老师打算从非常渴望观影的5名学生会干郎(两男三女)中,抽取两人分别赠送一张UME的嘉宾观形卷,问抽到一男一女的概率是多少?(请你用树状图或者列表法分析)四、解答题:(本大题4个小题,21题10分,22题10分,23题10分,24题10分共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)如图,正方形ABCD的边长为9,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=3时,求EF的长.22.(10分)中国古贤常说万物皆自然,而古希腊学者说万物皆数.同学们还记得我们最初接触的数就是“自然数”吧!在数的学习过程中,我们会对其中一些具有某种特性的自然数进行研究,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“n喜数”.定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n喜数”.例如:24就是一个“4喜数”,因为24=4×(2+4)25就不是一个“n喜数”因为25≠n(2+5)(1)判断44和72是否是“n喜数”?请说明理由;(2)试讨论是否存在“7喜数”若存在请写出来,若不存在请说明理由.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研其性质﹣﹣运用函数解决问题”的学习过程.如图,在平面直角坐标系中已经绘制了一条直线l1.另,函数y2与x的函数关系如下表:x…﹣6﹣5﹣4﹣3﹣2﹣10123456…y2 (2)0.251 1.752 1.751﹣0.25﹣2﹣4.25﹣7﹣10.25﹣14…(1)求直线l1的解析式:(2)请根据列表中的数据,绘制出函数y2的近似图象;(3)请根据所学知识并结合上述信息拟合出函数y2的解折式,并求出y2与l1的交点坐标.24.(10分)2019年度双十一在九龙坡区杨家坪的各大知名商场举行“国产家用电器惠民抢购日”优惠促销大行动,许多家用电器经销商都利用这个契机进行打折促销活动.商社电器某国产品牌经销商的某款超高清大屏幕Led 液晶电视机每套成本为4000元,在标价6000元的基础上打9折销售.(1)现在该经销商欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于30%?(2)据媒体爆料,有一些经销商先提高商品价格后再降价促销,存在欺诈行为.重百电器另一个该品牌的经销商也销售相同的超高清大屏幕Led液晶电视机,其成本、标价与商社电器的经销商一致,以前每周可售出20台,现重百的经销商先将标价提高(2m﹣12)%,再大幅降价150m元,使得这款电视机在2019年11月11日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到22400元,求m的值.(利润=售价﹣成本)五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(10分)如图,△ABC是一个锐角三角形,分别以AB、AC向外作等边三角形△ABD、△ACE,连接BE、CD 交于点F,连接AF.(1)求证:∠BFD=∠DF A=∠AFE;(2)求证:AF+BF+CF=CD.26.(12分)如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A、B,已知点A坐标(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a、b、k的值;(2)在该抛物线的对称轴上是否存在点P使得△POB为等腰三角形?若存在请求出所有的P点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M,恰使得MA=MB=MO,现要求在y轴上找出点Q使得△BQM的周长最小,请求出M的坐标和△BQM周长的最小值.2019-2020学年重庆市九龙坡区九年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【解答】解:A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选:B.2.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.3.【解答】解:移项得,x2﹣2x=1,配方得,x2﹣2x+1=1+1,(x﹣1)2=2.故选:B.4.【解答】解:抛物线y=﹣(x+2)2﹣3的顶点坐标为(﹣2,﹣3).故选:A.5.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.6.【解答】解:∵反比例函数中,k=﹣1<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1>x2>0>x3,y1>y2<0、y3>0,∴y3>y1>y2.故选:B.7.【解答】解:连接OC.∵OB=OC,∴∠B=∠BCO,同理,∠A=∠ACO∴∠ACB=∠A+∠B=40°,∴∠AOB=2∠ACB=80°.故选:C.8.【解答】解:A、抛物线开口向上,则a>0,所以A选项错误;B、对称轴在y轴右侧,x=﹣>0,则b<0,所以B选项错误;C、当x=1时,y<0,即a+b+c<0,所以C选项错误;D、当x=﹣2时,y>0,即4a﹣2b+c>0,所以D选项正确.故选:D.9.【解答】解:∵y=x2﹣2x+3=(x﹣1)2+2,点A(x1,5)B(x2,5)是函数y=x2﹣2x+3上两点,∴=1,∴x=x1+x2=2,∴y=(2﹣1)2+1=3,故选:B.10.【解答】解:把x=1代入(m﹣2)x2+4x﹣m2=0得:m﹣2+4﹣m2=0,﹣m2+m+2=0,解得:m1=2,m2=﹣1,∵(m﹣2)x2+4x﹣m2=0是一元二次方程,∴m﹣2≠0,∴m≠2,∴m=﹣1,故选:C.11.【解答】解:延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线(x>0)上,则CE=,DF=.∴BD=BF﹣DF=b﹣,AC=a﹣.又∵BD=2AC∴b﹣=2(a﹣),两边平方得:b2+﹣2=4(a2+﹣2),即b2+=4(a2+)﹣6.在直角△OCE中,OC2=OE2+CE2=a2+,同理OD2=b2+,∴4OC2﹣0D2=4(a2+)﹣(b2+)=6.故选:B.12.【解答】解:设“我”、“爱”、“祖”、“国“四个字对应的字母为a、b、c、d,则所有的可能性为:(abcd)、(abdc)、(acbd)、(acdb)、(adbc)、(adcb)、(badc)、(bacd)、(bcad)、(bcda)、(bdac)、(bdca)、(cabd)、(cadb)、(cbad)、(cbda)、(cdab)、(cdba)、(dabc)、(dacb)、(dbac)、(dbca)、(dcab)、(dcba),则都不相同的可能有:(badc)、(bcda)、(bdac)、(cadb)、(cdab)、(cdba)、(dabc)、(dcab)、(dcba),故小嘉宾中奖的概率为:=,故选:B.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.【解答】解:∵抛物线y=x2+8x+2=(x+4)2﹣14,∴该抛物线的对称轴是直线x=﹣4,故答案为:x=﹣4.14.【解答】解:设方程的另一个根为t,则4+t=4,解得t=0,即方程的另一个根为0.故答案为0.15.【解答】解:∵抛物线y=2(x﹣3)2+1,∴对称轴为直线x=3,当x>3时,y随x的增大而增大,故①正确;当x=3时,函数有最小值1,故②错误;顶点坐标为(3,1),故③错误;开口向上,故④正确;故答案为:①④.16.【解答】解:连结AD.∵直角△ABC中,∠A=90°,∠B=30°,AC=6,∴∠C=60°,AB=6,∵AD=AC,∴三角形ACD是等边三角形,∴∠CAD=60°,∴∠DAE=30°,∴图中阴影部分的面积=﹣×﹣=9﹣3π,故答案为:9﹣3π.17.【解答】解:∵在△AOB中,∠AOB=90°,AO=6,BO=8,∴AB==10,∵点D为AB的中点,∴OD=AB=5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=8,∴B1D=OB1﹣OD=3,过D作DH⊥OB于H,过B1A作B1G⊥BC于G,∴DH∥B1G,∴△ODH∽△OB1G,∴=,∵DH===3,∴,∴B1G=,∴△OBB1的面积=×8=,故答案为:.18.【解答】解:设每个大筐有n个球,甲取了x次,乙取了y次,丙取了z次,则n=9x+7=7y+4=5z+2,则n+3=9x+10=7y+7=5z+5,即n+3=9x+10=7(y+1)=5(z+1),∵x,y,z都是整数,∴n+3既是7的倍数,也是5的倍数,∴n+3是35的倍数,设n+3=35k,k为正整数,∴35k=9x+10,x===4k﹣1﹣,∵k和x都是正整数,∴k+1是9的倍数,∴k最小值为8,代入x===30,代入n=9x+7=7y+4=5z+2得y=39,z=55,n=277,∴x=30符合题意,∴甲至少取了30次.故答案为:30.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.【解答】解:(1)∵(x﹣3)(x﹣3+2x)=0,∴x﹣3=0或x﹣3+2x=0,解得:x1=3,x2=1;(2)∵a=3、b=﹣6、c=1,∴b2﹣4ac=(﹣6)2﹣4×3×1=24>0,∴原方程有根,则x===.20.【解答】解:设三个女生记为b1,b2,b3,两个男生记为g1,g2,列表法如下:b1b2b3g1g2b1b2b1b3b1g1b1g2b1b2b1b2b3b2g1b2g2b2b3b1b3b2b3g1b3g2b3g1b1g1b2g1b3g1g2g1g2b1g2b2g2b3g2g1g2有且只有以上20种情形,它们发生的机会均等,占其中12种情形,则P(一男一女)==.四、解答题:(本大题4个小题,21题10分,22题10分,23题10分,24题10分共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF;(2)解:∵AE=3,∴CM=AE=3,BE=9﹣3=6.设CF=x,则BF=9﹣x,EF=FM=3+x.在Rt△EBF中.有62+(9﹣x)2=(3+x)2解得:x=4.5,∴EF=3+x=7.5.22.【解答】解:(1)44不是一个“n喜数”,因为44≠n(4+4)72是一个“8喜数”,因为72=8×(2+7)(2)设存在“7喜数”,设其个位数字为a,十位数字为b,(a,b为1到9的自然数),由定义可知:10b+a=7(a+b)化简得:b=2a,因为a,b为1到9的自然数,∴a=1,b=2;a=2,b=4;a=3,b=6;a=4,b=8.四种情况,∴“7喜数”有4个:21、42、63、84.23.【解答】解:(1)设直线l1的解析式为y=kx+b,把(0,﹣3),(6,0)代入得,解得,所以直线l1的解析式为y=x﹣3;(2)图象如图:(3)从图表中找出抛物线的顶点为:(﹣2,2)设函数y2的解析式为:y=a(x+2)2+2,把(0,1)代入得,1=4a+2,解得a=﹣,所以y2=﹣(x+2)2+2,即y=﹣x2﹣x+1,解方程组得或,所以y2与l1的交点坐标交点为(2,﹣2)和(﹣8,﹣7).24.【解答】解:(1)设降价x元,列不等式(6000×0.9﹣x)≥4000(1+30%)解得:x≤200答:最多降价200元,才能使得利润不低于30%;(2)根据题意得:整理得:3m2﹣8m﹣640=0解得:m1=16,m2=﹣(舍去)∴m=16答:m的值为16.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.【解答】解:(1)∵△DAB、△EAC均为等边三角形,∴DA=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB=∠EAC+∠CAB,即:∠DAC=∠BAE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,DC=BE,∴∠DFB=∠DAB=60°,∴∠DFE=180°﹣∠DFB=120°,作AM⊥DC于M,AN⊥BE于N,∵△DAC≌△BAE,∴S△DAC=S△ABE,∴×DC×AM=BE×AN,∴AM=AN,又AM⊥DC,AN⊥BE,∴AF平分∠DFE,∴∠BFD=∠DF A=∠AFE=60°;(2)在FD上截取FH使得FH=AF∵∠DF A=60°,∴△AHF为等边三角形∴AH=AF,∠AHF=60°,∠DHA=180°﹣∠AHF=120°,∠BF A=∠BFD+∠AFE=60°+60°=120°,∵∠DHA=∠BF A,∠ADH=∠ABF,DA=BA,∴△DAH≌△BAF(AAS)∴BF=DH,∴CD=CF+FH+DH,∴CD=CF+AF+BF26.【解答】解:(1)将A(1,4)代入y=,得,k=4,∴双曲线解析式为y=,设B(m,)(m<0),连接AB,交x轴于点C,设直线AB的解析式为y=kx+b,将点A(1,4),B(m,)代入,得,解得,,∴直线AB的解析式为y=﹣x+,当y=0时,x=m+1,∴C(m+1,0),OC=﹣m﹣1,∴S△AOB=OC•(y A﹣y B)=(﹣m﹣1)(4﹣),∵△AOB的面积为3,∴(﹣m﹣1)(4﹣)=3,整理,得2m2+3m﹣2=0,解得,m1=(舍去),m2=﹣2,∴B(﹣2,﹣2),将A(1,4),B(﹣2,﹣2)代入y=ax2+bx,得,,解得,,∴抛物线的解析式为y=x2+3x,∴a=1,b=3,k=4;(2)在抛物线y=x2+3x中,对称轴为x=﹣,设P(﹣,y),∵O(0,0),B(﹣2,﹣2),∴PO2=+y2,OB2=8,PB2=+(y+2)2,∵△POB为等腰三角形,∴①PO2=OB2时,+y2=8,解得,y=±,∴P1(﹣,﹣),P2(﹣,);②PB2=OB2时,+(y+2)2=8,解得,y=﹣2±,∴P3(﹣,﹣2﹣),P4(﹣,﹣2+);③PB2=OP2时,+(y+2)2=+y2,解得,y=﹣,∴P5(﹣,﹣);综上所述,点P的坐标为P1(﹣,﹣),P2(﹣,),P3(﹣,﹣2﹣),P4(﹣,﹣2+),P5(﹣,﹣);(3)设M(x,y),∵A(1,4),B(﹣2,﹣2),O(0,0),∴MO2=x2+y2,MA2=(x﹣1)2+(y﹣4)2,MB2=(x+2)2+(y+2)2,又∵MO=MA=MB,∴,解得,,∴M(﹣,),作B关于y轴的对称点B'(2,﹣2),连接B'M交y轴于Q,则此时MQ+BQ的值最小,理由是两点之间,线段最短,又∵MB的长度为定值,∴此时△BQM的周长最小,C△BQM=MB+MQ+BQ=MB+MB'==,∴M的坐标为(﹣,),△BQM周长的最小值为.。
2020-2021学年重庆市九龙坡区育才中学九年级(上)第二次定时练习数学试卷 (解析版)

2020-2021学年重庆市九龙坡区育才中学九年级(上)第二次定时练习数学试卷一、选择题1.(4分)下列四个数中,比﹣2小的数是()A.0B.1C.2D.﹣32.(4分)截止到8月21日,全球新冠肺炎确诊人数约为2253万,其中数据2253用科学记数法表示为()A.2.253×102B.2.253×103C.22.53×102D.22.53×103 3.(4分)函数中自变量x的取值范围是()A.x≠﹣1B.x>﹣1C.x≠1D.x≠04.(4分)如图,AB是⊙O的直径,点D在⊙O上,若∠AOC=120°,则∠D的度数是()A.20°B.30°C.40°D.45°5.(4分)下列计算正确的是()A.+=B.2+=2C.×=D.2﹣=6.(4分)将若干个小菱形按如图的规律排列:第1个图形有4个小菱形,第2个图形有7个小菱形,第3个图形有10个小菱形,…,则第8个图形有()个小菱形.A.24B.25C.26D.277.(4分)如图,在△ABC中,以C为中心,将△ABC顺时针旋转34°得到△DEC,边ED,AC相交于点F,若∠A=30°,则∠EFC的度数为()A.60°B.64°C.66°D.68°8.(4分)已知x+y=,xy=,则x2y+xy2的值为()A.2B.9C.3D.69.(4分)下列命题正确的是()A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.四条边相等的四边形是菱形D.四个角相等的四边形是菱形10.(4分)如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A 坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是()A.二次函数的最大值为a﹣b+cB.a+b+c>0C.b2﹣4ac>0D.2a+b=011.(4分)若关于x的一元一次不等式组的解集为x<﹣4,且关于y的分式方程﹣=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣2B.2C.3D.612.(4分)如图,在▱ABCD中,BC=3,CD=4,点E是CD边上的中点,将△BCE沿BE翻折得△BGE,连结AE,A、G、E在同一直线上,则点G到AB的距离为()A.B.C.D.二、填空题(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣2)0+|﹣4|=.14.(4分)一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是.15.(4分)从﹣2、﹣1、3、6中随机抽取一个数记为a,再从剩下的三个数中任取一个记为b,则ab<0的概率是.16.(4分)如图,扇形的圆心角为90°,半径OC=4,∠AOC=30°,CD⊥OB于点D,则阴影部分的面积是.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.(10分)计算:(1)(x+y)2+x(x﹣2y);(2)(1﹣)÷.18.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c 根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?19.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.20.(10分)中国古贤常说万物皆自然.而古希腊学者说万物皆数.小学我们就接触了自然数,在数的学习过程中,我们会对其中一些具有某种特性的自然数进行研究,比如奇数、偶数、质数、合数等,今天我们来研究另一种特殊的自然数﹣﹣“欢喜数”.定义:对于一个各数位不为零的自然数,如果它正好等于各数位数字的和的整数倍,我们就说这个自然数是一个“欢喜数”.例如:24是一个“欢喜数”,因为24=4×(2+4),125就不是一个“欢喜数”因为1+2+5=8,125不是8的整数倍.(1)判断28和135是否是“欢喜数”?请说明理由;(2)有一类“欢喜数”,它等于各数位数字之和的4倍,求所有这种“欢喜数”.21.(10分)某班数学兴趣小组对函数y=|x2﹣2x|的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围取足全体实数,x与y的几组对应值列表如下:其中m=.x……﹣1﹣0.500.51 1.52 2.53……y……3m00.7510.750 1.253……(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出函数的一条性质;(4)进一步探究函数图象解决问题:①方程|x2﹣2x|=有个实数根;②在(2)问的平面直角坐标系中画出直线y=﹣x+1,根据图象写出方程|x2﹣2x|=﹣x+1的一个正数根约为.(精确到0.1)22.(10分)十九大以来,为全面推进新农村建设,积极改革农村产业结构,增加农民收入,致富村村委会多方努力,共获得流转耕地1000亩,全部用于种植纽橙和蔬菜,其中种植蔬菜的面积不少于种植纽橙面积的4倍.(1)求该村种植蔬菜的面积至少为多少亩?(2)今年村里按(1)中蔬菜种植面积的最小值种植蔬菜,纽橙和蔬菜上市后,纽橙每亩获利800元,蔬菜每亩获利600元;明年在保持纽橙种植面积不变的情况下,纽橙亩产量将上涨,预计每亩利润将增加3a%;同时利用新增流转耕地,使蔬菜种植面积扩大α%,并改良蔬菜种植结构,蔬菜每亩利润将增加a%这样,明年纽橙和蔬菜的总利润将比今年的总利润增加a%.求a的值.参考答案一、选择题(木大题共12小题,每小题4分,共48分。
《试卷3份集锦》重庆市2020-2021年九年级上学期期末检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4m AO =, 1.6m AB =,1m CO =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m【答案】C 【解析】分析:根据题意得△AOB ∽△COD ,根据相似三角形的性质可求出CD 的长.详解:∵AB BD ⊥,CD BD ⊥,∴∠ABO=∠CDO,∵∠AOB=∠COD,∴△AOB ∽△COD , ∴AO AB CO CD= ∵AO=4m ,AB=1.6m ,CO=1m , ∴· 1.610.44AB CO CD m AO ⨯===. 故选C.点睛:本题考查了相似三角形的判定与性质,正确得出△AOB ∽△COD 是解题关键.2.把方程2830x x +-=化成2()x m n +=的形式,则,m n 的值分别是( )A .4,13B .-4,19C .-4,13D .4,19 【答案】D【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】解:∵x 2+8x-3=0,∴x 2+8x=3,∴x 2+8x+16=3+16,∴(x+4)2=19,∴m=4,n=19,故选:D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点【答案】D【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【详解】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知线段垂直平分线上的点到线段两个端点距离相等.4.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【答案】A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选A .【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.5.如图,在半径为13的O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .210C .211D .3【答案】C 【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出222OG OB BG =-=,证出EOG ∆是等腰直角三角形,得出45,22OEG OE OG ∠=︒==30OEF ∠=︒,由直角三角形的性质得出122OF OE ==11DF = 【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,221392OG OB BG -=-=,∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,222OE OG == ∵75DEB ∠=︒,∴30OEF ∠=︒, ∴122OF OE == 在Rt ODF ∆中,2213211DF OD OF =-=-=∴2211CD DF ==故选C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.6.如图,⊙O 外接于△ABC ,AD 为⊙O 的直径,∠ABC=30°,则∠CAD=( )A .30°B .40°C .50°D .60°【答案】D 【分析】首先由∠ABC=30°,推出∠ADC=30°,然后根据AD 为⊙O 的直径,推出∠DCA=90°,最后根据直角三角形的性质即可推出∠CAD=90°-∠ADC ,通过计算即可求出结果.【详解】解:∵∠ABC=30°,∴∠ADC=30°,∵AD 是⊙O 的直径,∴∠ACD=90°,∴∠CAD=90°-30°=60°.故选D .【点睛】本题主要考查圆周角定理,直角三角形的性质,角的计算,关键在于通过相关的性质定理推出∠ADC 和∠DCA 的度数.7.一个凸多边形共有 20 条对角线,它是( )边形A .6B .7C .8D .9 【答案】C 【分析】根据多边形的对角线的条数公式(3)2n n -列式进行计算即可求解. 【详解】解:设该多边形的边数为n ,由题意得:(3)202n n -=, 解得:128,5n n ==-(舍去)故选:C .【点睛】本题主要考查了多边形的对角线公式,熟记公式是解题的关键.8.如图,在ABC 中,AB BC =,90ABC ∠=︒,点D 、E 、F 分别在边AC 、BC 、AB 上,且CDE △与FDE 关于直线DE 对称.若2AF BF =,72AD =,则CD =( ).A .3B .5C .32D .52【答案】D 【分析】过点F 作FH ⊥AD ,垂足为点H ,设BF a =,根据勾股定理求出AC ,FH ,AH ,设EC x =,根据轴对称的性质知3BE a x =-,在Rt △BFE 中运用勾股定理求出x ,通过证明FHDEBF ∆∆,求出DH 的长,根据AD AH HD =+求出a 的值,进而求解.【详解】过点F 作FH ⊥AD ,垂足为点H ,设BF a =,由题意知,2AF a =,3BC AB a ==, 由勾股定理知,32AC a =,2FH AH a ==, ∵CDE ∆与FDE ∆关于直线DE 对称,∴EC FE =,45DFE DCE ︒∠=∠=,设EC x =,则3BE a x =-,在Rt △BFE 中,222(3)a a x x +-=, 解得,53x a =,即53EC a =,43BE a =, ∵45DFE DCE A AFH ︒∠=∠=∠=∠=,∴90DFH BFE ︒∠+∠=,90BEF BFE ︒∠+∠=,∴DFH BEF ∠=∠,∵90DHF FBE ︒∠+∠=,∴FHDEBF ∆∆, ∴DH FH BF BE=, ∴324DH a =,∵322724AD AH HD a a =+=+=, ∴解得,4a =, ∴1227252CD AC AD =-=-=,故选D .【点睛】本题考查了轴对称图形的性质,相似三角形的判定与性质,勾股定理,等腰直角三角形的性质等,巧作辅助线证明FHD EBF ∆∆是解题的关键.9.抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac -b 2<0;②2a -b =0;③a +b +c <0;④点(x 1,y 1),(x 2,y 2)在抛物线上,若x 1<x 2,则y 1<y 2 .正确结论的个数是( )A .1B .2C .3D .4【答案】C 【分析】根据二次函数图像与b 2-4ac 的关系、对称轴公式、点的坐标及增减性逐一判断即可.【详解】解:①由图可知,将抛物线补全,抛物线y =ax 2+bx +c(a≠0)与x 轴有两个交点∴b 2-4ac >0∴4ac -b 2<0,故①正确;②∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1∴12b a-=- 解得:2b a =∴2a -b =0,故②正确;③∵抛物线y =ax 2+bx +c (a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间, ∴此抛物线与x 轴的另一个交点在(0,0)和(1,0)之间∵在对称轴的右侧,函数y 随x 增大而减小∴当x=1时,y<0,∴将x=1代入解析式中,得:y=a+b+c<0故③正确;④若点(x1,y1),(x2,y2)在对称轴右侧时,函数y随x增大而减小即若x1<x2,则y1>y2故④错误;故选C.【点睛】此题考查的是二次函数图像及性质,掌握二次函数图像及性质和各系数之间的关系是解决此题的关键. 10.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则sin∠BDE的值是()A.15B.14C.13D.24【答案】C【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=12BC=12AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求sin∠BDE的值.【详解】∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=12BC=12AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴AF AD=EF BE=2∴AF=2EF,∴AE=3EF=DE,∴ sin∠BDE=EF1= DE3,故选C.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.11.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为12,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【答案】D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为12,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.12.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数23.54.9h t t=-(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.1.71s B.1.71s C.1.63s D.1.36s【答案】D【分析】找重心最高点,就是要求这个二次函数的顶点,应该把一般式化成顶点式后,直接解答.【详解】解:h=3.5t-4.9t2=-4.9(t-514)2+58,∵-4.9<1∴当t=514≈1.36s 时,h 最大. 故选D.【点睛】此题主要考查了二次函数的应用,根据题意得出顶点式在解题中的作用是解题关键.二、填空题(本题包括8个小题)13.在△ABC 中,AB=AC=5,BC=8,若∠BPC=12∠BAC ,tan ∠BPC=_______________.【答案】43【详解】试题分析:如图,过点A 作AH ⊥BC 于点H , ∵AB=AC ,∴AH 平分∠BAC ,且BH=12BC=4. 又∵∠BPC=12∠BAC ,∴∠BAH=∠BPC. ∴tan ∠BPC=tan ∠BAH.在Rt △ABH 中,AB=5,BH=4,∴AH=1.∴tan ∠BAH=43=BH AH . ∴tan ∠BPC=43.考点:1.等腰三角形的性质;2.锐角三角函数定义;1.转化思想的应用.14.已知一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中有一个交点的横坐标是2,则k 的值为_____.【答案】1.【解析】把x=2代入一次函数的解析式,即可求得交点坐标,然后利用待定系数法即可求得k 的值.【详解】在y=x+1中,令x=2,解得y=3,则交点坐标是:(2,3),代入y=k x得:k=1.故答案是:1.【点睛】本题考查了用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.15.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.【答案】1【分析】利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则2360n RSπ=扇由此构建方程即可得出答案.【详解】解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=26 360nπ⋅,解得:n=1.∴该扇形的圆心角度数为:1°.故答案为:1.【点睛】此题考查了扇形面积的计算,熟练掌握公式是解此题的关键.16.若3a=4b(b≠0),则a bb-=_____.【答案】1 3【分析】依据3a=4b,即可得到a=43b,代入代数式进行计算即可.【详解】解:∵3a=4b,∴a=43 b,∴a bb-=43b bb-=13bb=13.故答案为:13.【点睛】本题主要考查了比例的性质,求出a=43b是解题的关键.17.某农科所在相同条件下做某作物种子发芽率的试验,结果如下表所示:种子个数100 200 300 400 500 600 700 800 900 1000发芽种子个数94 187 282 338 435 530 621 781 814 901发芽种子频率0.940 0.935 0.940 0.845 0.870 0.883 0.891 0.898 0.904 0.901根据频率的稳定性,估计该作物种子发芽的概率为__________(结果保留小数点后一位).【答案】0.9【分析】选一个表格中发芽种子频率比较按近的数,如0.904、0.901等都可以.【详解】解:根据题意,由频率估计概率,则估计该作物种子发芽的概率为:0.9;故答案为:0.9;【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.18.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=,215x=舍去),(221565k x∴==+=+,故答案为625+三、解答题(本题包括8个小题)19.已知,关于x的方程(m﹣1)x2+2x﹣2=0为一元二次方程,且有两个不相等的实数根,求m的取值范围. 【答案】12m >且1m ≠ 【分析】由题意根据判别式的意义得到=22﹣4(m ﹣1)×(﹣2)>0,然后解不等式即可. 【详解】解:根据题意得=22﹣4(m ﹣1)×(﹣2)>0且m ﹣1≠0, 解得12m >且m≠1, 故m 的取值范围是12m >且m≠1. 【点睛】本题考查一元二次方程的定义以及一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 20.平行四边形ABCD 中,点E 为BC 上一点,连接DE 交对角线AC 于点F ,点G 为DE 上一点,AH DE ⊥于H ,2BC AG =且ACE GAC ∠=∠,点M 为AD 的中点,连接MF ;若75DFC ∠=︒.(1)求MFD ∠的度数;(2)求证:3GF GH +=【答案】(1)30° (2)证明见解析【分析】(1)通过平行四边形的性质、中点的性质、平行线的性质去证明()AFG AFM SAS ≅,可得,75FG FM AFG AFM DFC ︒=∠=∠=∠=,再根据180()MFD AFG AFM ︒∠=-∠+∠求解即可; (2)延长FE 至点N ,使GN FG =,连接AN ,通过证明()AGN DMF SAS ≅,可得30ANH DFM ︒∠=∠=,再根据特殊角的锐角三角函数值,即可得证3GN GH GF GH +=+=.【详解】(1)∵四边形ABCD 为平行四边形AD BC ∴=2BC AG =2AD AG ∴=∵M 为AD 的中点22AD AM DM ∴==AG AM DM ∴==//AD BCACE CAM ∴∠=∠即ACE FAM ∠=∠ACE GAC ∠=∠CAG FAM ∴∠=∠即FAG FAM ∠=∠AF AF =()AFG AFM SAS ∴≅,75FG FM AFG AFM DFC ︒∴=∠=∠=∠=180()30MFD AFG AFM ︒︒∴∠=-∠+∠=;(2)延长FE 至点N ,使GN FG =,连接AN ,由(1)知,,FG FM AGF AMF =∠=∠,GN FM AGN CMF ∴=∠=∠AG DM =()AGN DMF SAS ∴≅30ANH DFM ︒∴∠=∠=AH DE ⊥ 3HN AH ∴= 3GN GH GF GH AH ∴+=+=.【点睛】本题考查了平行四边形的综合问题,掌握平行四边形的性质、平行线的性质、全等三角形的性质以及判定定理、特殊三角函数值是解题的关键.21.如图,在平面直角坐标系中,直线111:2y x =与直线2l ,交点A 的横坐标为2,将直线1l ,沿y 轴向下平移4个单位长度,得到直线3l ,直线3l ,与y 轴交于点B ,与直线2l ,交于点C ,点C 的纵坐标为2-,直线2l ;与y 轴交于点D .(1)求直线2l 的解析式;(2)求BDC ∆的面积【答案】(1)y=﹣32x+4;(2)1【分析】(1)把x=2代入y=12x,得y=1,求出A(2,1).根据平移规律得出直线l3的解析式为y=12x﹣4,求出B(0,﹣4)、C(4,﹣2).设直线l2的解析式为y=kx+b,将A、C两点的坐标代入,利用待定系数法即可求出直线l2的解析式;(2)根据直线l2的解析式求出D(0,4),得出BD=8,再利用三角形的面积公式即可求出△BDC的面积.【详解】解:如图:(1)把x=2代入y=12x,得y=1,∴A的坐标为(2,1).∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,∴直线l3的解析式为y=12x﹣4,∴x=0时,y=﹣4,∴B(0,﹣4).将y=﹣2代入y=12x﹣4,得x=4,∴点C的坐标为(4,﹣2).设直线l2的解析式为y=kx+b,∵直线l2过A(2,1)、C(4,﹣2),∴2142k bk b+=⎧⎨+=-⎩,解得324kb⎧=-⎪⎨⎪=⎩,∴直线l2的解析式为y=﹣32x+4;(2)∵y=﹣32x+4,∴x=0时,y=4,∴D(0,4).∵B(0,﹣4),∴BD=8,∴△BDC的面积=12×8×4=1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求直线的解析式,一次函数图象上点的坐标特征,三角形的面积,正确求出求出直线l2的解析式是解题的关键.22.如图,AB是⊙O的直径,点C、D在⊙O上,AD与BC相交于点E.连接BD,作∠BDF=∠BAD,DF 与AB的延长线相交于点F.(1)求证:DF是⊙O的切线;(2)若DF∥BC,求证:AD平分∠BAC;(3)在(2)的条件下,若AB=10,BD=6,求CE的长.【答案】(1)证明见解析;(2)证明见解析;(3)21 10.【分析】(1)如图,连结OD,只需推知OD⊥DF即可证得结论;(2)根据平行线的性质得到∠FDB=∠CBD,由圆周角的性质可得∠CAD=∠BAD=∠CBD=∠BDF,即AD 平分∠BAC;(3)由勾股定理可求AD的长,通过△BDE∽△ADB,可得DE BDBD AD,可求DE=92,AE=72,由锐角三角函数可求CE的长.【详解】(1)连接OD,CD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∵OA=OD,∴∠BAD=∠ADO,∵∠BDF=∠BAD,∴∠BDF+∠ODB=90°,∴∠ODF=90°,∴OD⊥DF,∴DF是⊙O的切线;(2)∵DF∥BC,∴∠FDB=∠CBD,∵CD CD=,∴∠CAD=∠CBD,且∠BDF=∠BAD,∴∠CAD=∠BAD=∠CBD=∠BDF,∴AD平分∠BAC;(3)∵AB=10,BD=6,∴AD=8AD==,∵∠CBD=∠BAD,∠ADB=∠BDE=90°,∴△BDE∽△ADB,∴DE BD BD AD=,∴6 68 DE=,∴DE=92,∴AE=AD﹣DE=72,∵∠CAD=∠BAD,∴sin∠CAD=sin∠BAD∴CE BD AE AB=∴6 710 2CE=∴CE=21 10【点睛】本题考查了圆的综合问题,掌握平行线的性质、圆周角的性质、勾股定理、相似三角形的性质以及判定定理、锐角三角函数的定义是解题的关键.23.计算:()1 46023045cos sin tan -︒--︒+︒.【答案】2【分析】首先计算各锐角三角函数值,然后进行计算即可.【详解】原式11142122-=⨯--⨯+ =2-1+1 2=【点睛】此题主要考查锐角三角函数的相关计算,牢记锐角三角函数值是解题关键.24.欢欢放学回家看到桌上有三个礼包,是爸爸送给欢欢和姐姐的礼物,其中A 礼包是芭比娃娃,B 和C 礼包都是智能对话机器人.这些礼包用外表一样的包装盒装着,看不到里面的礼物.(1)欢欢随机地从桌上取出一个礼包,取出的是芭比娃娃的概率是多少?(2)请用树状图或列表法表示欢欢随机地从桌上取出两个礼包的所有可能结果,并求取出的两个礼包都是智能对话机器人的概率.【答案】(1)13;(2)13【分析】(1)根据一共三个礼包,芭比娃娃的礼包占一种即可计算概率;(2)列出所有可能的结果,再找到符合要求的个数,即可得到概率.【详解】(1)根据题意,可知取出的是芭比娃娃的概率是13. (2)结果:(,)A B ,(A,C),(,)B A ,(,)B C ,(C,A),(,)C B ,由图可知,共有6种等可能的结果,而符合要求的是(,)B C ,(,)C B 两种,∴取出的两个礼包都是智能机器人的概率是2163P ==. 【点睛】本题考查了列表法或树状法求概率,正确列出所有可能结果是解题的关键.25.如图,在四边形ABCD 中,//AD BC ,B ACB ∠=∠,点,E F 分别在,AB BC 上,且EFB D ∠=∠.(1)求证:EFB ∆∽CDA ∆;(2)若20AB =,5AD =,4BF =,求EB 的长.【答案】 (1)证明见解析;(2)16.【解析】(1)根据相似三角形的判定即可求出答案.(2)根据△EFB ∽△CDA ,利用相似三角形的性质即可求出EB 的长度.【详解】(1)∵AB AC =,∴B ACB ∠=∠,∵//AD BC ,∴DAC ACB ∠=∠,∴B DAC ∠=∠,∵D EFB ∠=∠,∴EFB ∆∽CDA ∆;(2)∵EFB ∆∽CDA ∆, ∴BE BFAC AD =,∵20AB AC ==,5AD =,4BF =,∴16BE =.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定.26.如图,二次函数y =ax 2+bx ﹣3的图象与x 轴交于A 、B 与y 轴交于点C ,顶点坐标为(1,﹣4)(1)求二次函数解析式;(2)该二次函数图象上是否存在点M ,使S △MAB =S △CAB ,若存在,求出点M 的坐标.【答案】(1)y =x 2﹣2x ﹣3;(2存在,点M 的坐标为(,3),(1,3)或(2,﹣3)【分析】(1)二次函数y =ax 2+bx ﹣3的顶点坐标为(1,﹣4),可以求得a 、b 的值,从而可以得到该函数的解析式;(2)根据(1)中求得的函数解析式可以得到点C 的坐标,再根据S △MAB =S △CAB ,即可得到点M 的纵坐标的绝对值等于点C 的纵坐标的绝对值,从而可以求得点M 的坐标.【详解】解:(1)∵二次函数y =ax 2+bx ﹣3的顶点坐标为(1,﹣4), ∴1234b a a b ⎧-=⎪⎨⎪+-=-⎩,得12a b =⎧⎨=-⎩, ∴该函数的解析式为y =x 2﹣2x ﹣3;(2)该二次函数图象上存在点M ,使S △MAB =S △CAB ,∵y =x 2﹣2x ﹣3=(x ﹣3)(x+1),∴当x =0时,y =﹣3,当y =0时,x =3或x =﹣1,∵二次函数y =ax 2+bx ﹣3的图象与x 轴交于A 、B 与y 轴交于点C ,∴点A 的坐标为(﹣1,0),点B 的坐标为(3,0),点C 的坐标为(0,﹣3),∵S △MAB =S △CAB ,点M 在抛物线上,∴点M 的纵坐标是3或﹣3,当y =3时,3=x 2﹣2x ﹣3,得x 1=,x 2=1;当y =﹣3时,﹣3=x 2﹣2x ﹣3,得x 3=0或x 4=2;∴点M 的坐标为(,3),(13)或(2,﹣3).故答案为:(1)y =x 2﹣2x ﹣3;(2)存在,点M 的坐标为(,3),(1,3)或(2,﹣3).【点睛】本题考查了二次函数与方程,几何知识的综合运用. 将函数知识与方程,几何知识有机地结合起来,这类试题难度较大. 解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质,定理和二次函数的知识.27.(1)若正整数x 、y ,满足2224x y -=,求x 、y 的值;(2)已知如图,在ABC 中,90ACB ∠=︒,4AC BC ==,点D 在边BC 上移动(不与点B ,点C 重合),将BDE 沿着直线DE 翻折,点B 落在射线BC 上点F 处,当AEF 为一个含30内角的直角三角形时,试求BD 的长度.【答案】(1)75x y =⎧⎨=⎩或51x y =⎧⎨=⎩;(2)232BD =-或623-. 【分析】(1)根据平方差公式因式分解,根据题意可得122x y x y +=⎧⎨-=⎩或64x y x y +=⎧⎨-=⎩; (2)根据翻折性质可证∠AEF=180°-∠BEF =90°,分两种情况:①如图a ,当∠EAF=30°时,设BD=x ,根据勾股定理222AE EF AF +=,即222(2)(422)(22)x x x +-=;②如图b ,当∠AFE=30°时,设BD=x ,根据勾股定理,222AE EF AF +=,222(2)(422)(8222)x x x +-=-;【详解】(1)解:∵22()()24x y x y x y -=+-=>0,且x ,y 均为正整数, ∴x y +与x y -均为正整数,且x y +>x y -,x y +与x y -奇偶性相同. 又∵24=124=212=38=46⨯⨯⨯⨯ ∴122x y x y +=⎧⎨-=⎩或64x y x y +=⎧⎨-=⎩解得:75x y =⎧⎨=⎩或51x y =⎧⎨=⎩. (2)解:∵∠ACB=90°,AC=BC ∴∠B=∠BAC=45°又∵将△BDE 沿着直线DE 翻折,点B 落在射线BC 上点F 处∴∠BDE=∠EDF=90°,且△BDE ≌△FDE∴∠BED=∠DEF=45°,∠BEF=90°,BE=EF∴∠AEF=180°-∠BEF =90°①如图a ,当∠EAF=30°时,设BD=x ,则:BD=DF=DE=x ,2BE EF x ==,422AE x =,∵∠EAF=30°,∴AF=2x ,在Rt △AEF 中,222AE EF AF +=, ∴222(2)(422)(22)x x x +-=,解得232x =-. ∴232BD =-.②如图b ,当∠AFE=30°时,设BD=x ,则:同理①可得:2BE EF x ==,422AE x =∵∠AFE =30°,∴AF=8222x在Rt △AEF 中,222AE EF AF +=, ∴2222)(422)(8222)x x x +=,解得623x =-.∴BD =623-.综上所述,232BD =或623-.【点睛】考核知识点:因式分解运用,轴对称,勾股定理.分析翻折过程,分类讨论情况是关键;运用因式分解降次是要点.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB 为⊙O 的直径,弦CD AB ⊥于E ,则下面结论中不一定成立的是( )A .CE DE =B .BC BD = C .BAC BAD ∠=∠D .OE BE =【答案】D【分析】根据垂径定理分析即可. 【详解】根据垂径定理和等弧对等弦,得A. B. C 正确,只有D 错误.故选D.【点睛】本题考查了垂径定理,熟练掌握垂直于弦(非直径)的直径平分弦且平分这条弦所对的两条弧是解题的关键. 2.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( )A .摸出黑球的可能性最小B .不可能摸出白球C .一定能摸出红球D .摸出红球的可能性最大 【答案】D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球, ∴摸出黑球的概率是223, 摸出白球的概率是123, 摸出红球的概率是2023, ∵123<223<2023, ∴从中任意摸出1个球,摸出红球的可能性最大;故选:D .【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE EF⊥,则下列结论正确的有( )①30BAE∠=②2CE AB CF=③13CF CD=④ABE∆∽AEF∆A.1个B.2个C.3个D.4个【答案】B【分析】由题中条件可得△CEF∽△BAE,进而得出对应线段成比例,进而又可得出△ABE∽△AEF,即可得出题中结论.【详解】∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴CE CF AB BE∵E是BC的中点,∴BE=CE∴CE2=AB•CF,∴②正确;∵BE=CE=12 BC,∴CF=12BE=14CD,故③错误;∵1 tan2BEBAEAB∠==∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴5,5,AF=5a,∴2525255555AE a BEAF a EF a====∴AE BE AF EF= ∴△ABE ∽△AEF ,故④正确.∴②与④正确.∴正确结论的个数有2个.故选:B .【点睛】此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用. 4.已知三点()()()1233, 1.5,,,,0y y y 在抛物线()222y x m =--+上,则123,,y y y 的大小关系正确的是( )A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y <<【答案】B【分析】先确定抛物线的对称轴,然后根据抛物线的对称性求出点()13,y 关于对称轴对称的点的坐标,再利用二次函数的增减性判断即可.【详解】解:∵抛物线的对称轴是直线x=2,∴点()13,y 关于对称轴对称的点的坐标是()11,y , ∵当x<2时,y 随x 的增大而增大,且0<1<1.5,∴312y y y <<.故选:B.【点睛】本题考查了二次函数的性质,属于基本题型,熟练掌握二次函数的性质是解答的关键.5.已知一元二次方程x 2+kx ﹣5=0有一个根为1,k 的值为( )A .﹣2B .2C .﹣4D .4 【答案】D【分析】根据一元二次方程的解的定义,把x =1代入方程得到关于k 的一次方程1﹣5+k =0,然后解一次方程即可.【详解】解:把x =1代入方程得1+k ﹣5=0,解得k =1.故选:D .【点睛】本题考查一元二次方程的解. 熟记一元二次方程解得定义是解决此题的关键.6.如图所示的几何体的主视图为( )A .B .C .D .【答案】B 【分析】根据三视图的定义判断即可.【详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.故选B.【点睛】本题考查了三视图知识.7.如图,抛物线y =ax 2+bx+c (a≠0)与x 轴交于点A (1,0)和B ,与y 轴的正半轴交于点C ,下列结论:①abc >0;②4a ﹣2b+c >0;③2a ﹣b >0,其中正确的个数为( )A .0个B .1个C .2个D .3个【答案】C 【分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,进而判断①;根据x=﹣2时,y >1可判断②;根据对称轴x=﹣1求出2a 与b 的关系,进而判断③.【详解】①由抛物线开口向下知a <1,∵对称轴位于y 轴的左侧,∴a 、b 同号,即ab >1.∵抛物线与y 轴交于正半轴,∴c >1,∴abc >1;故①正确;②如图,当x=﹣2时,y >1,则4a ﹣2b+c >1,故②正确;③∵对称轴为x=﹣2b a>﹣1,∴2a <b ,即2a ﹣b <1,故③错误;故选:C .【点睛】本题主要考查二次函数的图象和性质,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.8.抛物线2-2(3)5y x =++的顶点坐标是( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)【答案】C【解析】由题意根据二次函数y=a (x-h )2+k (a ≠0)的顶点坐标是(h ,k ),求出顶点坐标即可.【详解】解:∵2-2(3)5y x =++; ∴顶点坐标为:(-3,5).故选:C .【点睛】本题考查二次函数的性质和二次函数的顶点式.熟悉二次函数的顶点式方程y=a (x-h )2+k 中的h 、k 所表示的意义是解决问题的关键.9.如图,PA .PB 分别与O 相切于A .B 两点,点C 为O 上一点,连接AC .BC ,若50P ∠=︒,则ACB ∠的度数为( ).A .60︒;B .75︒;C .70︒;D .65︒.【答案】D 【解析】连接OA .OB ,由切线的性质可知90OAP OBP ∠=∠=︒,由四边形内角和可求出AOB ∠的度数,根据圆周角定理(一条弧所对的圆周角等于它所对的圆心角的一半)可知ACB ∠的度数.【详解】解:连接OA .OB ,∵PA .PB 分别与O 相切于A .B 两点,∴OA PA ⊥,OB PB ⊥,∴90OAP OBP ∠=∠=︒,∴180********AOB P ∠=︒-∠=︒-︒=︒, ∴111306522ACB AOB ︒︒∠=∠=⨯=. 故选:D .【点睛】本题主要考查了圆的切线性质及圆周角定理,灵活应用切线性质及圆周角定理是解题的关键.10.常胜村2017年的人均收入为12000元,2019年的人均收入为15000元,求人均收入的年增长率.若设人均收入的年增长率为x ,根据题意列方程为( )A .()212000115000x +=B .()120001215000x +=C .()215000112000x -=D .()212000115000x +=【答案】D【分析】根据“每年的人均收入=上一年的人均收入⨯(1+年增长率)”即可得.【详解】由题意得:2018年的人均收入为12000(1)x +元2019年的人均收入为212000(1)(1)12000(1)x x x ++=+元则212000(1)15000x +=故选:D .【点睛】本题考查了列一元二次方程,理解题意,正确找出等式关系是解题关键.11.已知反比例函数ky x =的图象经过点(3,2),小良说了四句话,其中正确的是() A .当0x <时,0y > B .函数的图象只在第一象限C .y 随x 的增大而增大D .点(3,2)-不在此函数的图象上【答案】D【分析】利用待定系数法求出k ,即可根据反比例函数的性质进行判断. 【详解】解:∵反比例函数ky x =的图象经过点(3,2),∴k=2×3=6, ∴6y x =,∴图象在一、三象限,在每个象限y 随x 的增大而减小,故A ,B ,C 错误,∴点(3,2)-不在此函数的图象上,选项D 正确;故选:D .【点睛】本题考查反比例函数图象上的点的特征,教育的关键是熟练掌握基本知识,属于中考常考题型. 12.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .7000(1+x 2)=23170B .7000+7000(1+x )+7000(1+x )2=23170C .7000(1+x )2=23170D .7000+7000(1+x )+7000(1+x )2=2317 【答案】C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x ,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x ,则2020年的投入为7000(1+x )2=23170 由题意,得7000(1+x )2=23170.故选:C .【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.二、填空题(本题包括8个小题)13.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为21y x 1040=-+,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米.(精确到1米)【答案】85【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有21? 10840x -+=, 即280x =,145x =,245x =- .所以两盏警示灯之间的水平距离为:1245458518m x x -=-=≈()() 14.如图,⊙M 的半径为4,圆心M 的坐标为(6,8),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为____.。
重庆市九龙坡区重庆实验外国语学校2023-2024学年九年级上学期期末数学模拟试题

重庆市九龙坡区重庆实验外国语学校2023-2024学年九年级上学期期末数学模拟试题一、单选题1.6的倒数是( )A .16-B .0.6-C .16D .62.由五个大小相同的正方体搭成的几何体如图所示,从左面看该几何体的形状图是( )A .B .C .D . 3.如图,点A 为反比例函数k y x=图象上一点,过A 作AB x ⊥轴于点B ,连接OA ,若ABO V 的面积为4,则k 的值为( )A .8B .4C .4-D .8-4.已知两个相似三角形的对应边之比为1:3,则它们的周长比为( ) A .1:9 B .9:1 C .1:6 D .1:35.将含45︒角的一个直角三角板和一把直尺如图放置,若260∠=︒,则1∠的度数是( )A .60︒B .70︒C .75︒D .80︒6.估计( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间 7.如图,第①个图形中有1个正方形,按照如图所示的方式连接对边中点得到第②个图形,图中共有5个正方形;连接第②个图形中右下角正方形的对边中点得到第③个图形,图中共有9个正方形;按照同样的规律得到第④个图形、第⑤个图形……,则第⑥个图形中正方形的个数是( )① ② ③ ④A .17B .21C .25D .298.如图,AB 为O e 的切线,切点为A ,连接OA 、OB ,OB 交O e 于点C ,点D 在O e 上,连接CD 、AD ,若301ADC OC ∠=︒=,,则AB 的长为( ).A.1 B C .2 D .49.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,E 为OB 上一点,过点E 作EF BC ∥交OC 于点 F ,连接CE ,DF . 若115DFE ∠=︒,则BCE ∠的度数为( )A .35︒B .30︒C .25︒D .20︒10.依次排列的两个整式,a b ,将第1个整式乘以2再减去第2个整式,称为第1次操作,得到第3个整式2a b -;将第2个整式乘以2再减去第3个整式,称为第2次操作,得到第4个整式32b a -;将第3个整式乘以2再减去第4个整式,称为第3次操作,得到第5个整式65;a b -L L ,以此类推,下列4个说法,其中正确的结论有( )①第7个整式为2221a b -②第34个整式中a 系数的绝对值比b 系数的绝对值大1③第11个整式与12个整式所有系数的绝对值之和为1024④若1a b ==,则第2023次操作完成后,所有整式之和为2025A .1个B .2个C .3个D .4个二、填空题11.计算()()302122π-⎛⎫-+---= ⎪⎝⎭.12.函数y =x 的取值范围是. 13.已知一个正多边形的内角是135o ,它是边形.14.在A B C D Y 中,现有以下四个条件:①AC BD =,②AC BD ⊥,③90ABC ∠=︒,④AB BC =,小马准备从以上四个条件中,随机选出两个,可以得出ABCD Y 为正方形的概率为. 15.如图,在扇形AOB 中,90AOB ∠=︒,点C 为OA 的中点,CE OA ⊥交弧AB 于点E ,以点O 为圆心,OC 的长为半径作弧CD 交OB 于点D ,若6OA =,则阴影部分的面积为.16.四边形ABCD 中,45ABC CAB ADC ∠=∠=∠=︒,ACD V 面积为48且CD 的长为12,则BCD V 的面积为.17.已知关于x 的不等式组14225x x a +⎧≤⎪⎨⎪->⎩至少有3个整数解,且关于y 的分式方程8122ay y y-=---有整数解,那么满足条件的所有整数a 的和是. 18.如果一个四位自然数M 各数位上的数字均不为0,将M 的千位和个位上的数字对调,同时将M 的百位和十位上的数字对调,得到新的四位数N ,称N 为M 的“一对称数”,并规定()9M N F M -=.例如:3412的“对称数”为2143,()3412214334121419F -==,则()2176F =;若6500201s m =++(m 为整数,14m ≤≤),320107t n =++(n 为整数,19n ≤≤),且29m n +>,s 和t 的各数位数字均不为0,且s 的“对称数”与t 的“对称数”之和能被9整除,规定()()k F s F t =-,则k 最大值为.三、解答题19.计算:(1)(x +3y )(x ﹣y )﹣(x +y )2(2)(a ﹣1﹣81a +)22691a a a -+÷- 20.如图,已知平行四边形ABCD .(1)用尺规完成以下基本作图:在CB的延长线上取点E,使CE=CD,连接DE交AB于点F,作∠ABC的平分线BG交CD于点G.(保留作图痕迹,不写作法)(2)在第(1)问所作的图形中,求证:四边形BFDG为平行四边形.证明:∵BG平分∠ABC∴∠ABG=∠CBG∵四边形ABCD为平行四边形∴AB∥CD∴∠ABG=∠CGB,∠CDE=∠BFE∴∠CGB=①∴CB=CG.∵CE=CD,CB=CG∴CE﹣CB=CD﹣CG,即BE=②∵CD=CE∴∠CDE=③∵∠CDE=∠BFE,∠CDE=∠BEF∴∠BFE=④∴BE=BF∵BE=DG,BE=BF∴DG=⑤∵AB∥CD,DG=BF∴四边形BFDG为平行四边形.(推理根据:⑥)21.受到“新型肺炎”影响,全国中小学未能按时开学,为响应国家“停课不停学”的号召,重庆某重点中学组织全校师生开展线上教学活动,体育备课组也为同学们提出了每日锻炼建议.疫情过去开学后,体育组彭老师为检测同学们在家锻炼情况,在甲、乙两班同学中各随机抽取20名学生进行检测,并对数据进行了整理、分析.下面给出了部分信息:甲班:33,35,38,39,39,41,42,43,43,44,45,46,46,47,48,49,49,49,50,50乙班成绩在4045x ≤<中的数据是41,43,41,44,42,40,43整理数据:分析数据:根据以上信息,回答下列问题:()1a =b =c =()2根据以上数据,你认为哪个班级在家体育锻炼的效果比较好,请说明理由(1条理由即可).()3已知九年级共有2000名学生,请估计全年级体育成绩大于等于45分的学生有多少人? 22.请列方程解决下面的问题:小明自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一类服装.为了缓解资金压力,小张决定将这类服装打折销售.若每件服装按标价的五折出售将亏90元,而按标价的九折出售将赚30元.(1)请你算一算每件服装的标价和进价各是多少元?(2)该服装改款后,小张又以同样的进价进货50件,若标价不变,按标价销售了30件后,剩下的服装进行甩卖,为了保证这批服装总利润率达到10%,小张最低能打几折? 23.如图,在矩形ABCD 中,6AB =,4=AD ,点E 为CD 的中点,动点P ,Q 同时从点E 出发,点P 以每秒1个单位长度沿折线E D A →→方向运动到点A 停止,点Q 也以每秒1个单位长度沿折线E C B →→方向运动到点B 停止.设运动时间为x 秒,APQ △的面积为y .(1)请直接写出y 关于x 的函数表达式并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)若直线1y x m =+与y 的图象有且只有一个交点,请直接写出m 的取值范围________. 24.在公园里,同一平面内的五处景点的道路分布如图所示,经测量,点D 、E 均在点C 的正北方向且600CE =米,点B 在点C 的正西方向,且BC =点B 在点A 的南偏东60°方向且400AB =米,点D 在点A 的东北方向.( 1.414≈ 1.732≈,2.449≈)(1)求道路AD 的长度(精确到个位);(2)若甲从A 点出发沿——A D E 的路径去点E ,与此同时乙从点B 出发,沿——B A E 的路径去点E ,其速度为40米/分钟.若两人同时到达点E ,请比较谁的速度更快?快多少?(精确到十分位)25.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++≠与x 轴交于()4,0A 、B −2,0 两点,与y 轴交于点()0,4C .(1)求抛物线的函数表达式;(2)点P 是抛物线上位于直线AC 上方一动点,且在抛物线的对称轴右侧,过点P 作y 轴的平行线交直线AC 于点E ,过点P 作x 轴的平行线与抛物线的对称轴交于点F ,求PE PF +的最大值及此时点P 的坐标;(3)在(2)中PE PF +取得最大值的条件下,将该抛物线沿x 轴向右平移6个单位长度,平移后的抛物线与平移前的抛物线交于点H ,点M 为平移前抛物线对称轴上一点.在平面直角坐标系中确定一点N ,使以点H ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程. 26.如图,ABC V 是等腰直角三角形,45ABC ∠=︒,AB AC =,点D 是AC 上任意一点,点H 是射线BC 上一点,连接BD ,AH .(1)如图1,当点H 在线段BC 上时,若AH BD ⊥,AB =AH =HC 的长;(2)如图2,将ABD △绕点D 顺时针旋转90︒得到△FED ,连接CE ,连接AF ,CE 和AF 相交于点M .求证:AD ;(3)如图3,连接DH ,将A D H V 沿AH 翻折得到AD H '△,连接BD ',若点F 是BD '的中点,且30ABD ∠=︒,2AD =,当CF 取最小值时,求BH CH的值.。
重庆市九龙坡区九年级(上)期末数学试卷

重庆市九龙坡区九年级(上)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在0,2.1,﹣4,﹣3.2这四个数中,是负分数的是()A.0B.2.1C.﹣4D.﹣3.22.(4分)下列图案中,不是中心对称图形的是()A.B.C.D.3.(4分)下列计算正确的是()A.a3+a2=2a5B.(2ab2)3=6a3b6C.2a2b•3ab2=6a2b3D.x3y2÷(﹣2x2y)=﹣xy4.(4分)下列事件中,是随机事件的是()A.度量四边形的内角和为180°B.抛掷一次硬币两次,第一次正面朝上,第二次反面朝上C.袋中有2个黄球,3个绿球,共5个球,随机摸出一个球是红球D.通常加热到100摄氏度,水沸腾5.(4分)如图,把△ABC绕点C顺时针旋转得封△A´B´C,且∠ACA′=30°,则∠BCB′=()A.15°B.30°C.45°D.60°6.(4分)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.80°或100°C.100°D.160°或20°7.(4分)已知点(﹣3,y1)(﹣1,y2),(2,y3)在函数y=﹣2x2+3图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y1 8.(4分)如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=8,则CD 的长为()A.4B.8C.8D.169.(4分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤310.(4分)二次函数y=2x2﹣4x+5的图象可由y=2x2的图象()得到A.先向右平移2个单位长度,再向上平移3个单位长度B.先向右平移1个单位长度,再向上平移3个单位长度C.先向左平移2个单位长度,再向下平移3个单位长度D.先向左平移1个单位长度,再向下平移3个单位长度11.(4分)如图所示,第(1)个多边形由正三角形“扩展”而来,边数为12,第(2)个多边形由正方形“扩展”而来,边数为20,…•,第(3)个多边形由正五边形“扩展”而来,边数为30,……依此类推,由正7边形“扩展”而来的多边形的边数为()A.40B.50C.56D.6412.(4分)如果关于x的方程ax2+4x﹣2=0有两个不相等的实数根,且关于x的分式方程﹣=2有正数解,则符合条件的整数a的值是()A.﹣1B.0C.1D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4分)今年“十一”黄金周期间,吉首市共接待游客38.88万人次,388800用科学记数法表示为.14.(4分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.15.(4分)在反比例函数y=图象的每一支上,y都随x的增大而减小,则k的取值范围是.16.(4分)在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,1,2,3的小球,它们除数字不同外其余全部相同,现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的绝对值作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+4与x轴所围成的区域内(不含边界)的概率是.17.(4分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆,半圆恰好经过△ABC的直角顶点C,以点D为顶点,作∠EDF=90°,与半圆交于点E,F,则图中阴影部分的面积是.18.(4分)一条笔直的公路上顺次有A、B、C三地,甲车从B地出发往A地匀速行驶,到达A地后停止,在甲车出发的同时,乙车从B地出发往A地匀速行驶,到达A地停留1小时后,调头按原遠向C地行驶,若AB两地相距200千米,在两车行驶的过程中,甲、乙两车之间的距离(千米)与乙车行驶时间x(小时)之间的函数图象如图所示,则在他们出发后经过小时相遇.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19.(8分)如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BF=CE,求证:△ABC≌△DEF;20.(8分)某校为了解非毕业年级学生课余生活,从七、八年级学生中随机抽取了部分学生进行调查,每人只能从以下六个项目中选一项:A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践:F.其他项目根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题.(1)此次抽查的样本容量为,请补全条形统计图;(2)全校约有800名在校初中学生,试估计全校学生中选择体育锻炼的人数约有多少人?(3)若七年级(1)班将从选择社会实践活动的2名女生和1名男生中选派2名同学去参加校级社会实践活动请你用树状图或列表法求出恰好选到1男1女的概率是多少?四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)化简:(1)(a+b)(a﹣b)﹣(a﹣b)2﹣2b(a+b)(2)22.(10分)如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于第二象限的点A(m,1),且与y轴交于点C.过点A作AD⊥x轴于点D,连接CD,已知△ADC的面积为,且∠ACO=45°(1)求:一次函数和反比例函数的解析式;(2)若点E是点C关于x轴的对称点,点B的纵坐标为﹣3,求△ABE的面积23.(10分)九龙坡区某社区开展全民读书活动,以丰富人们业余文化生活现计划筹资30000元用于购买科普书籍和文艺刊物(1)计划购买文艺刊物的资金不少于购买科普书籍资金的2倍,那么最少用多少资金购买文艺刊物?(2)经初步了解,有200户居民自愿参与集资,那么平均每户需集资150元.经筹委会进步宣传,自愿参加的户数在200户的基础上增加了a%(其中a>50),如果每户平均集资在150元的基础上减少a%,那么实际筹资将比计划筹资多6000元,求a的值.24.(10分)如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=4,∠CBE =30°,求DE的长.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(10分)一个各位数字都不为0的三位正整数N,现从它的百位、十位、个位上的数字中任意选择两个数字组成两位数若所有这些两位数的和等于这个三位数本身,则称这个三位数为本原数”例如:132,选择百位数字1和十位数字3所组成的两位数为:13和31;选择百位数字1和个位数字2所组成的两位数为:12和21;选择十位数字3和个位数字2所组成的两位数为:32和23,因为13+31+12+21+32+23=132,所以132是“本原数”(1)判断123是不是“本原数”?请说明理由;(2)一个三位正整数,若它的十位数字等于百位数字与个位数学的和,则称这样的三位数为“和中数”.若一个各位数字都不为0的“和中数”是“本原数”,求z与x的函数关系.26.(12分)已知,如图1,抛物线y=x2﹣2x﹣3与x轴交于点A,在抛物线第一象限的图象上存在一点B,x轴上存在一点C,使∠ACB=90°,AC=BC,抛物线的顶点为D.(1)求直线AB的解析式;(2)如图2,若点E是AB上一动点(点A、B除外),连接CE,OE,当EC+OE的值最小时,求△BDE的面积;(3)如图3,若点E是AB上一动点(点A、B除外),当△OEC是等腰三角形时,请直接写出满足条件的点E的坐标.重庆市九龙坡区九年级(上)期末数学试卷参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.D;2.C;3.D;4.B;5.B;6.B;7.C;8.B;9.B;10.B;11.C;12.A;二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.3.888×105;14.6;15.k>;16.;17.;18.3;三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19.;20.1000;四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.;22.;23.;24.;五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.;26.;。
2020-2021重庆市初三数学上期末试题(含答案)

2020-2021重庆市初三数学上期末试题(含答案)一、选择题1.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( )A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠32.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 3.将抛物线y=2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y=2(x ﹣3)2﹣5B .y=2(x+3)2+5C .y=2(x ﹣3)2+5D .y=2(x+3)2﹣54.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-=5.抛物线2y x 2=-+的对称轴为A .x 2=B .x 0=C .y 2=D .y 0= 6.关于下列二次函数图象之间的变换,叙述错误的是( )A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象7.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°8.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )A .AC BC AB AC = B .2·BC AB BC = C .512AC AB -=D .0.618≈BC AC9.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m 10.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 11.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <1 12.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2二、填空题13.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了__人.14.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .15.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.16.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.17.一元二次方程250x x c -+=有两个不相等的实数根且两根之积为正数,若c 是整数,则c=_____.(只需填一个).18.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个.19.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为_______.20.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.三、解答题21.如图,方格纸中有三个点A B C,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.23.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE ⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.24.如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.25.如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.(1)a=,c=;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩ 解得:m>1且m ≠3.故答案为D.【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3.A解析:A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .4.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 5.B解析:B【解析】【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x 2+2是顶点式,∴对称轴是直线x=0,即为y 轴.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.6.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A选项,将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象,故A选项不符合题意;B选项,将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象,故B选项不符合题意;C选项,将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象,故C选项不符合题意;D选项,将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2+1的图象,故D选项符合题意.故选D.【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.7.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.B解析:B【解析】∵AC >BC ,∴AC 是较长的线段,根据黄金分割的定义可知:AC BC AB AC = ≈0.618, 故A 、C 、D 正确,不符合题意;AC 2=AB •BC ,故B 错误,符合题意;故选B .9.C解析:C【解析】【分析】设与墙相对的边长为(28-2x )m ,根据题意列出方程x (28-2x )=80,求解即可.【详解】设与墙相对的边长为(28-2x )m ,则0<28-2x≤12,解得8≤x <14,根据题意列出方程x (28-2x )=80,解得x 1=4,x 2=10因为8≤x <14∴与墙垂直的边x 为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x 值.10.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a ,b 的值.【详解】解:∵P (-b ,2)与点Q (3,2a )关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A .【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.11.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 12.D解析:D【解析】【分析】根据已知图象可以得到图象与x 轴的交点是(-1,0),(2,0),又y >0时,图象在x 轴的上方,由此可以求出x 的取值范围.【详解】依题意得图象与x 轴的交点是(-1,0),(2,0),当y >0时,图象在x 轴的上方,此时x <-1或x >2,∴x 的取值范围是x <-1或x >2,故选D .【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x 轴的交点,然后由图象找出当y >0时,自变量x 的范围,注意数形结合思想的运用.二、填空题13.12【解析】【分析】【详解】解:设平均一人传染了x 人x +1+(x +1)x =169x =12或x =-14(舍去)平均一人传染12人故答案为12解析:12【解析】【分析】【详解】解:设平均一人传染了x 人,x +1+(x +1)x =169x =12或x =-14(舍去).平均一人传染12人.故答案为12.14.【解析】试题分析:根据圆的确定先做出过ABC 三点的外接圆从而得出答案如图分别作ABBC 的中垂线两直线的交点为O 以O 为圆心OA 为半径作圆则⊙O 即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这5解析:【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为5.考点:圆的有关性质.15.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13【解析】【分析】直接代入求值即可.【详解】试题解析:把y=59.9代入y=﹣0.1x2+2.6x+43得,59.9=-0.1x2+2.6x+43解得:x1=x2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.16.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==解析:3 8【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)=353=38.17.123456中的任何一个数【解析】【分析】【详解】解:∵一元二次方程有两个不相等的实数根∴△=解得∵c是整数∴c=123456故答案为123456中的任何一个数【点睛】本题考查根的判别式;根与系数的解析:1,2,3,4,5,6中的任何一个数.【解析】【分析】【详解】解:∵一元二次方程250x x c -+=有两个不相等的实数根,∴△=2(5)40c -->,解得254c <, ∵125x x +=,120x x c =>,c 是整数,∴c=1,2,3,4,5,6.故答案为1,2,3,4,5,6中的任何一个数.【点睛】本题考查根的判别式;根与系数的关系;开放型.18.2【解析】试题解析:∵袋中装有6个黑球和n 个白球∴袋中一共有球(6+n )个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2 解析:2【解析】试题解析:∵袋中装有6个黑球和n 个白球,∴袋中一共有球(6+n )个, ∵从中任摸一个球,恰好是黑球的概率为34, ∴6364n =+, 解得:n=2.故答案为2. 19.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变解析:(-1010,10102)【解析】【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y=x+2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2019的坐标.【详解】∵A 点坐标为(1,1),∴直线OA 为y=x ,A 1(-1,1),∵A 1A 2∥OA ,∴直线A 1A 2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.20.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB=2BC∠ACB=90°弓形BD与弓形AD完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB=8AC=4∴阴影部解析:83π.【解析】【分析】根据题意,用ABC的面积减去扇形CBD的面积,即为所求.【详解】由题意可得,AB=2BC,∠ACB=90°,弓形BD与弓形AD完全一样,则∠A=30°,∠B=∠BCD=60°,∵CB=4,∴AB=8,AC=,2604360π⨯⨯-=83π,故答案为:83π.【点睛】本题考查不规则图形面积的求法,属中档题.三、解答题21.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形【详解】解:如图:22.(1)y =﹣2x +200 (40≤x ≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x ≤80,理由见解析【解析】【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案.【详解】(1)设y =kx +b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩, 解得:k 2b 200=-⎧⎨=⎩, ∴y =﹣2x +200 (40≤x ≤80);(2)W =(x ﹣40)(﹣2x +200)=﹣2x 2+280x ﹣8000=﹣2(x ﹣70)2+1800,∴当x =70时,W 取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W =1350时,得:﹣2x 2+280x ﹣8000=1350,解得:x =55或x =85,∵该抛物线的开口向下,所以当55≤x ≤85时,W ≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.【点睛】考查二次函数的应用,解题关键是明确题意,列出相应的函数解析式,再利用二次函数的性质和二次函数的顶点式解答.23.(1)证明见解析;(2)阴影部分的面积为8833π-.【解析】【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD ﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=22228443-=-=DO OC∴S△OCD=43422⋅⨯=CD OC=83,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=16×π×OC2=83π,∵S阴影=S△COD﹣S扇形OBC ∴S阴影=83﹣83π,∴阴影部分的面积为83﹣83π.24.(1)证明见解析;(2)阴影部分面积为43 3π-【解析】【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=23,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.25.(1)2516-,12;(2)当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ;(3)能.【解析】【分析】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),代入函数的表达式即可求出a ,c 的值;(2)利用配方法即可求出足球飞行的时间以及足球离地面的最大高度;(3)把x =28代入x =10t 得t =2.8,把t =2.8代入解析式求出y 的值和2.44m 比较大小即可得到结论.【详解】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴20.53.50.850.8c a c =⎧⎨=+⨯+⎩, 解得:251612a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:y =﹣2516t 2+5t +12, 故答案为:﹣2516,12; (2)∵y =﹣2516t 2+5t +12, ∴y =﹣2516(t ﹣85)2+92, ∴当t =85时,y 最大=4.5, ∴当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ; (3)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =﹣2516×2.82+5×2.8+12=2.25<2.44, ∴他能将球直接射入球门.【点睛】 本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是解题的关键.。
2022-2023学年重庆市九龙坡区杨家坪中学九年级(上)期末数学试卷+答案解析(附后)

2022-2023学年重庆市九龙坡区杨家坪中学九年级(上)期末数学试卷1. 下列是关于x的一元二次方程的是( )A. B. C. D.2. 下列交通标识,既是中心对称图形,又是轴对称图形的是( )A. B. C. D.3. 二次函数的顶点坐标为( )A. B. C. D.4. 下列事件是随机事件的是( )A. 一个标准大气压下,水加热到会沸腾B. 购买一张福利彩票就中奖C. 任意画一个三角形,其内角和是D. 在一个只装有黑球的袋中,摸出白球5. 如图,中,AB边是圆O的直径,BC与圆O交于点D,且D是BC的中点,,点E在圆O上,则的度数是( )A.B.C.D.6. 已知点、、在反比例函数的图象上,则下列判断正确的是( )A. B. C. D.7. 如图是某公园在一长35m,宽23m的矩形湖面上修建的等宽的人行观景曲桥,它的面积恰好为原矩形湖面面积的,求人行观景曲桥的宽.若设人行观景曲桥的宽为x m,则x满足的方程为( )A. B.C. D.8. 为增强学生环保意识,某中学举办了环保知识竞赛,某班共有3名学生名男生,1名女生获奖.老师若从获奖的3名学生中任选两名作为班级的“环保小卫士”,则恰好是一名男生、一名女生的概率为( )A. B. C. D.9.如图,在中,,,将绕点C按逆时针方向旋转后得到,设CD交AB于点F,连接AD,若,则旋转角的度数为( )A. B. C. D.10. 若实数a使关于x的不等式组,有且只有四个整数解;关于x的二次函数,当时,y随着x的增大而减小,则符合条件的所有整数a的个数为( )A. 2B. 3C. 4D. 511. 如图,抛物线与x轴交于点,,交y轴的正半轴于点C,对称轴交抛物线于点D,则下列结论:①时,y随x的增大而减小;②;③当为直角三角形时,a的值有2个;④若点P为对称轴上的动点,则的最大值为,其中正确的有( )A. 1个B. 2个C. 3个D. 4个12. 如图,在平面直角坐标系中,平行四边形ABCD与y轴分别交于E、F两点,对角线BD 在x轴上,反比例函数的图象过点A并交AD于点G,连接若BE::2,AG::2,且的面积为,则k的值是( )A. B. 3 C. D. 513. 若关于x的方程有一个根2,则a的值是______.14. 半径为5的,圆心O与平面直角坐标系的原点重合.有4张不透明的卡片,分别标有数字,0,3,5,它们除了正面上的数字不同外,其他均相同,将这四张卡片背面向上洗匀后放在桌面将上面的数字分别记为m,n,则点上,从中随机抽取两张卡片,在圆O内部的概率为______.15. 如图,在正方形ABCD中,分别以B、D为圆心,BC为半径画弧分别交对角线BD于点E、F,连接AE、CF,若,则图中阴影部分的面积为______结果保留16. 2019年末开始横扫全世界的新冠疫情仍旧肆虐世界.而我国人民在党中央和各级政府的坚强领导下,生产生活快速恢复常态.这得益于全国人民听从号召,严格执行防疫规定,并积极注射新冠疫苗.某公司生产一种新冠疫苗的某个流程如下:首先通过某种装置将粉末原料A制成片状材料B,接着用另一种装置将片状材料B制成液态材料现有若干千克粉末材料A和100千克片状材料B,准备将它们加工成液态材料C,共10名技术人员,分为甲,乙两组开展工作,甲组负责将粉末材料A加工成片状材料B,乙组负责将片状材料B加工成液态材料已知甲组人员每人每小时可将10千克材料A加工成5千克材料B,乙组人员每人每小时可将10千克材料B加工成20千克材料甲组先工作2小时后乙组才开始工作,若乙组开始加工m小时为整数后,片状材料B的质量与液态材料C的质量之比为11:40;又加工了几个小时后,粉末材料A全部使用完;接着继续将所有片状材料B都加工成液态材料C,一共加工产生了920千克液态材料C;当粉末材料A正好全部使用完,此时片状材料B的质量与液态材料C的质量之比为______.17. 解方程:;18. 如图,在正方形ABCD中,点E在BC上,连接用尺规完成以下基本作图:过点D作AE的垂线,分别与AB、AE交于点F、G;不写作法和证明,保留作图痕迹在所作的图形中,求证:请补全下面的证明过程证明:四边形ABCD是正方形,,,,______.______又,______.在和中:______,≌19. “无体育不南开”,我校为了了解初中学生在暑假期间每周的运动时间单位为小时,简记为,随机抽取了部分初中学生进行调查,根据调查结果,绘制成如下不完整的统计图表.请根据相关信息,解答下列问题:本次调查的总人数为______,扇形统计图中的______;把条形统计图补充完整;若从被调查的学生中随机抽取一人,这名学生每周运动时间不足8小时的概率是多少?20. 在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象交于、B两点.求反比例函数和一次函数的解析式并在平面直角坐标系中作出两个函数的图象.请你写出反比例函数的性质.写两条①______;②______;当时,请直接写出符合条件的x的取值范围.21. 五一期间,璧山区丁家街道天天农家乐的草莓和枇杷相继成熟,为了吸引更多游客走进乡村,体验采摘乐趣,天天农家乐推出采摘草莓和采摘枇杷两种方式:采摘1公斤草莓的费用比采摘1公斤枇杷的费用多15元,采摘2公斤草莓和1公斤枇杷的费用共90元.求采摘1公斤草莓和1公斤枇杷的费用分别是多少元?根据去年采摘情况表明,平均每天采摘草莓30公斤,采摘枇杷20公斤.天天农家乐决定今年采摘枇杷的价格保持不变,采摘草莓的价格下调,采摘草莓的费用每降价3元,采摘草莓的数量会增加2公斤.天天农家乐要想平均每天的收益为1386元,请问采摘草莓每公斤应降价多少元?22. 3月份,长江重庆段开始进入枯水期,有些航道狭窄的水域通航压力开始慢慢增加.为及时掌握辖区通航环境实时情况,严防船舶搁浅、触礁等险情事故发生,沿江海事执法人员持续开展巡航检查,确保近七百公里的长江干线通航安全.如图,巡航船在一段自西向东的航道上的A处发现,航标B在A处的北偏东方向200米处,以航标B为圆心,150米长为半径的圆形区域内有浅滩,会使过往船舶有危险.由于水位下降,巡航船还发现在A处北偏西方向300米的C处,露出一片礁石,求B、C两地的距离;精确到1米为保证航道畅通,航道维护项目部会组织挖泥船对该条航道被浅滩影响的航段进行保航施工.请判断该条航道是否被这片浅滩区域影响?如果有被影响,请求出被影响的航道长度为多少米?如果没有被影响,请说明理由.参考数据:,23. 对于任意一个四位数m,将前两位所得两位数记为,后两位所得两位数记为,其中,这个四位数的千位数字与十位数字不能为0,记,若能被4整除,称这样的四位数是“航天数”.例如,4能被4整除,是“航天数”.又如,1不能被4整除,不是“航天数”.判断2799,8062是否是“航天数”?并说明理由;若一个航天数m,千位数字与个位数字相同,百位数字与十位数字相同.将前两位所得两位数,中间插入数字为整数,得新三位数n,则三位数n比大180,求满足条件的所有航天数.24. 如图,已知抛物线与x轴交于点A,点A在点B的左侧,与y轴交于点C,过点B作直线交抛物线于点求点D的坐标;点P是直线AC上方的抛物线上一点,连接DP,交AC于点E,连接BE,BP,求面积的最大值及此时点P的坐标;将抛物线沿射线CA方向平移单位得到新的抛物线,点M是新抛物线对称轴上一点,点N为平面直角坐标系内一点,直接写出所有以A,C,M,N为顶点的四边形为矩形的点N的坐标,并写出其中一个点N的坐标的求解过程.25. 已知、都是等边三角形,可以绕点B旋转.如图1,F为DE边上一点,连接AF、BF、CF,当且时,求的度数;如图2,连接AD并延长交BC于点M,N为AC延长线上一点,连接BN,连接CE并延长交BN于点G,若G为BN的中点,求证:如图3,在等边内部,若,是否存在一点P,使得取得最小值.若存在,直接写出最小值;不存在,请说明理由.答案和解析1.【答案】B【解析】解:是分式方程,故本选项不合题意;B.是关于x的一元二次方程,故本选项符合题意;C.当时,不是一元二次方程,故本选项不合题意;D.未知数是最高次数是3,不是一元二次方程,故本选项不合题意;故选:根据一元二次方程的定义求解即可.本题考查了一元二次方程的应用,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程叫一元二次方程.2.【答案】D【解析】解:既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,又是轴对称图形,故此选项符合题意.故选:根据中心对称图形与轴对称图形的概念进行判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.【答案】B【解析】解:,抛物线开口向上,对称轴为直线,顶点坐标为,故选:由抛物线顶点式直接求解.本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.4.【答案】B【解析】解:一个标准大气压下,水加热到会沸腾,是必然事件,因此选项A不符合题意;B.购买一张福利彩票就中奖,是随机事件,因此选项B符合题意;C.任意画一个三角形,其内角和是,是不可能事件,因此选项C不符合题意;D.在一个只装有黑球的袋中,摸出白球,是不可能事件,因此选项D不符合题意;故选:根据随机事件、必然事件、不可能事件的定义结合具体的情景逐项进行判断即可.本题考查必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.5.【答案】B【解析】解:边是圆O的直径,,是BC的中点,,,,故选:根据AB边是圆O的直径,推出,再推出是等腰三角形,所以,根据圆周角定理推出本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.【答案】A【解析】解:,,故选:根据反比例函数,可得三个点的k值,再通过横坐标的大小关系,即可得出纵坐标的大小关系.本题主要考查了反比例函数中k值的运用,解题的关键在于熟练转化也可利用反比例函数图象的性质得出结论.7.【答案】C【解析】解:若设人行观景曲桥的宽为x m,、根据题意得:,故选:分别表示出长和宽,根据矩形的面积公式列方程即可.考查了由实际问题抽象出一元二次方程的知识,解题的关键是表示出矩形的长和宽,难度不大.8.【答案】A【解析】解:列表如下:男男女男男,男女,男男男,男女,男女男,女男,女由表知,共有6种等可能结果,其中恰好是一名男生、一名女生的有4种结果,所以恰好是一名男生、一名女生的概率为故选列表得出所有等可能结果,从中找到恰好是一名男生、一名女生的结果数,再根据概率公式求解即可.本题考查用列举法求概率.9.【答案】B【解析】【分析】本题考查了旋转的性质:旋转前后两图形全等,即对应线段相等,对应角相等.也考查了等腰三角形的性质.根据旋转的性质得,,则,利用三角形外角的性质得,由,利用等腰三角形的性质得,即可得到的值.【解答】解:绕C点按逆时针方向旋转得到,,,,,,,,解得;故选:10.【答案】C【解析】解:解不等式组得:,不等式组有且只有四个整数解,,解得:,二次函数图象开口向上,对称轴为直线,当时,y随着x 的增大而减小,,解得:,,为整数,可取1,2,3,故选:先解不等式组,再结合只有四个整数解列出关于a的不等式,求出a的取值范围,然后由二次函数的增减性求出a的取值范围,最后结合两个a的范围找出符合条件的a的个数.本题考查了已知不等式组的整数求参数的取值范围问题、已知二次函数的增减性求参数的取值范围问题.归根究底,考的是不等式的应用和二次函数的性质.本题容易出错的地方在于是否取等号,这里可以数形结合的方法进行分析,如果分析不清楚可以假设法进行判断.11.【答案】B【解析】解:抛物线与x轴交于点,,对称轴,时,y随x的增加而减少,时,y随的增加而增大,时,y随的增大而减小,错误,故①错误.,即,将代入,则,则,故②正确;当为直角三角形时,有两种情况,一是,二是,的值有2个,故③正确;如图,连接PA,则,延长AC交直线:于点,当点A、C、P共线时取等号,设直线AC的解析式为,当时,,即,当达到最大值时,点P的坐标为,,,,点P的坐标为有最大值,最大值为,故④错误.综上所述,②③正确.故选:求出对称轴再根据函数的增减性即可判断①;根据即,将代入,则,替换即可得,则,判断②;当为直角三角形时,有两种情况,一是,二是,a的值有2个,即可判断③;当点A、C、P共线时,可取最大值求解即可判断④.本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征,抛物线与轴的交点进行计算.12.【答案】B【解析】解:如图,过点A作轴于点M,轴于点N,设点,则,,,轴,∽,,,::2,AG::2,,,则,,点A、G在反比例函数的图象上,,,,,,平行四边形ABCD,则,,,,∽,,即,,,,解得,故选过点作轴于点M,轴于点N,设点,则,,可得∽,则OB::AE,再由BE::2,AG::2,可得到,,从而得到,进而得到,继而,再由平行四边形的性质,可得∽,从而得到,再由,即可求解.本题主要考查相似三角形的判定与性质,反比例函数系数k的几何意义,平行四边形的性质,以及平行线分线段成比例.13.【答案】【解析】解:将代入,得解得故答案为:将代入原方程即可求出a的值.本题考查一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.【答案】【解析】解:如下图所示,点坐标有12种,满足的点为:,,,共4种,,在圆O内部的概率为故答案为:若,则点在圆O内部,求出满足条件的点,再计算概率即可.本题考查了概率知识点,通过列表法或树状图法求概率是解本题的关键,综合性较强,难度适中.15.【答案】【解析】解:如图,连接AC交BD于点四边形ABCD是正方形,,,,,根据对称性可知,故答案为:如图,连接AC交BD于点根据,求解即可.本题考查扇形的面积,正方形的性质,勾股定理等知识,解题的关键是学会利用分割法求阴影部分的面积.16.【答案】3:40【解析】解:设有x人在甲组,则有人在乙组,m小时后,B的质量为:千克,根据题意可得:::40,解得:,,m都是正整数,当时,,甲组有6人,乙组有4人,加工920千克液态材料C需要B的量为:千克,原有B材料100千克,由A加工成的B的质量为:千克,甲组加工B需要的总时间为:小时,末材料A用完时,乙组共加工材料C 质量为:千克,此时还剩下的材料B质量为:千克,此时纯冰与人造雪的质量比为:60::40,故答案为:3:先根据“乙组开始加工m小时为整数后,片状材料B的质量与液态材料C的质量之比为11:40”求出加工加的人数,再算出时间,最后求出比值.本题考查了三元一次方程组的应用,验证法求正整数解是解题的关键.17.【答案】解:,由题意得,,,,,,,,原方程整理得,,,【解析】利用公式法解一元二次方程即可;利用因式分解法解一元二次方程即可.此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.18.【答案】【解析】解:如图,AF为所作;证明:四边形ABCD是正方形,,,,,,,又,,在和中,,≌故答案为:,,,利用基本作图,过D点作AE的垂线即可;先利用等角的余角证明,然后根据“ASA”证明≌,从而得到结论.本题考查了作图-基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了全等三角形的判断与性质和正方形的性质.19.【答案】40 25【解析】解:本次调查的总人数为,,故答案为:40,每周的运动时间为7小时的人数为,补全条形图如下:,答:从被调查的学生中随机抽取一人,这名学生每周运动时间不足8小时的概率是利用每周的运动时间为5小时的人数除以所占的百分比即可求出总人数,用10除以总人数即可求出m的值;求出每周的运动时间为7小时的人数,画出条形图即可;利用每周运动时间不足8小时的人数除以总人数即可.本题考查条形统计图、扇形统计图、概率的求法,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.20.【答案】函数图象与坐标轴没有交点函数图象在一、三象限,在每个象限y随x的增大而减小【解析】解:一次函数的图象与反比例函数的图象交于点,,,解得,,一次函数的解析式为,反比例函数解析式为;在平面直角坐标系中画出一次函数的图象如图:;反比例函数的性质:①函数图象与坐标轴没有交点;②函数图象在一、三象限,在每个象限y随x的增大而减小;故答案为:函数图象与坐标轴没有交点;函数图象在一、三象限,在每个象限y随x的增大而减小;观察图象,当时,x的取值范围或根据待定系数法,可得函数解析式;观察图象即可求解;根据图象可得答案.本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,反比例函数的性质,函数与不等式的关系,数形结合是解题的关键.21.【答案】解:设采摘1公斤草莓的费用是x元,采摘1公斤枇杷的费用是y元,根据题意得:,解得:答:采摘1公斤草莓的费用是35元,采摘1公斤枇杷的费用是20元.设采摘草莓每公斤应降价m元,则采摘1公斤草莓的费用是元,平均每天采摘草莓公斤,根据题意得:,整理得:,解得:,不符合题意,舍去答:采摘草莓每公斤应降价6元.【解析】设采摘1公斤草莓的费用是x元,采摘1公斤枇杷的费用是y元,根据“采摘1公斤草莓的费用比采摘1公斤枇杷的费用多15元,采摘2公斤草莓和1公斤枇杷的费用共90元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;设采摘草莓每公斤应降价m元,则采摘1公斤草莓的费用是元,平均每天采摘草莓公斤,根据天天农家乐要想平均每天的收益为1386元,即可得出关于m的一元二次方程,解之取其符合题意的值,即可得出结论.本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;找准等量关系,正确列出一元二次方程.22.【答案】解:过点B作于点D,由题意得,,米,米,在中,,,解得,,米,由勾股定理得,米.、C两地的距离约为265米.该条航道会被这片浅滩区域影响,长度为100米,理由如下:过点B作航道的垂线BE,由题意得,米,,在中,,解得,,该条航道会被这片浅滩区域影响.设米,在中,米,根据对称性可知,被影响的航道长度为100米.【解析】过点B作于点D,由题意可得,在中,由三角函数可求得米,米,则米,再根据勾股定理可得出答案.过点B作航道的垂线BE,在中,,求出BE的值,与150作比较,可得结论;设米,利用勾股定理求出EF,再根据对称性可得被影响的航道长度.本题考查解直角三角形的应用-方向角问题,熟练掌握锐角三角函数的定义是解答本题的关键.23.【答案】解:是“航天数”,8062不是“航天数”,理由:,8能被4整除,是“航天数”;,2不能被4整除,不是“航天数”.设这个航天数m的千位数字与个位数字为a,百位数字与十位数字为b,则能被4整除.或或,三位数n比大180,,c为整数,,a为整数,,,b为整数,或5或满足条件的航天数为:1111或1551或【解析】利用“航天数”的定义进行判断即可;设这个航天数m的千位数字与个位数字为a,百位数字与十位数字为b,利用a,b,c分别表示出和n的值,由已知条件得到关于a,c的式子,根据数位上的数字的特征确定a,c的值,再利用“航天数”的意义得出a,b的关系式,从而确定出b的值,结论可求.本题主要考查了因式分解的应用,数位上的数字的特征,本题阅读型题目理解并熟练运用新定义是解题的关键.24.【答案】解:令,即,解得或,,;令,则,,直线AC的解析式为:,,直线BD的解析式为:,将点的坐标代入直线,可得,,直线BD的解析式为:,令,解得舍或,如图,过点P作轴交BD于点Q,设点P的横坐标为m,则,,,连接AD,,,,当时,的最大值为:,此时将抛物线沿射线CA方向平移单位即抛物线先左平移1个单位,再向下平移个单位,,,抛物线的对称轴为;设点M的纵坐标为t,则,,,,若以A,C,M,N为顶点的四边形为矩形,则为直角三角形,需要分类讨论:①点A为直角顶点,,即,解得,由矩形的性质可知,②点C为直角顶点,,即,解得,,由矩形的性质可知,③点M为直角顶点,,即,解得或,或,由矩形的性质可知,或综上,若以A,C,M,N为顶点的四边形为矩形时,点N的坐标为或或或【解析】令,求出x的值,进而可求出点A,B的坐标,令,得出y的值,可得出点C的坐标,利用待定系数法可求出直线AC的坐标,再利用可得出直线BD的解析式,联立直线BD与抛物线的解析式即可得出点D的坐标;过点P作轴交BD于点Q,设点P的横坐标为m,由此可得出点P和点Q的坐标,进而求出PQ的长,由三角形面积公式可得出的面积;连接AD,由平行可知,的面积与的面积相等,根据,可表达S与m的函数关系,再根据二次函数的性质求解即可;将抛物线沿射线CA方向平移单位即抛物线先左平移1个单位,再向下平移个单位,由此可得的解析式,得出抛物线的对称轴,得出点M的横坐标,若以A,C,M,N为顶点的四边形为矩形,则为直角三角形,需要分类讨论:①点A为直角顶点;②点C为直角顶点;③点M为直角顶点,求出点M的坐标,再根据矩形的性质可得出点N的坐标.本题属于二次函数综合题,主要考查待定系数法求函数的解析式,三角形的面积问题,二次函数的性质,矩形的存在性等相关问题,得出S与x的函数关系式是解题关键;得出平移后的对称轴,进行正确的分类讨论是解题关键.25.【答案】解:,都是等边三角形,,,,,,,,,,,,,;证明:如图2中,过点B作交CG的延长线于,,,,≌,,,,,,≌,,,,,,,≌,,解:如图,将绕点B逆时针旋转得到,连接PF,由旋转的性质可知:是等边三角形,,,,,当P,F在直线EC上时,的值最小,、是等边三角形,,,,过点B作于D,,,,,,存在,的最小值为【解析】证明,即可解决问题.如图2中,过点B作交CG的延长线于利用全等三角形的性质证明,即可解决问题.将绕点B逆时针旋转得到,连接PF,易证,因为,推出当P,F在直线EC上时,的值最小,求出EC的长即可解决问题.本题属于几何变换综合题,考查了旋转的性质,等边三角形的性质,全等三角形的判定和性质,等腰三角形的性质,两点之间,线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年重庆市九龙坡区九年级上学期期末考试数学试卷
解析版
一.选择题(共12小题,满分48分,每小题4分)
1.(4分)下列事件中,属于必然事件的是()
A.三角形的外心到三边的距离相等
B.某射击运动员射击一次,命中靶心
C.任意画一个三角形,其内角和是180°
D.抛一枚硬币,落地后正面朝上
【解答】解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;
B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
C、三角形的内角和是180°,是必然事件,故本选项符合题意;
D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
故选:C.
2.(4分)在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()
A.(﹣2,1)B.(1,﹣2)C.(2,﹣1)D.(﹣1,2)
【解答】解:∵点M(1,﹣2)与点N关于原点对称,
点N的坐标为(﹣1,2),
故选:D.
3.(4分)用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1【解答】解:x2+4x﹣5=0,
x2+4x=5,
x2+4x+22=5+22,
(x+2)2=9,
故选:A.
4.(4分)抛物线y=(x﹣1)2+2的顶点坐标是()
A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)
第1 页共18 页。