超声波相控阵检测技术及其使用
无损检测新技术-超声波相控阵检测技术简介

无损检测新技术-超声波相控阵检测技术简介夏纪真无损检测资讯网 广州市番禺区南村镇恒生花园14梯701 邮编:511442摘要:本文简单介绍了超声波相控阵检测技术的基本原理、应用与局限性关键词:无损检测超声检测相控阵1 超声波相控阵检测技术的基本原理超声波相控阵检测技术是一种新型的特殊超声波检测技术,类似相控阵雷达、声纳和其他波动物理学应用,依据惠更斯(Huyghens-Fresnel)原理:波动场的任何一个波阵面等同于一个次级波源;次级波场可以通过该波阵面上各点产生的球面子波叠加干涉计算得到。
并显示保真的(或几何校正的)回波图像,所生成材料内部结构的图像类似于医用超声波图像。
常规的超声波检测技术通常采用一个压电晶片来产生超声波,一个压电晶片只能产生一个固定的声束,其波束的传递是预先设计选定的,并且不能变更。
超声波相控阵检测技术的关键是采用了全新的发生与接收超声波的方法,采用许多精密复杂的、极小尺寸的、相互独立的压电晶片阵列(例如36、64甚至多达128个晶片组装在一个探头壳体内)来产生和接收超声波束,通过功能强大的软件和电子方法控制压电晶片阵列各个激发高频脉冲的相位和时序,使其在被检测材料中产生相互干涉叠加产生可控制形状的超声场,从而得到预先希望的波阵面、波束入射角度和焦点位置。
因此,超声波相控阵检测技术实质上是利用相位可控的换能器阵列来实现的。
超声波相控阵激发的超声波进入材料后,仍然遵循超声波在材料中的传播规律。
因此,对于常规超声波检测应用的频率、聚焦的焦点尺寸、聚焦长度、入射角、回波幅度与定位等等,超声波相控阵也是同样应用的。
超声波相控阵探头的每个压电晶片都可以独立接受信号控制(脉冲和时间变化),通过软件控制,在不同的时间内相继激发阵列探头中的各个单元,由于激发顺序不同,各个晶片激发的波有先后,这些波的叠加形成新的波前,因此可以将超声波的波前聚焦并控制到一个特定的方向,可以以不同角度辐射超声波束,可以实现同一个探头在不同深度聚焦(电子动态聚焦)。
使用超声相控阵技术的无损检测方法与技巧

使用超声相控阵技术的无损检测方法与技巧超声相控阵技术是一种常用于无损检测的技术,它通过使用一组探头向待测物体发射超声波,并接收其反射波,从而获取物体内部的信息。
相比传统的单点检测技术,超声相控阵技术具有更高的分辨率、更广的探测范围和更强的穿透力。
本文将介绍使用超声相控阵技术进行无损检测的方法和技巧。
首先,准备工作是使用超声相控阵技术进行无损检测的关键。
需要选取合适的探头和超声仪器。
探头的选择应根据待测物体的尺寸、形状和材料选择合适的频率、探头尺寸和探头阵列形式。
超声仪器的性能也需要符合要求,包括信号发射和接收的灵敏度、增益、滤波器和数据处理能力等。
其次,进行检测前需要进行合适的准备工作。
首先要对待测物体进行表面清洁,以保证超声波能够有效传播和反射。
其次要选择合适的耦合介质,将探头与待测物体保持良好的接触。
对于粗糙表面的物体,可以使用凝胶或液体耦合剂,而对于平滑表面的物体,可以尝试使用接触探头。
在实际检测过程中,需要注意一些技巧以提高检测的准确性和效率。
首先,要选择合适的扫查模式,可以根据实际需求选择直线扫查、螺旋扫查或网格扫查等。
其次,要根据待测物体的不同部位和表面形态进行特定的检测调节,例如调整传感器的入射角度和倾斜角度,以最大限度地获取有用的信息。
此外,在数据处理方面也有一些技巧可以加以应用。
首先是信号增强技术,可以通过滤波、均衡和增益调节等方式,提高信号质量。
其次是多角度检测技术,通过改变入射角度和探头位置,获取多个角度的数据,从而提高检测精度。
最后是图像重建技术,通过将多个数据进行整合和处理,生成更清晰、更具信息量的图像或曲线。
需要注意的是,在使用超声相控阵技术进行无损检测时,也存在一些潜在的问题和限制。
首先是探头的选择较为复杂,需要根据具体情况进行合理选择。
其次是背景噪声和杂散信号可能干扰检测结果,需要进行相应的滤波和处理。
此外,超声相控阵技术对于复杂结构和多层材料的检测可能存在一定的困难,需要结合其他技术进行辅助。
archer相控阵超声波

相控阵超声波成像技术是近年来超声医学领域的一项重要技术,其中archer相控阵超声波技术更是在这一领域中占据着重要地位。
本文将对archer相控阵超声波进行详细介绍。
一、相控阵超声波成像技术相控阵超声波成像技术是利用超声波的高频振动产生的超声波信号来对人体进行成像的一种医学技术。
这种技术的主要原理是利用超声波在物体中传播的速度和方向信息,通过数学算法处理后得到图像。
相比于传统的B超成像技术,相控阵超声波成像技术具有分辨率高、能够获取三维信息等优点。
二、archer相控阵超声波技术的原理archer相控阵超声波技术是相控阵超声波成像技术的一种重要形式,它的原理主要是利用超声波在物体内部的反射和多个超声源之间的相互作用,从而实现对人体内部的成像。
具体来说,archer相控阵超声波技术使用多个超声发射器和接收器,将超声波信号在人体内部扫描,通过计算机算法对信号进行处理,生成高清晰度的三维图像。
这种技术可以通过调节超声源之间的相位差、振幅和时间延迟等参数,实现对人体内部不同部位的成像。
三、archer相控阵超声波技术的应用1.医学领域archer相控阵超声波技术在医学领域中被广泛应用,主要是因为它可以提供更加精确和深入的成像结果。
这种技术可以用于检测肿瘤、心脏病、血管疾病等多种疾病,有助于医生制定更加科学的治疗方案。
2. 工业领域除了在医学领域中的应用,archer相控阵超声波技术还可以应用于工业领域,如对金属材料的缺陷检测、焊接质量检测等。
这种技术不仅可以提高工作效率,还可以减少环境污染。
四、结语总之,archer相控阵超声波技术是一种非常重要的成像技术,在医学和工业领域都发挥着重要作用。
随着技术的不断发展,相信archer相控阵超声波技术还会有更广泛的应用前景。
超声波相控阵检测原理和应用-详细版本

超声波相控阵检测是一种利用超声波与物体相互作用的技术,通过控制超声波的发射、接收和信号处理等参数,实现对物体内部缺陷、结构以及材料性质等方面的非破坏检测。
超声波相控阵检测原理是利用超声波在物体内部传播的特性,同时通过电子计算机控制多个超声传感器的发射和接收,可以对物体进行成像及缺陷定位。其主要步骤包括:
(1)信号发射:多个超声发射器同时发射超声波信号,这些信号在物体内部传播,对物体进行扫描和检测。
(2)信号接收:多个超声接收器同时接收超声波信号,记录下信号的时间、强度等信息。
(3)信号处理:采用先进的电子计算机技术,对接收到的信号进行处理和分析,生成物体的图像和缺陷信息等。
超声波相控阵检测与传统的超声波检测相比,具有以下优势:
超声波相控阵检测在工业、医学、航空、航天等领域具有广泛的应用,例如:
(1)工业领域:用于对钢铁、金属、陶瓷等物体的质量检测、缺陷检测、材料性能测试等方面。
(2)医学领域:用于对人体内部的缺陷、病变、组织结构等方面的检测和成像。
(3)航空航天领域:用于对航空器、火箭等物体的结构缺陷、疲劳损伤、材料性能测试等方面。
(1)高精度:相控阵技术可以实现高分辨率的成像,对物体内部微小缺陷也可以进行检测置进行检测,大大提高了检测的效率和准确性。
(3)多功能:相控阵技术可以实现不同角度的扫描和检测,适用于不同形态的物体检测。
(4)无损伤:相控阵技术采用超声波作为探测介质,对物体没有任何损伤,适用于不同材料和形态的物体检测。
总之,超声波相控阵检测是一种非常重要的检测技术,其优越的性能和广泛的应用前景,将会对各行业的生产、科研、诊断等方面发挥重要作用。
超声波相控阵原理

超声波相控阵原理超声波相控阵是一种利用超声波进行成像和测距的技术,其原理是通过控制多个超声波发射器的相位和幅度,实现对超声波束的控制和聚焦。
相控阵技术具有快速成像、高分辨率和远距离探测等优点,广泛应用于医学影像、无损检测、测距测速等领域。
一、超声波相控阵的基本原理超声波相控阵的基本原理是利用多个发射器和接收器组成的阵列,通过控制每个发射器的相位和幅度,实现超声波的聚焦和定向发射。
具体步骤如下:1. 发射:首先,发射器将电信号转换为超声波信号,并通过控制每个发射器的相位和幅度,实现超声波的聚焦和定向发射。
通过调整相位和幅度,可以改变超声波束的方向和形状,实现对待测物体的定向探测和成像。
2. 传播:超声波经过发射后,会在介质中传播,并与物体相互作用。
在传播过程中,超声波会受到介质的衰减、散射和反射等影响,这些影响会导致超声波在传播过程中的衰减和改变。
3. 接收:超声波到达接收器后,接收器将超声波信号转换为电信号,并通过控制每个接收器的相位和幅度,实现对超声波信号的聚焦和定向接收。
通过对接收信号的处理和分析,可以得到待测物体的信息,如形状、结构和材料等。
二、超声波相控阵的工作原理超声波相控阵的工作原理可以简单分为发射和接收两个过程。
在发射过程中,多个发射器按照预设的相位和幅度依次发射超声波信号,形成一个聚焦的超声波束。
在接收过程中,多个接收器按照预设的相位和幅度接收超声波信号,并通过信号处理和分析得到待测物体的信息。
超声波相控阵的工作原理可以用以下几个步骤来描述:1. 阵列布置:多个发射器和接收器按照一定的规律布置成阵列,形成一个二维或三维的发射接收阵列。
2. 相位控制:通过控制每个发射器和接收器的相位,使得发射的超声波信号和接收的超声波信号在特定的方向上相干叠加。
相位控制可以通过电子开关、延迟线和相位调制等方式实现。
3. 幅度控制:通过控制每个发射器和接收器的幅度,使得发射的超声波信号和接收的超声波信号在发射和接收过程中具有一定的增益和衰减。
超声波相控阵技术在无损检测中的应用

超声波相控阵技术在无损检测中的应用早在1959 年,Tom Brown和Hughes在Kelvin注册了一项超声波环形动态聚焦探头的专利技术,后来这项技术称为相控阵。
在上世纪60年代,关于超声波相控阵的研究主要局限于实验室;60年代末70年代初期,医学研究者已将相控阵技术成功运用到人体超声成像方面。
然而超声相控阵技术在工业方面的应用发展缓慢,主要是因为相控阵系统复杂而当时的计算机能力弱,缺乏对多晶片探头进行快速激发以及无法对扫查产生的大量数据文件进行处理的能力;另一个原因就是仪器费用高昂,很少有公司愿意在这方面花费巨额费用。
随着计算机技术的快速发展,相控阵系统的复杂性和费用都大为降低。
且相控阵技术相对于普通超声波检测有着明显的优势,令相控阵超声检测技术在工业领域逐渐兴起。
已在多种材料的检测上进行了应用并取得了较满意的检测结果。
1 原理简介相控阵超声波检测技术基于惠更斯原理,所用探头由多个晶片组成,应用时按照一定的规则和时序对探头中的一组或者全部晶片进行激活(晶片的激活数量取决于相控阵仪器控制能力和检测需要),每个激活晶片发出的超声波为次波,次波相互干涉,形成所需的新的波阵面传播开去成为超声波束对工件进行检测。
对于相控阵检测仪器而言,基本上由两部分组成,一部分是普通的超声波检测部分,一部分是相控阵部分,其中普通的超声部分负责发出压电脉冲信号,并对相控阵返回的信号进行显示处理;相控阵部分将压电脉冲信号根据预置规则进行不同的延时施加到要被激活的晶片上,从而产生出不同的波束,见图1。
对晶片进行激活时所遵循的规则(即进行何种方式的延时的触发)称之为聚焦法则(focal law),不同的延时能发射出不同的超声波束,使超声波束具有相应的波形。
并且聚焦在不同的深度(根据干涉原理仅能在近场区范围内聚焦),线性扫查无需聚焦。
在一次扫查过程中,可以设置多组聚焦法则,也就是说可以设置多组波束进行扫查,提高扫查效率和保证扫查部位。
相控阵超声波检测原理

相控阵超声波检测原理
相控阵超声波检测是利用超声波的特性,在工业和医疗领域进行缺陷检测和成像使用的一种新型技术。
它可以对物体进行快速、无损的缺陷检测和成像。
接下来我们将详细介绍相控阵超声波检测的原理。
相控阵超声波检测原理
相控阵超声波检测的原理基于声波的传播和反射特性。
在超声波检测中,通过超声探头向被检测物体发送脉冲信号,声波进入物体后,会产生反射。
探头会接收这些反射信号并进行处理,最终形成被检测物体的图像。
相控阵超声波检测是利用多个探头同时向被检测物体发送超声波,然后对接收到的数据进行计算和处理,从而形成物体的三维图像。
相比传统的超声波检测技术,相控阵超声波检测具有以下优势:
1.快速成像:相控阵超声波检测可以同时采集多个探头发送的信号,并通过计算和处理快速构建被检测物体的三维图像。
2.高精度检测:相控阵超声波检测可以将声束控制在较小范围内,从而减小误差和漏检率,提高检测精度。
3.非破坏性检测:相控阵超声波检测不会破坏被检测物体的结构,因此适用于对含有细小缺陷的物体的检测,例如钢管和铸件等。
4.广泛应用:相控阵超声波检测已广泛应用于航空航天、汽车制造、建筑、医疗等领域。
总之,相控阵超声波检测是一种非常重要的超声检测技术。
它可以快速、精确地检测物体的缺陷,并生成可视化的三维图像,为工业和医疗领域提供了重要的帮助。
超声波相控阵检测技术及其使用

聚焦声束的形成过程
要素:
1. 在产生聚焦声束时,第一晶片和最后一个晶片延迟相同,其余的2---N-1 晶片的延迟按照抛物线法则变换。
2. 有效阵列孔径保持不变 18
线性波形模式 19
扇形波形模式 20
聚焦波形模式 21
角度增益补偿
因素2: 有效孔径随入射角度而变化(虚拟晶片宽度随角度改变而减小)
叶片检测10晶片单元大小晶片单元间隔晶片单元跨距晶片单元高度晶片单元宽度11使用楔块12使用楔块13由相位变化产生的与折射角对应的入射角使用楔块产生横波14第二种情况入射点向楔块前端漂移第一种情况没有声束偏转15使用楔块产生纵波16产生纵波17超声相控阵是超声探头晶片的组合由多个压电晶片按一定的规律分布排列然后逐次按预先规定的延迟时间激发各个晶片所有晶片发射的超声波形成一个整体波阵面能有效地控制发射超声束波阵面的形状和方向能实现超声波的波束扫描偏转和聚焦
超声相控阵技术是当今无损检测 技术中最先进的超声检测新方法。尤 其在焊接接头检测方面的应用具有独 特优势。可有效地检出焊接接头中的 各种面状缺陷和体积型缺陷。检测结 果以图像形式显示,为缺陷定位、定 量、定性、定级提供了丰富的信息。
8
典型应用:叶片检测
9
晶片单元宽度 晶片单元大小 晶片单元间隔 晶片单元跨距
医用相控阵B超设备
2
由于超声波在金属材料、复合材料、陶瓷、塑料及玻璃纤维中会产生波 形转换同时材料自身的厚度变化及几何结构都会产生干扰回波,如何把相 控阵技术引入到工业领域就变得极具挑战性。1980s第一台相控阵系统被 应用于工业检测领域,这台相控阵系统机身结构非常大且需要一个数据转 换器把采集到的数据传送到电脑上进行分析及成像。这些设备大多数应用 在在线电力设备检测中。但是此项技术在核电市场中很难被接受,因为在 核电中要推进一种新的检测技术需要更严苛的评估。其他较早应用相控阵 检测技术的有大型轴类锻件以及低压管道检测领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
? 由于超声波在金属材料、复合材料、陶瓷、塑料及玻璃纤维中会产生波 形转换同时材料自身的厚度变化及几何结构都会产生干扰回波,如何把相 控阵技术引入到工业领域就变得极具挑战性。1980s 第一台相控阵系统被 应用于工业检测领域,这台相控阵系统机身结构非常大且需要一个数据转 换器把采集到的数据传送到电脑上进行分析及成像。这些设备大多数应用 在在线电力设备检测中。但是此项技术在核电市场中很难被接受,因为在 核电中要推进一种新的检测技术需要更严苛的评估。其他较早应用相控阵 检测技术的有大型轴类锻件以及低压管道检测领域。
有效阵列孔径 ? N ? PitchSize? CosbS1/ L1
EchoAmplitude(信号幅度) ~ EffectiveSize2(有效孔
22
角度增益补偿
因素 3: 探头中的信号衰减能量损失随入射角度而变化(楔块中声程 随角度加大而加大)
23
对线阵探头中的晶片进行单独补偿,使晶片的灵敏度达 到一致: 相控阵探头晶片的不均匀性 (出现偏差); 在每个聚焦法则中,楔块声束路径/损耗都是不同的。
b b a 第一种情况
S1 ? S0 ? ? ? 0 ? Migr ? 0
没有声束偏转
b b a 第二种情况
S1 ? S0 ? ? ? 0 ? Migr ? 0
入射点向楔块前端漂移 ; 楔块延迟增加
b b a Case 2 S1 ? S0 ? ? ? 0 ? Migr ? 0
入射点向楔块后端漂移 ; 楔块延迟减小
? 1990s 由电池供电的便携式相控阵设备正式应用于工业检测领域。模拟 设备需要电源及空间来创建可以控制声束的多通道结构,但是进入数字时 代后,成本低廉的嵌入式微处理器的快速发展推动了下一代相控阵设备的 快速发展。除此之外,低电电子元件、更好的省电结构以及整个行业大量 使用粘贴板的设计也推进了新一代小型化的高级技术的发展。新一代的相 控阵设备可以在一台便携装置中进行电子设置、数据处理、显示及分析, 从此次相控阵技术在工业领域的应用变得更为广泛。
4
?新一代相控阵技术
经过角度增益 补偿后的成像 显示
5
真实几何结构描绘
6
? 实时3D成像
7
相控阵技术的原理
传统的超声检测采用单晶片探头发 散声束。在某些情况下也采用双晶片探 头或者单晶片聚焦探头来减小盲区和提 高分辨率。但是不管是哪种情况下,超 声场在介质中均是按照一个单一角度的 轴线方向传播。单一角度的扫查限制了 超声检测对于不同方向缺欠定性和定量 的能力。因此,大部分“有效的”标准
都要求采用多个角度声束的扫查来提高 检出率。但是对于复杂几何外形、大壁 厚或者探头扫查空间有限的情况检测很 难实现,为此就需要采用相控阵多晶片 探头和电子聚焦声束来满足上述情况的 检测要求。
超声相控阵技术是当今无损检测 技术中最先进的超声检测新方法。尤 其在焊接接头检测方面的应用具有独 特优势。可有效地检出焊接接头中的 各种面状缺陷和体积型缺陷。检测结 果以图像形式显示,为缺陷定位、定 量、定性、定级提供了丰富的信息。
扇形覆盖区域中能量分布具有非均匀性
通过角度增控阵设备硬件工作原理示意
要素 :
超声波相控阵检测技术及其 应用
1
相控阵技术发展历史
? 超声相控阵技术已有 50多年的发展历史。相控阵超声波检测作为一种独特的技术得 到开发和应用,在 21世纪初已进入成熟阶段。
? 初期主要应用于医疗领域, B 超成像中用相控阵换能器快速移动声束对被检器官成 像,这里相控阵技术的主要作用是实现动态聚焦,大大提高了超声影像的清晰度。 其在临床上的应用范围为心脏、肝脏、胆囊、肾脏、胰腺、乳腺、妇产科、颅脑等 方面,其应用之广泛已使它成为四大医学影像技术之一。
在金属材料中会产生波形转换问题,早期工业相控阵方法延用医用B超模式, 不具有波形转换修正技术,因此带来的异常信号误判、定位定量误差及难以 判读波形信息等问题未能有效解决。
? 问题二: 通过传楔统块工入业射相到控构阵件定内量部方时法存不在具入有传射角统点度工漂、业移声相现控程象阵、成和晶像能片量增分益布修传变正统化技的,术工采,业用相多控单晶阵一片成入探像射头 点校准方式与常规距离波幅曲线修正,造成的扇形区域中能量分布不均匀及测量 误差等问题未能有效解决。
8
典型应用:叶片检测
9
晶片单元宽度 晶片单元大小 晶片单元间隔 晶片单元跨距
晶片单元高度
10
使用楔块
11
使用楔块
12
使用楔块– 产生横波
bs1 – 希望在工件中产生的折射角 ---横波 a 1 – 由相位变化产生的与折射角对应的入射角
13
Sina 1 ? SinbS1
VL1
VS 2
?a ? a1 ?a0
传统工业相控阵成像
传统工业相控阵成像
3
■ 然而相控阵技术从医疗领域向工业领域跃进的过程存在着很多技术难题无法 解决,因此最早的工业相控阵设备都是直接把医疗相控阵方法直接照搬到工业机 型上面。这种技术的应用和成像描绘的模式对于工业探伤来说,存在着很多隐患 和需要改进的问题。
? 问题一: 医用B超检测对象是由水份组成的人体,不必考虑波形转换现象,而超声波
14
使用楔块– 产生纵波
15
使用楔块– 产生纵波
Sina 1 VL1
?
SinbL1 VL2
a 1 ? 第一临界角(a ) cr116
EffectiveApertureSiz e
? PitschSize ? N ? cos b
超声相控阵是超声探头晶片的组 合,由多个压电晶片按一定的规律 分布排列,然后逐次按预先规定的 延迟时间激发各个晶片,所有晶片 发射的超声波形成一个整体波阵面, 能有效地控制发射超声束(波阵面) 的形状和方向,能实现超声波的波 束扫描、偏转和聚焦。
17
聚焦声束的形成过程
要素 :
1. 在产生聚焦声束时,第一晶片和最后一个晶片延迟相同,其余的2---N-1 晶片的延迟按照抛物线法则变换。
2. 有效阵列孔径保持不变
18
线性波形模式
19
扇形波形模式
20
聚焦波形模式
21
角度增益补偿
因素 2: 有效孔径随入射角度而变化(虚拟晶片宽度随角度改变而减小)