国家开放大学《常微分方程》形考任务1试题
《常微分方程》考试参考答案(A卷)

《常微分方程》考试参考答案(A卷)《常微分方程》考试参考答案(A 卷)一、填空题(每空2分,共30分)1、()dy y g dx x = ln y x c x=+ 2、()()dy f x y dx= 2x y e = 3、2222M N y x= 4、1212(,)(,)f x y f x y L y y -≤-5、存在不全为0的常数12,k c c c ,使得恒等式11()()0k k c x tc x t +=对于所有[,]t a b ∈ 都成立()0w t ≡6、412341011i i λλλλλ-===-==- 1234cos sin t t x c e c e c tc t -=+++7、322x xy y c -+=二、判断题(每题2分,共10分)1、√2、×3、×4、√5、√三、计算题(每题15分,共60分)1、解:231()dy y dx x x y +=+ 变量分离231y dx dy y x x =++ 两边积分2221(1)1211y x dx dx y x xλ+=-++ 2211ln 1ln ln 122y x x +=-+ 22ln(1)(1)2ln ||y x x ++=从而解得通解为:222(1)(1)x y cx ++=2、解:先求30dx x dt+=的通解:33dt t x ce ce --?== 利用常数变易法,令原方程解为3()t x c t e -= 解得:3223551()5dt t t t t t c t e e dt c e e dt c e dt c e c --?=+=+=+=+ ∴原方程的通解为:533211()55t t t t x e c e ce e --=+=+3、解:先求对应齐线性方程:(4)20x x x ''-+=的通解特征函数42()210F λλλ=-+= 123411λλ==-从而通解为:1234()()t t x c c t e c c t e -=+++ 现求原方程一个特解,这里:2()30f t t λ=-= 0λ=不是特征根,即原方程有形如:2x At Bt c =++的特解把它代入原方程有:2243A At Bt C t -+++=- 解得101A B C ===21x t =+ ∴原方程通解为:21234()()1t t x e c c t e c c t t -=+++++4、解:令cos sin y p t x t '==?=2cos dy pdx tdt == 原方程的通解为:11sin 242y t t c =++ 5、解:由111x y +≤≤得112011a b x y ==-≤≤-≤≤ 从而()(,)4222x y Rf M max f x y y y L y -∈?===-=≤=?∴11min(,)min(1,)44b h a M === 从而解存在区间为114x +≤ 231123221327()011()3311()[()]3311111139186342o o x x x y x x dx x x x x dx x x x x --====+=-+=---+?? 2(21)1(21)!24o ML y y h +-≤=+。
常微分方程1

常 微 分 方 程试卷(一至十) 试 卷(一)一、填空题(3′×10=30′)1、以y 1=e 2x ,y 2=e x sinx ,y 3=e x cosx 为特解的最低阶常系数齐次线性微分方程是 。
2、微分方程4x 3y 3dx+3x 4y 2dy=0的通积分是 。
3、柯西问题x dxdy=,y (0)=1的解是 。
4、方程ydx-xdy=0的积分因子可取 。
5、证明初值问题的毕卡定理所构造的毕卡序列是 。
6、微分方程F(x ,y ,p)=0若有奇解y=ϕ (x),则y=ϕ (x) 满足的P-判别式是 。
7、线性微分方程组Y x A dxdY)(=的解组Y 1(x ),Y 2(x )…,Y n (x )在某区间上线性无头的充分必要条件是。
8、设A ,则矩阵指数函数e xA = 。
9、方程0=+'+''y y y 的通解是 。
10、由方程033=+'+''+'''y y a y a y 的通解是 。
二、解下列各方程(7′×4=28) 1、求方程31-++-=y x y x dx dy 的通解: 23、621y x y xdx dy =+ 4、x e x y y y 2)53(23+=+'-''三、求单参数曲线族xy=c 的正交轨线族(10′)12′)=dxdYY五、设二阶方程0442=-'+''y y x y x 有特解y 1(x)=x ,求此方程的通解(8′)六、有一容积为10000m 3的车间。
车间的空气含有0.12%的CO 2,今用一台风量为1000m 3/min 的鼓风机通入新鲜空气,新鲜空气中含有0.04%的CO 2,向鼓风机开动10min 后,车间内CO 2的百分比降到多少?(12′)试卷(二)一、填空题(31、微分方程组的阶数是 。
2、以y 1=e x ,y 2=xe x ,y 3=e 2x xin2x 为特解的最低阶实常系数齐次线性微分方程是 。
精编国家开放大学电大本科《常微分方程》网络课形考任务5试题及答案

国家开放大学电大本科《常微分方程》网络课形考任务5试题及答案形考任务5题目1方程过点(0, 0)的积分曲线().选择一项:A.有无穷多条B.有惟一一条C.不存在D.只有二条题目2重当y方程在dv>血14当}寺°xoy平面上任一点的解都().选择一项:A.与x轴相交B.是惟一的C.与x轴相切D.不是惟一的题目3-—cos V方程& ”的所有常数解是().选择一项:, D.一女云左=0:二L二题目4方程山满足解的存在唯一性定理条件的区域是().选择一项:A.y>0的上半平面B.全平面C.除去x轴的全平面D.y<0的下半平而—=A(x)Y^F(jt).xeR t Y 任R 气 若A(x),F(x) 乂0在(-8,+8)上连续,那么线性非齐次方程组b 解( )・选择一项:A. 不可以与x 轴相交B. 构成一个n 维线性空间C. 构成一个n +1维线性空间D. 可以与x 轴相交题目7^- = F(x,TO n 维方程组的任一解的图像是n+1维空间中的().选择一项:A. n 条曲线B. 一条曲线C. n 个曲面D. 一个曲而题目8方程* - ” = °的任一非零解在E ,习平面上( )零点. 选择一项:A. 只有一个B. 只有两个C. 无D. 有无穷多个题目9三阶线性齐次微分方程的所有解构成一个( )线性空间. 选择一项:B. 2维 方程 过点(0, 0)的解为J =smx ,此解的存在区间是( ). 选择一项: 题目6的任一非零C.4维D.1维题目10用待定系数法求方程】的非齐次特解・了」时,应设为(). 选择一项:C Vj =x(^sinx-3cosx9Z。
《常微分方程》单元测试题(一)及详细参考解答

《常微分方程》单元测试题(一)及详细参考解答
【注1】本次测试主要内容为高等数学、数学分析、微积分等教材中《常微分方程》章节的主要内容,建议自己在草稿纸上动手做完以后再参见下面给出的参考答案!
【注2】参考解题过程不一定是最简单的,或者最好的,并且有时候可能还有些许小错误!希望在对照完以后,不管是题目有问题,还是参考解答过程有问题,希望您能不吝指出!如果您有更好的解题思路与过程,也欢迎通过后台或邮件以图片或Word文档形式发送给我们,我们将尽可能在第一时间推送和大家分享,谢谢!
相关推荐
更多测试与练习请参见“高数线代”菜单下的“公式大纲练习解答”选项中“综合练习”列表的总列表,或者直接进入相应课程的内容导航列表中查看!
•《常微分方程》单元测试题(四)及详细参考解答
•《向量代数与空间解析几何》单元测试题(一)及参考解答
•《多元函数微分学及其应用》单元测试题(一)及参考解答
•《重积分》单元测试题(一)及详细参考解答
•《曲线积分与曲面积分》单元测试题(一)及详细参考解答
•《无穷级数》单元测试题(一)题目及详细参考解答
•《无穷级数》单元测试题(二)题目及详细参考解答
•《高等数学》第二学期期末考试试题(四)及参考解答拓展版。
常微分方程答案

《常微分方程》测试题 1 答案一、填空题(每空5分)12、 z=34、5、二、计算题(每题10分)1、这是n=2时的伯努利不等式,令z=,算得代入原方程得到,这是线性方程,求得它的通解为z=带回原来的变量y,得到=或者,这就是原方程的解。
此外方程还有解y=0.2、解:积分:故通解为:3、解:齐线性方程的特征方程为,,故通解为不是特征根,所以方程有形如把代回原方程于是原方程通解为4、解三、证明题(每题15分)1、证明:令的第一列为(t)= ,这时(t)==(t)故(t)是一个解。
同样如果以(t)表示第二列,我们有(t)== (t)这样(t)也是一个解。
因此是解矩阵。
又因为det=-t故是基解矩阵。
2、证明:(1),(t- t)是基解矩阵。
(2)由于为方程x=Ax的解矩阵,所以(t)也是x=Ax的解矩阵,而当t= t时,(t)(t)=E, (t- t)=(0)=E. 故由解的存在唯一性定理,得(t)=(t- t)《常微分方程》测试题2 答案一、填空题:(每小题3分,10×3=30分)1. 2. 3 3.4. 充分条件5. 平面6. 无7. 1 8. 9.10. 解组线性无关二. 求下列微分方程的通解:(每小题8分,8×5=40分)1、解:将方程变形为………(2分)令,于是得……(2分)时,,积分得从而…(2分)另外,即也是原方程的解………(2分)2、解:由于……………………(3分)方程为恰当方程,分项组合可得…………(2分)故原方程的通解为……(3分)3、解:齐线性方程的特征方程为特征根…(2分)对于方程,因为不是特征根,故有特解…(3分)代入非齐次方程,可得.所以原方程的解为…(3分)4、解:线性方程的特征方程,故特征根…………………(2分)对于,因为是一重特征根,故有特解,代入,可得……(2分)对于,因为不是特征根,故有特解,代入原方程,可得…(2分)所以原方程的解为…(2分)5、解:当时,方程两边乘以,则方程变为…(2分),即于是有,即……(3分)故原方程的通解为另外也是原方程的解. …(3分)三、解:, ,解的存在区间为…(3分)即令……(4分)又误差估计为:(3分)四、解:方程组的特征方程为特征根为,(2分)对应的特征向量应满足可解得类似对应的特征向量分量为…(3分)原方程组的的基解矩阵为…………………(2分)………(3分)五、证明题:(10分)证明:设,是方程的两个解,则它们在上有定义,其朗斯基行列式为…………………(3分)由已知条件,得…………………(2分)故这两个解是线性相关的.由线性相关定义,存在不全为零的常数,使得,由于,可知.否则,若,则有,而,则,这与,线性相关矛盾.(3分)故(2分)《常微分方程》测试题3答案1.辨别题(1)一阶,非线性(2)一阶,非线性(3)四阶,线性(4)三阶,非线性(5)二阶,非线性(6)一阶,非线性2.填空题(1).(2).(3).(4).3.单选题(1).B (2).C (3).A (4).B (5). A (6). B 7. A 4. 计算题(1).解当时,分离变量得等式两端积分得即通解为(2).解齐次方程的通解为令非齐次方程的特解为代入原方程,确定出原方程的通解为+(3).解由于,所以原方程是全微分方程.取,原方程的通积分为即(4). 令,则,代入原方程,得,当时,分离变量,再积分,得,即:5. 计算题令,则原方程的参数形式为由基本关系式,有积分得得原方程参数形式通解为5.计算题解方程的特征根为,齐次方程的通解为因为不是特征根。
国家开放大学《高等数学基础》形考任务1—4参考答案

国家开放大学《高等数学基础》形考任务1—4参考答案形考任务1(一)单项选择题(每小题5分,共50分)1-1.()1-2.(3f=,xxln(x)(=))x3g ln2-1.()。
2-2.()。
3-1.()。
3-2.()。
4-1.()。
5-1.().5-2.().6-1.(y轴)6-2.设函数)f(xf--的图形关于(坐标原点)对)xf的定义域为)(x(,(+∞-∞,则函数)称.7-1.()。
7-2.()。
8-1.()。
8-2.()。
9-1.()9-2.(1)x)ln(+10-1.()(二)判断题(每小题5分,共50分)11-1.(×)11-2.(×)12-1.已知函数f(x+1)=x2+2x+9,则f(x)=-x2+8.(×)12-2.(√)13-1.(√)13-2.(√)14-1.(√)14-2.(×)15-1.(×)15-2.(√)16-1.(×)16-2.(×)17-1.(√)17-2.(×)18-1.(√)18-2.(√)19-1.(√)19-2.(×)20-1.(√)20-2.(√)形考任务2(一)单项选择题(每小题5分,共50分)1-1.()。
1-2.()。
2-1.()s。
2-2.()s。
3-1.(e)。
3-2.(4)4-1.(0)。
4-2.(-99!)5-1.()。
5-2.下列结论中正确的是()6-1.()()6-2.()7-1.下列结论中()不正确.7-2. 下列结论中()不正确.8-1.()()8-2.()9-1.()。
9-2.()10-1.()。
10-2.()。
(二)判断题(每小题5分,共50分)11-1.(×)11-2.(√)12-1.12-2.(×)13-1.(×)13-2.(√)14-1.(×)14-2.(×)15-1.(√)15-2.(√)16-1.(√)16-2.(×)17-1.(×)17-2.(√)18-1.(×)18-2.(√)19-1.(×)19-2.(√)20-1.(×)20-2.(×)形考任务3(一)单项选择题(每小题5分,共50分)1-1.()。
常微分方程试题及参考答案

常微分方程试题一、填空题(每小题3分,共39分)1.常微分方程中的自变量个数是________.2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变量分离方程.4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.5.方程=(x+1)3的通解为________.6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.8.方程+a1(t) +…+a n-1(t) +a n(t)x=0中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之等价的一阶方程组________.12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基解矩阵exp A t=________.13.方程组的奇点类型是________.二、计算题(共45分)1.(6分)解方程= .2.(6分)解方程x″(t)+ =0.3.(6分)解方程(y-1-xy)dx+xdy=0.4.(6分)解方程5.(7分)求方程:S″(t)-S(t)=t+1满足S(0)=1, (0)=2的解.6.(7分)求方程组的基解矩阵Φ(t).7.(7分)验证方程:有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.三、证明题(每小题8分,共16分)1.设f(x,y)及连续,试证方程dy-f(x,y)dx=0为线性方程的充要条件是它有仅依赖于x的积分因子.2.函数f(x)定义于-∞<x<+∞,且满足条件|f(x1)-f(x2)|≤N|x1-x2|,其中0<N<1,证明方程x=f(x)存在唯一的一个解.常微分方程试题参考答案一、填空题(每小题3分,共39分)1.12. 2+c1t+c23.u=4. c为任意常数5.y= (x+1)4+c(x+1)26.y=y0+7. (x)=8.对任意t9.x(t)=c1e t+c2te t+c3e-t+c4te-t10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)11. x1(1)=1,x2(1)=2, x3(1)=312.expAt=e-2t[E+t(A+2E)+ ]13.焦点二、计算题(共45分)1.解:将方程分离变量为改写为等式两边积分得y-ln|1+y|=ln|x|-即y=ln 或e y=2.解:令则得=0当0时-arc cosy=t+c1y=cos(t+c1) 即则x=sin(t+c1)+c2当=0时y= 即x3.解:这里M=y-1-xy, N=x令u=xye-xu关于x求偏导数得与Me-x=ye-x-e-x-xye-x 相比有则因此u=xye-x+e-x方程的解为xye-x+e-x=c4.解:方程改写为这是伯努利方程,令z=y1-2=y-1 代入方程得解方程z==于是有或5.特征方程为特征根为对应齐线性方程的通解为s(t)=c1e t+c2e-tf(t)=t+1, 不是特征方程的根从而方程有特解=(At+B),代入方程得-(At+B)=t+1两边比较同次幂系数得A=B=-1故通解为S(t)=c1e t+c2e-t-(t+1)据初始条件得c1=因此所求解为:S(t)=6.解:系数矩阵A=则,而det特征方程det( )=0, 有特征根对对对因此基解矩阵7.解:因故x1=1,x2=0是方程组奇点令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*这里R(X)= , 显然(当时)方程组*中,线性部分矩阵det(A- )=由det(A- )=0 得可见相应驻定解渐近稳定三、证明题(每小题8分,共16分)1.证明:若dy-f(x,y)dx=0为线性方程则f(x,y)=因此仅有依赖于x的积分因子反之,若仅有依赖于x的积分因子。
常微分方程试题库

答:没有
20.方程的常数解是
.
答:
21.向量函数组在其定义区间上线性相关的 条件是它们的朗斯基
行列式,.
答:必要
22.方程满足解的存在唯一性定理条件的区域是 .
答: 平面
23.方程所有常数解是 .
答:
24.方程的基本解组是
.
答: 25.一阶微分方程的通解的图像是
答:2
维空间上的一族曲线.
代入原方程,有 , 可解出 . 故原方程的通解为 2.求下列方程组的通解
. 解 方程组的特征方程为
即 特征根为 ,
对应的解为
其中是对应的特征向量的分量,满足
可解得. 同样可算出对应的特征向量分量为 .
所以,原方程组的通解为
3.求方程的通解. 解:方程的特征根为,
齐次方程的通解为 因为不是特征根。所以,设非齐次方程的特解为
6.试用一阶微分方程解的存在唯一性定理证明:一阶线性方程 , 当 , 在上连续时,其解存在唯一 证明: 令 : , , 在上连续, 则 显然在上连续 , 因为 为上的连续函数 , 故在上也连续且存在最大植 , 记为 即, ,= 因此 一阶线性方程当 , 在上连续时,其解存在唯一
答:
8.若为齐次线性方程的一个基本解组,为非齐次线性方程的一个特解,
则非齐次线性方程的所有解可表为_____________________
答:
9.若为毕卡逼近序列的极限,则有 __________________
答:
10.______________________称为黎卡提方程,若它有一个特解 ,则
常微分方程
一、填空题
1.微分方程的阶数是____________
答:1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国家开放大学《常微分方程》形考任务1试题
"题目1:本课程的教学内容共有五章,其中第三章的名称是().
: 一阶线性微分方程组
; 基本定理
; 定性和稳定性理论简介
; 初等积分法"
"题目2:本课程安排了6次形成性考核任务,第2次形成性考核作业的名称是().: 第一章至第四章的单项选择题
; 第二章基本定理的形成性考核书面作业
; 初等积分法中的方程可积类型的判断
; 第一章初等积分法的形成性考核书面作业"
"题目3:网络课程主页的左侧第3个栏目名称是:().
: 自主学习
; 课程信息
; 系统学习
; 课程公告"
"题目4:网络课程的“系统学习”栏目中第一章初等积分法的第4个知识点的名称是().: 一阶隐式微分方程
; 常数变易法
; 分离变量法
; 全微分方程与积分因子"
"题目5:网络课程的“视频课堂”栏目中老师讲课的电视课共有()讲.
: 18
; 19
; 20
; 17"
"题目6:网络课程主页的左侧“考试复习”版块中第二个栏目名称是:().
: 考核说明
; 各章练习汇总
; 复习指导
; 模拟测试"
题目7:请您按照课程的学习目标、学习要求和学习方法设计自己的学习计划,并在下列文本框中提交,字数要求在100—1000字.。