低功耗运算放大器
opa836,2836 低功耗运算放大器

版权 © 2011–2013, Texas Instruments Incorporated English Data Sheet: SLOS712
OPA836 OPA2836
ZHCS019E – JANUARY 2011 – REVISED SEPTEMBER 2013
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
• 工作温度范围: -40°C 至 +125°C
宽,这些放大器为轨到轨放大器设定了一个业界领先水 平的功耗-性能比。
对于功耗十分重要的电池供电型便携式应用而 言,OPA836 和 OPA2836 的低功耗及高频性能为设 计人员提供了其他器件所无法获得的性能与功耗比。 与流耗小于 1.5μA 的节能模式组合在一起,此器件为 电池供电应用中的高频放大器提供了一款极具吸引力的 解决方案。
• 转换率:560V/μs
的电流消耗仅为 1mA,并具有 205MHz 的单位增益带
• 上升时间:3ns (2VSTEP) • 稳定时间:22ns (2VSTEP) • 过驱恢复时间:60ns
• 信噪比 (SNR):在 1kHz (1VRMS) 时为 0.00013% (-117.6dBc)
• 总谐波失真 (THD):在 1kHz (1VRMS) 时为 0.00003% (-130dBc)
LD27L2-超低功耗运算放大器

LD27L2双通道精密运算放大电路1、概述LD27L2是一款有极低失调电压、高输入阻抗、轨对轨的运算放大器电路。
主要应用于各种需要使用精密运算放大器的领域,其特点如下:z极低的输入失调电压,典型条件下小于1mV;z超低功耗,静态工作电流小于3uAz宽电压工作范围,1.8V~6.0Vz高输入阻抗,典型为1013Ω;z超低的失调点偏移z单位增益带宽14KHzz封装形式:SOP82、功能框图与引脚说明2. 1、功能框图2. 2、引脚排列图2. 3、引脚说明与结构原理图序号管脚名功能描述1 OUT1 运放1的输出端2 IN1‐ 运放1的反向输入端3 IN1+ 运放1的正向输入端4 GND 电源地5 IN2+ 运放2的正向输入端6 IN2‐ 运放2的反向输入端7 OUT2 运放2的输出端8 VDD 电源输入端3、电特性3. 1、极限参数参 数 名 称 符 号额 定 值单 位 最大电源电压 IVsmax 6 V 输入电压范围 V I GND-0.3~VDDV差分输入电压 VDD-GND V 工作环境温度 T amb -40~+85 ℃ 贮存温度T stg -55~+125℃ 3. 2、电特性(VDD=2.2~5V ,T A =25℃)参 数 名 称 符 号 测 试 条 件规 范 值单 位最小 典型最大 工作电压 V DD 1.8-6.0V静态工作电流 I DD - 0.8 3 uA 输入失调电压 V OS- 1 2 mV输入失调温度系数-40℃~+85℃- 1.3 - uV/℃电源抑制 V PSRR -8590dB输入偏置电流 I B - 1 - pA 输入失调电流 I OS - 1 - pA 共模输入阻抗 Z CM - 1013- Ω 差模输入阻抗 Z DIFF - 1013- Ω 共模输入电压 V CMR GND-0.3- VDD+0.3 V共模抑制比 CMRR VDD=5V 6090-dB单位增益带宽 B I VI=10mV 14 KHz输出短路电流 I SCVDD=2.2V - 3 - mA VDD=5V - 20 - mA4、典型应用线路全差分输入放大电路5、封装尺寸与外外形图。
低功耗CMOS集成运算放大器的研究与设计

级全差分运算放大器。通过采用密勒电容和调零电阻串联的补偿电路,有效地改善了电路的频率
响应特性,提高了转换速度,使该两级运算放大器在获得较大输入共模范围和输出摆幅的同时,还
获得了较高的增益及相位裕度,满足便携式电子产品的低功耗、高性能要求。Cadence Spectre BSIM3V3模型仿真结果表明,在10 GQ负载电阻和1 pF负载电容并联的条件下,该两级运算放
64.
[5]Lee T H.CMOS射频集成电路设计[M].(英文版). 北京:电子工业出版社,2002.230-233.
6结论
本文提出了一种新颖的低噪声放大器,在输入
作者简介:高清运(1965一),女(汉族),河 南新乡人,副教授,博士,主要研究方向为 集成电路设计。
(上接第416页) 通过引入密勒电容和调零电阻串联电路进行频率补 偿,使系统具有较好的频率响应特性和较大的摆率。 采用Cadence Spectre模拟器的BSIM3V3模型,对
本文设计了一种可满足视频速度应用的低电压低功耗10位流水线结构的CMOS A/D转换器.该转换器由9个低功耗运算放大器和19个比较器组成,采用 1.5位/级共9级流水线结构,级间增益为2并带有数字校正逻辑.为了提高其抗噪声能力及降低二阶谐波失真,该A/D转换器采用了全差分结构.全芯片模拟结 果表明,在3V工作电压下,以20MHz的速度对2MHz的输入信号进行采样时,其信噪失调比达到53dB,功率消耗为28.7mW.最后,基于0.6μm CMOS工艺得到该 A/D转换器核的芯片面积为1.55mm2.
2020—2027.
[4]Soorapanth T,Lee T H.RF linearity of short-channel MOSFE'Ts[A].First Int Workshop Des Mixed-Mode Integr Circ and Appl[C].Cancun,Mexico.1997.18—
聚洵低功耗运算放大器GS8551 GS8552 GS8554

描述:GS8551/GS8552/GS8554放大器是单/双/四电源,微功耗,零漂移CMOS运算放大器,这些放大器提供1.8MHz的带宽,轨至轨输入和输出以及1.8V至5.5V的单电源供电。
GS855X使用斩波稳定技术来提供非常低的失调电压(最大值小于5µV),并且在整个温度范围内漂移接近零。
每个放大器的静态电源电流低至180µA,输入偏置电流极低,仅为20pA,因此该器件是低失调,低功耗和高阻抗应用的理想选择。
GS855X提供了出色的CMRR,而没有与传统的互补输入级相关的分频器。
该设计为驱动模数转换器带来了卓越的性能转换器(ADC),而不会降低差分线性度。
GS8551提供SOT23-5和SOP-8封装。
GS8552提供MSOP-8和SOP-8封装。
GS8554 Quad具有绿色SOP-14和TSSOP-14封装。
在所有电源电压下,-45oC至+ 125oC的扩展温度范围提供了额外的设计灵活性。
特点:+ 1.8V〜+ 5.5V单电源供电•嵌入式RF抗EMI滤波器•轨到轨输入/输出•小型封装:•增益带宽乘积:1.8MHz(典型@ 25°C)GS8551采用SOT23-5和SOP-8封装•低输入偏置电流:20pA(典型值@ 25°C)GS8552采用MSOP-8和SOP-8封装•低失调电压:30µV(最大@ 25°C)GS8554采用SOP-14和TSSOP-14封装•静态电流:每个放大器180µA(典型值)•工作温度:-45°C〜+ 125°C•零漂移:0.03µV / oC(典型值)应用:换能器应用•手持测试设备•温度测量•电池供电的仪器•电子秤Features•Single-Supply Operation from +1.8V ~ +5.5V •Embedded RF Anti-EMI Filter•Rail-to-Rail Input / Output •Small Package:•Gain-Bandwidth Product: 1.8MHz (Typ. @25°C) GS8551 Available in SOT23-5 and SOP-8 Packages•Low Input Bias Current: 20pA (Typ. @25°C) GS8552 Available in MSOP-8 and SOP-8 Packages•Low Offset Voltage: 30µV (Max. @25°C) GS8554 Available in SOP-14 and TSSOP-14 Packages•Quiescent Current: 180µA per Amplifier (Typ)•Operating Temperature: -45°C ~ +125°C•Zero Drift: 0.03µV/o C (Typ)General DescriptionGS8551 / GS8552 / GS8554放大器是单/双/四电源,微功耗,零漂移CMOS运算放大器,这些放大器提供1.8MHz的带宽,轨至轨输入和输出以及1.8以上的单电源供电V至5.5V。
GS6001 6002 6004 聚洵低功耗运算放大器

GS6001.6002.6004描述GS6001系列的增益带宽乘积为1MHz,转换速率为0.8V /μs,在5V时的静态电流为75μA/放大器。
GS6001系列旨在在低压和低噪声系统中提供最佳性能。
它们可将轨到轨的输出摆幅转换成重负载。
输入共模电压范围包括地,对于GS6001系列,最大输入失调电压为3.5mV。
它们的额定温度范围为扩展的工业温度范围(-40℃至+ 125℃)。
工作范围为1.8V至6V。
GS6001单个采用绿色SC70-5和SOT23-5封装。
GS6002 Dual采用绿色SOP-8和MSOP-8封装。
GS6004 Quad具有绿色SOP-14和TSSOP-14封装。
应用:ASIC输入或输出放大器•传感器接口•医学交流• 烟雾探测器• 音频输出•压电换能器•医疗仪器•便携式系统特征:•+ 1.8V〜+ 6V单电源供电•轨到轨输入/输出•增益带宽乘积:1MHz(典型值)•低输入偏置电流:1pA(典型值)•低失调电压:3.5mV(最大值)•静态电流:每个放大器75µA(典型值)•嵌入式射频抗电磁干扰滤波器•工作温度:-40°C〜+ 125°C•包装:GS6001提供SOT23-5和SC70-5封装GS6002提供SOP-8和MSOP-8封装GS6004提供SOP-14和TSSOP-14封装Features•Single-Supply Operation from +1.8V ~ +6V •Operating Temperature: -40°C ~ +125°C•Rail-to-Rail Input / Output •Small Package:•Gain-Bandwidth Product: 1MHz (Typ.) GS6001 Available in SOT23-5 and SC70-5 Packages •Low Input Bias Current: 1pA (Typ.) GS6002 Available in SOP-8 and MSOP-8 Packages •Low Offset Voltage: 3.5mV (Max.) GS6004 Available in SOP-14 and TSSOP-14 Packages •Quiescent Current: 75µA per Amplifier (Typ.)•Embedded RF Anti-EMI FilterGeneral DescriptionThe GS6001 family have a high gain-bandwidth product of 1MHz, a slew rate of 0.8V/ s, and a quiescent current of 75A/amplifier at 5V. The GS6001 family is designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV for GS6001 family. They are specified over the extended industrial temperature range (-40 to +125 ). The operating range is from 1.8V to 6V. The GS6001 single is available in Green SC70-5 and SOT23-5 packages. The GS6002 dual is available in Green SOP-8 and MSOP-8 packages. The GS6004 Quad is available in Green SOP-14 and TSSOP-14 packages.Applications•ASIC Input or Output Amplifier •Audio Output•Sensor Interface •Piezoelectric Transducer Amplifier •Medical Communication •Medical Instrumentation•Smoke Detectors •Portable SystemsPin ConfigurationFigure 1. Pin Assignment DiagramAbsolute Maximum RatingsCondition Min Max Power Supply Voltage (V DD to Vss) -0.5V +7.5V Analog Input Voltage (IN+ or IN-) Vss-0.5V V DD+0.5V PDB Input Voltage Vss-0.5V +7V Operating Temperature Range -40°C +125°C Junction Temperature +160°CStorage Temperature Range -55°C +150°C Lead Temperature (soldering, 10sec) +260°CPackage Thermal Resistance (T A=+25 )SOP-8, θJA 125°C/WMSOP-8, θJA 216°C/WSOT23-5, θJA 190°C/WSC70-5, θJA 333°C/WESD SusceptibilityHBM 6KVMM 400VNote: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.Package/Ordering InformationMODEL CHANNEL ORDER NUMBERPACKAGEDESCRIPTIONP ACKAGEOPTIONMARKINGINFORMATIONGS6001-CR SC70-5 Tape and Reel,3000 6001GS6001 SingleGS6001-TR SOT23-5 Tape and Reel,3000 6001 GS6001Y-CR SC70-5 Tape and Reel,3000 6001Y GS6001Y-TR SOT23-5 Tape and Reel,3000 6001YGS6002 Dual G S6002-SR SOP-8 Tape and Reel,4000 GS6002 GS6002-MR MSOP-8 Tape and Reel,3000 GS6002GS6004 Quad GS6004-TR TSSOP-14 Tape and Reel,3000 GS6004 GS6004-SR SOP-14 Tape and Reel,2500 GS6004Electrical Characteristics(At VS = +5V, RL = 100kΩ connected to VS/2, and VOUT = VS/2, unless otherwise noted.)GS6001/2/4PARAMETER SYMBOL CONDITIONS TYP MIN/MAX OVER TEMPERATURE+25 +25 -40 to +85 UNITS MIN/MAX INPUT CHARACTERISTICSInput Offset Voltage V OS V CM = V S/2 0.8 3.5 5.6 mV MAX Input Bias Current I B 1 pA TYP Input Offset Current I OS 1 pA TYP Common-Mode Voltage Range V CM V S = 5.5V -0.1 to +5.6 V TYPV S = 5.5V, V CM = -0.1V to 4V 70 62 62 dB Common-Mode Rejection Ratio CMRR MINV S = 5.5V, V CM = -0.1V to 5.6V 68 56 55Open-Loop Voltage Gain A OL R L = 5kΩ, V O = +0.1V to +4.9V 80 70 70 dBR L = 10kΩ, V O = +0.1V to +4.9V 100 94 85MINInput Offset Voltage Drift ∆V OS/∆T 2.7 µV/ TYP OUTPUT CHARACTERISTICSV OH R L = 100kΩ 4.997 4.980 4.970 V MINV OL R L = 100kΩ 5 20 30 mV MAX Output Voltage Swing from RailV OH R L = 10kΩ 4.992 4.970 4.960 V MINV OL R L = 10kΩ8 30 40 mV MAXOutput Current I 84 60 45R = 10Ω to V /2I SINK 75 60 45mA MINPOWER SUPPLY1.8 1.8 V MIN Operating Voltage Range6 6 V MAX Power Supply Rejection Ratio PSRR V S = +2.5V to +6V, V CM = +0.5V 82 60 58 dB MIN Quiescent Current / Amplifier I Q 75 110 125 µA MAX DYNAMIC PERFORMANCE (CL = 100pF)Gain-Bandwidth Product GBP 1 MHz TYP Slew Rate SR G = +1, 2V Output Step 0.8 V/µs TYP Settling Time to 0.1% t S G = +1, 2V Output Step 5.3 µs TYP Overload Recovery Time V IN ·Gain = V S 2.6 µs TYP NOISE PERFORMANCEVoltage Noise Density e n f = 1kHz 27 nV / Hz TYP f = 10kHz 20 nV / Hz TYPTypical Performance charAt T A=+25o C, Vs=5V, R L=100KΩ connecteLarge Signal Transient Response Small Signal Transient ResponseC L=100pFR L=100kΩG=+1C L=100pFR L=100kΩG=+1Time(10µs/div) Time(2µs/div)CMRR vs. Frequency PSRR vs. FrequencyFrequency (kHz) Frequency (kHz) Supply Current vs. Temperature Overload Recovery TimeVs=5.5VVs=1.8VVs=5VG=-5V IN=500mV Vs=5VTemperature ( ) Time(2µs/div)Typical Performance characteristicsAt T A=+25o C, R L=100KΩ connected to V S/2 and V OUT= V S/2, unless otherwise noted.Output Voltage Swing vs.Output Current Output Voltage Swing vs.Output Current Sourcing CurrentSourcing Current-50-50Vs=3V 25Vs=5V 135 25135-50-50Sinking CurrentSinking CurrentOutput Current(mA) Output Current(mA)Input Voltage Noise Spectral Density vs. Frequency Open Loop Gain, Phase Shift vs. Frequency Frequency (kHz) Frequency (kHz)Application NoteSizeGS6001系列系列运算放大器具有单位增益稳定的特性,适用于各种通用应用。
运算放大器的低功耗设计,这是我见过最详尽的攻略,请收藏!

运算放大器的低功耗设计,这是我见过最详尽的攻略,请收藏!引言近年来,电池供电电子产品的普及使功耗成为模拟电路设计人员越来越重视的问题。
本文中将介绍如何使用低功耗运算放大器进行系统设计,同时也会涉及具有低电源电压能力的低功耗运算放大器及其应用,并讨论如何正确理解运算放大器规格书中的规格参数,综合考虑电路设计上的节能技术,实现更高效的器件选型。
了解运算放大器电路中的功耗首先,我们会讨论具有低静态电流(IQ)的放大器,以及增加反馈网络电阻值与功耗的关系。
让我们首先考虑一个可能需要关注功率的示例电路:电池供电的传感器在1kHz时,生成50mV幅度和50mV偏移的模拟正弦信号。
信号需要放大到0V至3V的范围,以进行信号调节(图1);同时要尽可能节省电池电量,这将需要增益为30V/V的同相放大器配置,如图2所示。
那么,我们应该如何来优化该电路的功耗呢?图1:示例电路中的输入及输出信号(图片来源:Texas Instruments)图2:传感器放大电路(图片来源:Texas Instruments)运算放大器电路的功耗由多种因素组成,分别是静态功率、运算放大器输出功率和负载功率。
静态功率(或简称PQuiescent)是保持放大器开启所需的功率,数据表中一般以IQ(静态电流)表示,例如下图中Texas Instruments OPA391规格书中的显示。
图3:TI OPA391运放的静态电流(图片来源:Texas Instruments)输出功率(POutput)是运算放大器输出级驱动负载时消耗的功率。
最后,负载功率(PLoad)是负载本身消耗的功率。
在本例中,我们有一个单电源运算放大器,其正弦输出信号具有直流电压偏移。
因此,我们将使用以下等式来计算总平均功率(Ptotal,avg)。
电源电压由V+表示, Voff是输出信号的直流偏移,Vamp是输出信号的幅度,RLoad是运算放大器的总负载电阻。
需要留意的,平均总功率与IQ直接相关成正比,而与RLoad成反比。
聚洵低功耗运算放大器GS8591 8592 8594

GS8591/GS8592/GS8594放大器是单/双/四电源,微功耗,零漂移CMOS运算放大器,这些放大器提供4.5MHz的带宽,轨至轨输入和输出以及1.8V至5.5V的单电源供电。
GS859X使用斩波稳定技术来提供非常低的失调电压(最大值小于50µV),并且在整个温度范围内漂移接近零。
每个放大器550µA的低静态电源电流和20pA的极低输入偏置电流使这些器件成为低失调,低功耗和高阻抗应用的理想选择。
GS859X提供了出色的CMRR,而没有与传统的互补输入级相关的分频器。
这种设计在驱动模数转换器(ADC)方面具有卓越的性能,而不会降低差分线性度。
GS8591提供SOT23-5和SOP-8封装。
GS8592提供MSOP-8和SOP-8封装。
GS8594 Quad具有绿色SOP-14和TSSOP-14封装。
在所有电源电压下,-45oC 至+ 125oC的扩展温度范围提供了额外的设计灵活性。
特性:+ 1.8V〜+ 5.5V单电源供电•嵌入式RF抗EMI滤波器•轨到轨输入/输出•小型封装:•增益带宽乘积:4.5MHz(典型@ 25°C)GS8591采用SOT23-5和SOP-8封装•低输入偏置电流:20pA(典型值@ 25°C)GS8592采用MSOP-8和SOP-8封装•低失调电压:30µV(最大@ 25°C)GS8594采用SOP-14和TSSOP-14封装•静态电流:每个放大器550µA(典型值)•工作温度:-45°C〜+ 125°C•零漂移:0.03µV / oC(典型值)Features•Single-Supply Operation from +1.8V ~ +5.5V •Embedded RF Anti-EMI Filter•Rail-to-Rail Input / Output •Small Package:•Gain-Bandwidth Product: 4.5MHz (Typ. @25°C) GS8591 Available in SOT23-5 and SOP-8 Packages•Low Input Bias Current: 20pA (Typ. @25°C) GS8592 Available in MSOP-8 and SOP-8 Packages•Low Offset Voltage: 30µV (Max. @25°C) GS8594 Available in SOP-14 and TSSOP-14 Packages •Quiescent Current: 550µA per Amplifier (Typ.)•Operating Temperature: -45°C ~ +125°C•Zero Drift: 0.03µV/o C (Typ.)General DescriptionThe GS859X amplifier is single/dual/quad supply, micro-power, zero-drift CMOS operational amplifiers, the amplifiers offer bandwidth of 4.5MHz, rail-to-rail inputs and outputs, and single-supply operation from 1.8V to 5.5V. GS859X uses chopper stabilized technique to provide very low offset voltage (less than 50µV maximum) and near zero drift over temperature. Low quiescent supply current of 550µA per amplifier and very low input bias current of 20pA make the devices an ideal choice for low offset, low power consumption and high impedance applications. The GS859X offers excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity.The GS8591 is available in SOT23-5 and SOP-8 packages. And the GS8592 is available in MSOP-8 and SOP-8 packages. TheGS8594 Quad is available in Green SOP-14 and TSSOP-14 packages. The extended temperature range of -45o C to +125o C over all supply voltages offers additional design flexibility.Applications•Transducer Application •Handheld Test Equipment•Temperature Measurements •Battery-Powered Instrumentation•Electronics ScalesPin ConfigurationFigure 1. Pin Assignment DiagramAbsolute Maximum RatingsCondition Min Max Power Supply Voltage (V DD to Vss) -0.5V +7.5V Analog Input Voltage (IN+ or IN-) Vss-0.5V V DD+0.5V PDB Input Voltage Vss-0.5V +7V Operating Temperature Range -45°C +125°C Junction Temperature +160°CStorage Temperature Range -55°C +150°C Lead Temperature (soldering, 10sec) +260°CPackage Thermal Resistance (T A=+25 )SOP-8, θJA 125°C/WMSOP-8, θJA 216°C/WSOT23-5, θJA 190°C/WESD SusceptibilityHBM 6KVMM 400VNote: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.Package/Ordering InformationMODEL CHANNEL ORDER NUMBERPACKAGEDESCRIPTIONPACKAGEOPTIONMARKINGINFORMATIONGS8591 SingleGS8591-TR SOT23-5 Tape and Reel,3000 8591 GS8591Y-SR SOP-8 Tape and Reel,4000 GS8591YGS8592 Dual G S8592-SR SOP-8 Tape and Reel,4000 GS8592 GS8592-MR MSOP-8 Tape and Reel,3000 GS8592GS8594 Quad GS8594-TR TSSOP-14 Tape and Reel,3000 GS8594 GS8594-SR SOP-14 Tape and Reel,2500 GS8594Electrical Characteristics(V S = +5V, V CM = +2.5V, V O = +2.5V, T A = +25 , unless otherwise noted.)PARAMETER CONDITIONS MIN TYP MAX UNITS INPUT CHARACTERISTICSInput Offset Voltage (V OS) 1 5 µV Input Bias Current (I B) 20 pA Input Offset Current (I OS) 10 pA Common-Mode Rejection Ratio(CMRR)V CM = 0V to 5V 110 dB Large Signal Voltage Gain ( A VO) R L = 10kΩ, V O = 0.3V to 4.7V 145 dB Input Offset Voltage Drift (∆V OS/∆T) 30 nV/ OUTPUT CHARACTERISTICSOutput Voltage High (V OH) R L = 100kΩ to - V S 4.998 V R L = 10kΩ to - V S 4.994 VOutput Voltage Low (V OL) R L = 100kΩ to + V S 2 mV R L = 10kΩ to + V S 5 mVShort Circuit Limit (I SC) R L =10Ω to - V S 43 mA Output Current (I O) 30 mA POWER SUPPLYPower Supply Rejection Ratio (PSRR) V S = 2.5V to 5.5V 115 dB Quiescent Current (I Q) V O = 0V, R L = 0Ω 180 µA DYNAMIC PERFORMANCEGain-Bandwidth Product (GBP) G = +100 4.5 MHz Slew Rate (SR) R L = 10kΩ 2.5 V/µs Overload Recovery Time 0.10 ms NOISE PERFORMANCEVoltage Noise (e n p-p) 0Hz to 10Hz 0.2 µV P-PnV Voltage Noise Density (e n) f = 1kHz 30 HzTypical Performance characteristicsLarge Signal Transient Response at +5V Large Signal Transient Response at +2.5VC L=300pF R L=2kΩA V=+1C L=300pFR L=2kΩA V=+1Time(4µs/div) Time(2µs/div)Small Signal Transient Response at +5V Small Signal Transient Response at +2.5VC L=50pF R L=∞A V=+1C L=50pFR L=∞A V=+1Time(4µs/div) Time(4µs/div)Closed Loop Gain vs. Frequency at +5V Closed Loop Gain vs. Frequency at +2.5V G=-100 G=-100 G=-10 G=-10G=+1 G=+1Frequency (kHz) Frequency (kHz)Typical Performance characteristicsOpen Loop Gain, Phase Shift vs. Frequency at +5V Open Loop Gain, Phase Shift vs. Frequency at +2.5VPhase ShiftV L=0pFR L=∞V L=0pFR L=∞Phase ShiftOpen Loop GainOpen Loop Gain Frequency (Hz) Frequency (Hz) Positive Overvoltage Recovery Negative Overvoltage RecoveryV SY= 2.5VV IN=-200mVp-p(RET to GND)C L=0pFR L=10kΩA V=-100 V SY= 2.5VV IN=-200mVp-p(RET to GND) C L=0pFR L=10kΩA V=-100Time (40µs/div) Time (40µs/div) 0.1Hz to 10Hz Noise at +5V 0.1Hz to 10Hz Noise at +2.5VG=10000G=10000 Time (10s/div) Time (10s/div)Application NoteSizeGS859X系列运算放大器具有单位增益稳定的特性,适用于各种通用应用。
TL062TL064低功耗JFET输入运算放大器

TL064V Max 6.0 9.0 — 100 20 200 50 +11.5 — — — — –10 — –10 — — 250 7.5 Min — — — — — — — — –11.5 4.0 4.0 +10 — +10 — 80 80 — — Typ 3.0 — 10 5.0 — 30 — +14.5 –12.0 58 — +14 –14 — — 84 86 200 6.0 Max 9.0 15 µV/°C — 100 20 200 50 +11.5 — — — V — –10 — –10 dB — dB — µA 250 mW 7.5 pA nA pA nA V V/mV Unit mV
TL062V Characteristics Input Offset Voltage (RS = 50 Ω, VO = 0V) TA = 25°C TA = Tlow to Thigh Average Temperature Coefficient for Offset Voltage (RS = 50 Ω, VO = 0 V) Input Offset Current (VCM = 0 V, VO = 0 V) TA = 25°C TA = Tlow to Thigh Input Bias Current (VCM = 0 V, VO = 0 V) TA = 25°C TA = Tlow to Thigh Input Common Mode Voltage Range (TA = 25°C) Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V) TA = 25°C TA = Tlow to Thigh Output Voltage Swing (RL = 10 kΩ, VID = 1.0 V) TA = 25°C TA = Tlow to Thigh Common Mode Rejection (RS = 50 Ω, VCM = VICR min, VO = 0, TA = 25°C) Power Supply Rejection (RS = 50 Ω, VCM = 0 V, VO = 0, TA = 25°C) Power Supply Current (each amplifier) (No Load, VO = 0 V, TA = 25°C) Total Power Dissipation (each amplifier) (No Load, VO = 0 V, TA = 25°C)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京理工大学珠海学院 2015 届本科生毕业设计
Abstract
Operational amplifier for almost all the necessary circuit module for analog and mixed signal system, a number of different operational amplifier can realize different functions, especially the logic of addition, subtraction, differential, integral, sampling circuit, filter circuit, and so on are useful to the operational amplifier circuit.With the continuous progress of integrated circuit technology, the power supply voltage energy storage capacity far cannot satisfy the current development of mobile portable electronic products.This makes the low low voltage operational amplifier to reduce the power consumption of the product itself is necessary to energy consumption.Paper based on the simulation of low voltage, low power consumption technology at home and abroad a large number of investigation and study, in reference to the results of this technology on the basis of the designed a 1.5 V low power CMOS operational amplifier.In this paper, the design of low voltage, low power dissipation CMOS analog operational amplifier one by one for the important parameters of the simulation, including operational amplifier dc transmission characteristics analysis, operational amplifier input and output common-mode voltage range analysis, operational amplifier ac small signal analysis, operational amplifier conversion rate and settling time analysis, operational amplifier, common mode rejection ratio analysis and operational amplifier power supply rejection ratio analysis of several parts, and meet the requirement of the index is expected to come to the result.Design 2.5 umCMOS process parameters on the China model is adopted to design the simulation as well as landscape design, and pass by Cadence tool for simulation, the simulation results show that when the 23 pf load capacitance 1 k Ω resistance, the op-amp, static power consumption is only 280 mu W dc open-loop gain, unit gain bandwidth and the phase margin of 84 db respectively, 2.5 MHz and 58 degrees, various technical indicators meet the design requirements.
毕业设计(论文)存档资料低功耗运算放大器设计Fra bibliotek学 专 姓
院: 业: 名: 郭俊平 潘颖
信息学院 电子科学与技术 学 职 号: 110105021039 称: 助教
指导老师:
中国·珠海
二〇一五年五月
北京理工大学珠海学院 2015 届本科生毕业设计
诚信承诺书 本人郑重承诺: 1.本人郑重地承诺所呈交的毕业论文(设计),是在指导教师的指导 下严格按照学校和学院有关规定完成的。 2.本人在毕业论文(设计)中引用他人的观点和参考资料均加以注释 和说明。 3. 本人承诺在毕业论文(设计)选题和研究内容过程中没有抄袭他人 研究成果和伪造相关数据等行为。 4. 在毕业论文(设计)中对侵犯任何方面知识产权的行为,由本人承 担相应的法律责任。
本人签名: 日期: 2015 年 6 月 5 日
北京理工大学珠海学院 2015 届本科生毕业设计
摘 要
运算放大器几乎是所有模拟系统和混合信号系统中的必备电路模块,大量不同的运 算放大器可以实现不同的功能,特别是逻辑中的加法、减法、微分、积分、采样电路、 滤波电路等等电路都有用到运算放大器。随着集成电路工艺的不断进步,电源电压储能 能力远远不能满足当前移动便携式电子产品的发展。这使低电压低功耗的运算放大器对 于减少产品本身能量消耗是非常有必要的。论文通过对国内外的模拟低电压、低功耗技 术的大量调查研究, 在借鉴这些技术成果基础上设计了一个1.5V 低功耗CMOS 运算放大 器。 本文对所设计低电压、低功耗CMOS 模拟运算放大器的重要参数进行逐一的仿真,其 中包括运算放大器直流传输特性分析、运算放大器输入和输出共模电压范围分析、运算 放大器交流小信号分析、运算放大器转换速率和建立时间分析、运算放大器共模抑制比 分析和运算放大器电源抑制比分析几个部分,并得出满足预计指标要求的结果。 设计采用上华2.5umCMOS 工艺参数模型进行设计仿真以及版图设计,并经过 Cadence 工具仿真,仿真结果表明,当接23pF 电容与1kΩ 电阻时,运放的静态功耗只 有280μW,直流开环增益、单位增益带宽和相位裕度分别达到84dB、2.5MHz 和58 度, 各项技术指标都满足设计要求。 关键词:低功耗;模拟集成电路;CMOS 运算放大
Keywords: low power consumption;Analog integrated circuit;CMOS operational amplifier
北京理工大学珠海学院 2015 届本科生毕业设计
目录
1 前言........................................................................................................................................................................1 1.1 模拟电路的发展.........................................................................................................................................1 1.2 研究背景.....................................................................................................................................................2 1.3 设计目标.....................................................................................................................................................3 2.CMOS 管的电学特性与模型............................................................................................................................... 3 2.1MOS 的大信号模型.................................................................................................................................... 3 2.2 MOS 大信号的电学特性........................................................................................................................... 4 2.3 MOS 的小信号模型特性.......................................................................................................