函数的概念及其表示教案

合集下载

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。

[2]通过观察、画图等具体动手,体会分段函数的概念。

[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。

[2]通过细致作图,培养学生的动手能力和识图能力。

2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。

[2]分段函数的概念。

2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。

3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。

4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。

6 教学过程6.1 引入新课【师】同学们好。

初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。

这节课我们来继续进一步学习和函数有关的内容。

【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。

【板演/PPT】PPT演示三个实例。

【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。

相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。

函数的概念教案

函数的概念教案

函数的概念教案函数是数学中一个非常重要的概念,它在数学建模、物理、经济学等领域有着广泛的应用。

本文将介绍函数的概念及其相关内容,帮助学生理解和掌握函数的基本知识。

一、函数的定义及表示函数是一个将一个集合的元素映射到另一个集合的元素的规则。

通常,将原集合中的元素称为自变量,将映射后的元素称为函数值。

函数可以用多种方式表示,常见的有:1. 函数的符号表示:一般用字母 f、g 等来表示函数,自变量用 x、y 等表示,函数值用 f(x)、g(x) 等表示。

2. 函数的图像表示:可以通过绘制函数的图像来表示函数。

将自变量 x 的取值范围确定后,可以根据函数的表达式或函数值计算出函数的函数值,然后绘制函数图像。

3. 函数的表达式表示:可以用代数表达式表示函数。

常见的函数表达式有:多项式、指数函数、对数函数、三角函数等。

二、函数的性质函数有许多重要的性质,下面介绍其中的几个常见性质:1. 定义域和值域:函数的定义域是自变量的取值范围,而函数的值域是函数值所能取到的范围。

2. 奇偶性:函数的奇偶性指的是函数关于原点对称的性质。

奇函数满足 f(-x) = -f(x),即函数图像关于原点对称;偶函数满足f(-x) = f(x),即函数图像关于 y 轴对称。

3. 单调性:函数的单调性指的是函数图像的变化趋势。

递增函数表示函数在定义域内随着自变量的增大,函数值逐渐增大;递减函数表示函数在定义域内随着自变量的增大,函数值逐渐减小。

三、函数的运算在数学中,函数之间可以通过运算生成新的函数。

常见的函数运算有:1. 函数的和、差、积、商:两个函数的和、差、积、商也是一个函数。

2. 函数的复合:给定两个函数 f(x) 和 g(x),可以将一个函数的输出作为另一个函数的输入,生成新的函数。

复合函数表示为(f ∘ g)(x) 或 f(g(x))。

四、函数的应用函数在数学、物理、经济学等领域有着广泛的应用,下面介绍几个常见的应用举例:1. 物体的运动:通过函数来描述物体的运动状态,如位置函数、速度函数、加速度函数等。

高中数学必修一《函数的概念及其表示》优质教案

高中数学必修一《函数的概念及其表示》优质教案

高中数学必修一《函数的概念及其表示》优质教案教材分析课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.教学目标与素养课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式;3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利用图像表示函数;5.数学建模:由实际问题构建合理的函数模型。

重难点重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程一、情景导入初中已经学过函数的三种表示法:列表法、图像法、解析法,那么这三种表示法定义是?优缺点是?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本67-68页,思考并完成以下问题1.表示两个变量之间函数关系的方法有几种?分别是什么?2.函数的各种表示法各有什么特点?3.什么是分段函数?分段函数是一个还是几个函数?4.怎样求分段函数的值?如何画分段函数的图象?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

高中数学教案《函数的概念及其表示》

高中数学教案《函数的概念及其表示》

教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。

o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。

o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。

2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。

o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。

o通过小组合作探究,培养学生的合作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。

o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。

o通过解决问题,培养学生的耐心、细致和严谨的科学态度。

二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。

●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。

●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。

2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。

●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。

●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。

3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。

●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。

中职教育数学《函数的概念及其表示法》教案

中职教育数学《函数的概念及其表示法》教案

中职教育数学《函数的概念及其表示法》教案一、教学目标1. 理解函数的定义和概念;2. 掌握函数的表示法及其应用;3. 能够用图像和公式表示函数。

二、教学内容函数的概念及其表示法三、教学过程Step 1 引入教师可以通过一个简单的例子引入函数的概念,如身高和体重的关系。

身高是自变量,体重是因变量,通过身高可以确定体重,这就是一个函数关系。

Step 2 函数的定义函数是一种关系,它使一个集合中的每一个元素,都与另一个集合中的唯一一个元素相对应。

函数的定义可以用自然语言描述,也可以用数学符号表示。

Step 3 函数的符号表示函数可以用多种符号表示,包括函数定义域、值域、函数图像、函数公式等。

3.1 函数定义域函数定义域指自变量的取值范围,一般用符号表示。

例如,对于函数y = f(x),定义域可以表示为x ∈ R。

3.2 函数值域函数值域指因变量的取值范围,一般用符号表示。

例如,对于函数y = f(x),值域可以表示为y ∈ R。

3.3 函数图像函数图像是用平面直角坐标系表示函数的一种方法,可以直观地观察函数的性质。

通过绘制函数的图像,可以分析函数的单调性、奇偶性等特征。

3.4 函数公式函数公式是用数学符号表示函数的一种方法,通过函数公式可以直接计算函数在特定自变量取值下的因变量值。

例如,y = f(x)可以表示一个函数。

Step 4 函数的应用函数在实际问题中有很多应用,如经济学、物理学、生物学等领域。

教师可以通过一些实际问题引导学生分析和解决问题,培养学生运用函数概念的能力。

Step 5 练习与巩固教师可以设计一些练习题,帮助学生巩固函数的概念和表示法。

例如,给定一个函数的图像或函数公式,让学生确定定义域、值域等。

四、教学资源1. 平面直角坐标系;2. 函数图像绘制工具;3. 练习题。

五、课堂总结在本节课中,我们学习了函数的概念及其表示法。

通过掌握函数的定义、函数的符号表示和函数的应用,我们可以更好地理解和运用函数概念。

《函数的概念及其表示》教案完美版

《函数的概念及其表示》教案完美版

《函数的概念及其表⽰》教案完美版《函数的概念及其表⽰》教案第⼀课时: 1.2.1 函数的概念(⼀)教学要求:通过丰富实例,进⼀步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习⽤集合与对应的语⾔来刻画函数,体会对应关系在刻画函数概念中的作⽤;了解构成函数的要素;能够正确使⽤“区间”的符号表⽰某些集合。

教学重点、难点:理解函数的模型化思想,⽤集合与对应的语⾔来刻画函数。

教学过程:⼀、复习准备:1. 讨论:放学后骑⾃⾏车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回顾初中函数的定义:在⼀个变化过程中,有两个变量x 和y ,对于x 的每⼀个确定的值,y 都有唯⼀的值与之对应,此时y 是x 的函数,x 是⾃变量,y 是因变量. 表⽰⽅法有:解析法、列表法、图象法.⼆、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .⼀枚炮弹发射,经26秒后落地击中⽬标,射⾼为845⽶,且炮弹距地⾯⾼度h (⽶)与时间t (秒)的变化规律是21305h t t =-.B .近⼏⼗年,⼤⽓层中臭氧迅速减少,因⽽出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞⾯积的变化情况.(见书P16页图)C .国际上常⽤恩格尔系数(⾷物⽀出⾦额÷总⽀出⾦额)反映⼀个国家⼈民⽣活质量的⾼低。

“⼋五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系?三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每⼀个x ,按照某种对应关系f ,在数集B 中都与唯⼀确定的y 和它对应,记作::f A B →③定义:设A 、B 是⾮空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意⼀个数x ,在集合B 中都有唯⼀确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的⼀个函数(function ),记作:(),y f x x A =∈.其中,x 叫⾃变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).④讨论:值域与B 的关系?构成函数的三要素?⼀次函数(0)y ax b a =+≠、⼆次函数2(0)y ax bx c a =++≠的定义域与值域?⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。

函数的概念及其表示法教案

函数的概念及其表示法教案

【课题】 3.1 函数的概念及其表示法【教学目标】知识目标:(1) 理解函数的定义; (2) 理解函数值的概念及表示; (3) 理解函数的三种表示方法;(4) 掌握利用“描点法”作函数图像的方法. 能力目标:(1) 通过函数概念的学习,培养学生的数学思维能力;(2) 通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3) 会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.【教学重点】(1) 函数的概念;(2) 利用“描点法”描绘函数图像.【教学难点】(1) 对函数的概念及记号)(x f y 的理解; (2) 利用“描点法”描绘函数图像.【教学设计】(1)从复习初中学习过的函数知识入手,做好衔接; (2)抓住两个要素,突出特点,提升对函数概念的理解水平; (3)抓住函数值的理解与计算,为绘图奠定基础; (4)学习“描点法”作图的步骤,通过实践培养技能; (5)重视学生独立思考与交流合作的能力培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】}中的任意一个值,有唯一的值与之对应.两个变量之间的这种对应关系叫做动脑思考探索新知() 1,-+∞0,得12 x.因此函数的定义域为1,2⎛⎤-∞⎥⎝⎦.代数式中含有分式,使得代数式有意义的条件是分母不等于零;代数式中含有二次根式,使得代数式有意义的条件是被开方式大于或等于零.0,这个函数与-<x x,0..但是它们的对应法则不同,因此不是同)尽管表示两个函数的字母不同,但是定义域与对应法则都相同,所以它们是同一个函数.(C)之间的11月29C)随时间)变化的曲线如下图过 程行为 行为 意图 间曲线形象地反映出气温T (C )与时间t (h )之间的函数关系,这里函数的定义域为[]0,14.对定义域中的任意时间t ,有唯一的气温T 与之对应.例如,当6t =时,气温 2.2T C =︒;当14t =时,气温12.5T C =︒.3. 用S 来表示半径为r 的圆的面积,则2πS r =.这个公式清楚地反映了半径r 与圆的面积S 之间的函数关系,这里函数的定义域为+R .以任意的正实数0r 为半径的圆的面积为200πS r =.引导 分析 说明说明 启发 引领自我 体会 了解 体会 领悟从函 数的 角度 讲解 公式45*动脑思考 探索新知函数的表示方法:常用的有列表法、图像法和解析法三种. (1)列表法:就是列出表格来表示两个变量的函数关系. 例如,数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等都是用列表法来表示函数关系的.用列表法表示函数关系的优点:不需要计算就可以直接看出与自变量的值相对应的函数值.(2)图像法:就是用函数图像表示两个变量之间的函数关系. 例如,我国人口出生率变化的曲线,工厂的生产图像,股市走向图等都是用图像法表示函数关系的.用图像法表示函数关系的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势.(3)解析法:把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.总结 归纳 介绍 说明 举例 说明思考 理解 记忆 观察带领 学生 总结 函数 的三 种表 示方 法并 了解 其各 自的 特点 可以过 程行为 行为 意图 间例如,s =60t 2,A =πr 2,S =2πrl ,y =2-x (x2)等都是用解析式表示函数关系的.用解析式表示函数关系的优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值. 举例 介绍体会 了解教给 学生 自我 分析 总结 55 *巩固知识 典型例题例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示这个函数.分析 函数的定义域为{1,2,3,4,5,6},分别根据三种函数表示法的要求表示函数.解 设x 表示购买的铅笔数(支),y 表示应付款额(元),则函数的定义域为{}1,2,3,4,5,6. (1)根据题意得,函数的解析式为0.12y x =,故函数的解析法表示为0.12y x =,{}1,2,3,4,5,6x ∈.(2)依照售价,分别计算出购买1~6支铅笔所需款额,列成表格,得到函数的列表法表示.x /支1 2 3 4 5 6 y /元 0.120.240.360.480.60.72(3)以上表中的x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中依次作出点(1,0.12),(2,0.24),(3,0.36),(4,0.48),(5,0.6),(6,0.72),得到函数的图像法表示.归纳由例4的解题过程可以归纳出“已知函数的解析式,作函质疑说明强调 引领讲解启发 分析观察 体会 思考 主动 求解 理解 领会通过 例题 进一 步领 会函 数三 种表 示方 法的 特点 突出 图像 的作 法 数形 结合 带领过 程行为 行为 意图 间数图像”的具体步骤:(1)确定函数的定义域;(2)选取自变量x 的若干值(一般选取某些代表性的值)计算出它们对应的函数值y ,列出表格;(3)以表格中x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中描出相应的点(,)x y ;(4)根据题意确定是否将描出的点联结成光滑的曲线. 这种作函数图像的方法叫做描点法. 例5 利用“描点法”作出函数x y =的图像,并判断点(25,5)是否为图像上的点 (求对应函数值时,精确到0.01) . 解 (1)函数的定义域为),0[+∞.(2)在定义域内取几个自然数,分别求出对应函数值y ,列表:x0 1 2 3 4 5 …y11.411.7322.24 …(3)以表中的x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中依次作出点(y x ,).由于(25)255f ==,所以点(25,5)是图像上的点.(4)用光滑曲线联结这些点,得到函数图像.强调 归纳 总结 说明启发 引导强调 讲解领会 理解 记忆 了解 思考 求解 理解学生 总结 归纳 函数 的图 像做 法特 别注 意步 骤性 和细 节 演示 过程 中提 醒学 生注 意作 图的 细节70*运用知识 强化练习 教材练习3.1.21.判定点()11,2M -,()22,6M -是否在函数13y x =-的图像上.2.市场上土豆的价格是3.2元/kg ,应付款额y 是购买土豆提问 巡视 指导动手 求解 交流及时 了解 学生 知识 掌握。

函数的概念及其表示——函数的表示法教案

函数的概念及其表示——函数的表示法教案

函数的概念及其表示——函数的表示法【教学目标】1.知识与技能:掌握函数的解析法、列表法、图象法三种主要表示方法。

2.过程与方法:培养数形结合、分类讨论的数学思想方法。

3.情感、态度与价值观:掌握分段函数的概念。

【教学重难点】教学重点:解析法、图象法。

教学难点:作函数图象。

【教学过程】一、复习引入。

1.函数的定义是什么?函数的图象的定义是什么?2.在中学数学中,画函数图象的基本方法是什么?3.用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征?二、讲解新课:函数的表示方法。

表示函数的方法,常用的有解析法、列表法和图象法三种。

(1)解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式。

例如,2s 60t =,2A r π=,S 2rl π=,2(0)y ax bx c a =++≠,2)y x =≥等等都是用解析式表示函数关系的。

优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值。

中学阶段研究的函数主要是用解析法表示的函数。

(2)列表法:就是列出表格来表示两个变量的函数关系。

学生的身高单位:厘米学号123456789身高125135140156138172167158169数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的。

公共汽车上的票价表。

优点:不需要计算就可以直接看出与自变量的值相对应的函数值。

(3)图象法:就是用函数图象表示两个变量之间的关系。

例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。

优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质。

三、例题讲解。

例1:某种笔记本每个5元,买{1,2,3,4}x ∈个笔记本的钱数记为y (元),试写出以x 为自变量的函数y 的解析式,并画出这个函数的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的概念及其表示
【知识点分析及例题】 一、函数的概念
1、函数的定义
一般地:设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称
():f x A B →为从集合A 到集合B 的一个函数,记作:(),y f x x A =∈.
注意:函数概念中的关键词
(1) A ,B 是非空数集.若求得自变量取值范围为∅,则此函数不存在. (2)任意的x ∈A ,存在唯一的y ∈B 与之对应. 2. 函数的定义域、值域
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{()|}f x x A ∈叫做函数的值域.
3. 函数的三要素:定义域、值域和对应法则. 注:常见定义域的取值范围
(Ⅰ)关系式为整式或齐次根式时,函数定义域的取值范围为全体实数; (Ⅱ)关系式含有分式时,分式的分母不等于零; (Ⅲ)关系式含有偶次根式时,被开方数大于等于零;
(Ⅳ)关系式中含有零指数幂或负指数幂的式子时,底数不等于零;
(Ⅴ)实际问题中,函数定义域的取值范围还要和实际情况相符合,使之有意义.
4. 相等函数
如果两个函数的定义域和对应法则完全一致,则这两个函数相等;这是判断两函数相等的依据.
5. 区间的概念
设,a b 是两个实数,而且a b <.我们规定:
(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[,]a b . (2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(,)a b . (3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为[,)a b ,(,]a b .
这里的实数都叫做相应区间的端点.
实数R 可以用区间表示为(,)-∞+∞.“∞”读作“无穷大”, “-∞”读作“负无穷大”,“+∞”读作“正无穷大”,我们可以把满足x a ≥,x a >,x b ≤,x b <,的实数x 的集合分别表示为[,)a +∞,(,)a +∞,(,]b -∞,(,)b -∞.
二、函数的表示
1、函数的表示法
(1)解析法:用数学表达式表示两个变量之间的对应关系的方法.
(2)列表法:列出表格来表示两个变量之间的对应关系的方法.
(3)图像法: 用图象表示两个变量之间的对应关系的方法.
用描点法画函数图象的一般步骤:列表、描点、连线(视其定义域决定是否连线).
2、求函数的解析式的方法
(1)待定系数法: 适用于已知函数的模型(如一次函数、二次函数、反比例函数等.
(2)换元法: 适用于已知(())
f g x的解析式,求()
f x.
(3)消元法: 适用于同时含有()
f x和
1
()
f
x
,或()
f x和()
f x
.
3、分段函数
当自变量x在不同的取值区间(范围)内取值时,函数的对应法则也不同的函数为分段函数.
注意:分段函数是一个函数,不是几个函数,只是在定义域的不同范围上取值时对应法则不同,分段函数是普遍存在又比较重要的一种函数.
4、映射的概念
设A ,B 是两个非空的集合,如果按照某种对应法则 ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素()f x 与之对应,那么就称对应
():f x A B →为从集合A 到集合B 的一个映射。

注意:由映射的定义可以看出,映射是函数概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A 、B 必须是非空数集. 【例题】
类型一:函数与映射概念考查
例1、判断下列图象能表示函数图象的是( )
例2
、 判断以下是否是函数:
(2)542-=x y ;(3)x y ±=;(4)x x y -+-=23;(5)922=+y x
例3、下列是映射的是( )
图1 图2 图3 图4 图5
(A)图1、2、3 (B)图1、2、5 (C)图1、3、5 (D)图1、2、3、 类型二:相等函数
例4、下列各对函数中,是相等函数的序号是________.
①f (x )=x +1与g (x )=x +x 0 ②f (x )=(2x +1)2
与g (x )=|2x +1| ③f (n )=2n +1(n ∈Z)与g (n )=2n -1(n ∈Z) ④f (x )=3x +2与g (t )=3t +2 类型三:求函数定义域
例5、求下列函数的定义域
①2
3
-+
=x x y ; ②1-=x x y ; ③12--=x x y ; ④1321)(-⋅-=x x x f ;
(A)
⑤0)3(2
1
)(-+-=x x x f ; ⑥2)(2-+=x x x f .
例6
、已知函数1()2
f x x =+. (1)求函数的定义域. (2)求(3)f -,(6)f 的值.
(3)当0a >时,求()f a ,(1)f a -的值.
类型四:求函数值域
例7、求下列函数的值域.
(1
)1y =(观察法) (2)246,[1,5]y x x x =-+∈(配方法)
(分离常数法) (4
)y x =+
类型五:抽象函数的定义域
1、已知)(x f 的定义域,求复合函数()][x g f 的定义域
由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

3
x
y x =
-
2、已知复合函数()][x g f 的定义域,求)(x f 的定义域
方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

3、已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域
结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由
()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。

4、已知()f x 的定义域,求四则运算型函数的定义域
若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。

例8、已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.
例9、函数
定义域是
,则
的定义域是( )
A. B. C. D.
例10、若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.
类型六:求函数解析式
例11、(1)已知f (x +1)=x 2+4x +1,求f (x )的解析式;
(2)已知f (x )满足x x
f x f =+)1
(2)(,求)(x f .
(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).
例12、已知f (x )是-次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ),
f (x +1)的解析式.
类型七:分段函数问题
例12、已知函数22,1(),122,2x x f x x x x x +≤-⎧⎪
=-<<⎨⎪≥⎩
(1)求1
(3),(),(5)2
f f f -的值.(2)若()3f x =,求x 的值.
例13、已知函数f (x )=⎩⎨

x +2 x ≤0
-x +2 x >0,不等式f (x )≥x 2的解集为( )
A .[-1,1]
B .[-2,2]
C .[-2,1]
D .[-1,2]
例14、如图,在边长为4的正方形ABCD 的边上有一点P ,沿折线BCDA 由点
B(起点)向点A(终点)运动,设点P 运动的路程为x ,△APB 的面积为y.
(1)求y 关于x 的函数关系式y =f(x);(2)画出y =f(x)的图象;(3)若△APB 的面积不小于2,求x 的取值范围.。

相关文档
最新文档