抑制谐波与提高功率因素

合集下载

电路中的功率因数改善与谐波控制

电路中的功率因数改善与谐波控制

电路中的功率因数改善与谐波控制电力系统是现代社会的基础设施之一,对于电力质量的要求也越来越高。

功率因数和谐波是两个重要的电力质量指标,对电力设备的正常运行和电网的稳定运行都具有重要的影响。

因此,电路中的功率因数改善和谐波控制成为了电力系统优化的关键问题之一。

一、功率因数的概念和意义功率因数是指电路中有用功与总视在功率之比,用功因数来表示。

功率因数的数值范围在0到1之间,其越接近1,表示电路利用率越高。

而功率因数低,则会导致电网中的电流大、损耗增加、线路过载等问题。

功率因数的改善主要有以下几种方式:1. 采用有功补偿设备,如电容器组,通过并联连接至负载电路,将无功功率由容性电流补偿掉,从而提高功率因数;2. 减少负载电流中的谐波成分,并通过谐波滤波器进行谐波控制;3. 合理设计电路参数,在电路连接时,尽量减少电感元件的使用。

二、谐波的概念和产生原因谐波是电路中频率是基波频率整数倍的一组分量,其存在会引起电流和电压的畸变,从而影响电力系统的稳定运行。

谐波主要是由非线性负载引起的,例如电弧炉、整流装置、变频器等。

谐波控制的原则是尽量减少谐波对电力系统的影响,可以采取以下措施:1. 使用谐波滤波器,通过选择合适的谐波滤波器参数来减小谐波电流,从而实现谐波控制;2. 采用谐波限制器,通过控制非线性负载的使用,限制谐波产生;3. 采用低谐波设计的电力设备,以减小谐波的产生和传播。

三、功率因数改善与谐波控制方法的比较功率因数改善和谐波控制都是优化电力系统的重要手段,但两者在应用上有所不同。

功率因数改善主要关注无功功率的补偿,通过提高电路的功率因数来降低电网的无功功率的占比。

能够有效降低线路损耗、改善电压质量、提高电网的稳定性等方面具有显著的作用。

而谐波控制则主要关注谐波电流的控制,通过减小谐波对电力系统的影响,保证电力系统的正常运行和设备的稳定工作。

谐波控制除了可以采用谐波滤波器和谐波限制器等设备外,还可以通过合理设计和选择低谐波的电力设备来进行控制。

消除谐波危害 提高功率因数

消除谐波危害 提高功率因数

免造成决策失误 , 给企业带来不必要的损失。 C 行 业将 会在 “ MS 十一 五 ” 间有 一个新 的 格局 期 调整 , 各生产企业应该顾全大局 , 加强企业间协调 ,
减 少 和 杜绝 恶 性 竞争 ,在 新 的格 局调 整 中 共 同发
展。 收稿日期:05 1-0 20— 13
现有C 生产装置的企业在进行技改扩建时和准备 MS 进入这一行业的新建C S M 生产装置的企业 ,在决策
维普资讯

脉~ 波一

中国氯碱
20 0 6年 第 4期
数一 ^裹 1整 流 装 置∞ 大 特 性 谐 波 电 流 值 一i 一∞ ∞ 最
, 1 一基波电流有效值 , 。 A
谐波 次数 为 n m + 的 高次 谐 波 电流称 为 “ =p l 特
性谐 波 电流” 整 流 装置最 大特性 谐波 电流如 表 1 , 。
1 原因分析
()整流 装置 的非 正弦 电流 可 以分解 成基 波 电 1 甲烷低 价进入 中 国市场 ,避 免给 我 国C 企 业带 来 MS
摘 要 :分析 了造成 功 率 因数低 、烧 毁保 护子 系统C U板及 离子膜 系统 多次 出现 电 流波动 现 象的 原 P 因, 并提 出解 决 问题 的相应 对策 。 关键 词 : 波 ;功 率 因数 ; 谐 措施
中图分类号 -M4 1 . 6 T 文献 标识 码 : B 文章编 号 :0 9 1 8 (0 6 0 — 0 7 0 10 — 7 5 2 0 )4 0 0 — 2
流和高次谐波 电流 , 富氏级数分析表明,脉波整 有 P
流装 置发 生 的高次谐 波 电流及 理论 上 的最大值 由下
式表 示 。

功率因数校正基本原理与谐波概念

功率因数校正基本原理与谐波概念

功率因数调整和谐波抑制基本原理关键词:正弦波频率(周期)相位交流电电压电流电阻电感电容功率因数谐波1、为什么要调整功率因数?电能的合理应用要求在传输及分配中要尽量限制电网中所有引起电能损耗的因素,其中重要的因素之一就是无功功率。

无功功率因感性负荷所引起,工业以及公共电网上的主要负荷是电阻-电感性的。

电网功率因数调整的目的是通过在某些特定的环节上用超前无功功率来补偿滞后无功功率。

此方法还能避免过高压降及额外的电阻损耗。

将电容器尽可能地靠近电感负载并联于电网,就可产生所需的超前无功功率。

静态电容补偿装置可以减少电网上传输的滞后无功功率。

当网络条件改变时,通过增加或减少单个电力电容器,就可逐步调整所需的超前无功功率来补偿滞后无功功率。

2、功率因数调整的好处☆输配电成本降低:8到24个月即可收回投资成本,功率因数校正降低了系统中的无功功率、功率损耗进而输配电成本也成比例下降。

☆有效的利用设备:功率因数的改善意味着电力设备更经济实用的工作(同样的视在功率具有更高的有功功率)☆改善电压的质量☆减少压降☆优化电缆尺寸:随着功率因数的提高(载流量减小),电缆横截面也因此减小。

或者说,同样的电缆可以传输更多的功率。

☆较小传输损耗:输电线开关装置的载流量减不,假如只有有功部分,这就意味着输电线的铜损得以降低。

3、谐波的概念谐波是频率几倍于50H频率的正弦电压和电流。

谐波是由非线性电压/电流特性的电子负载的操作而引起的,主要谐波源有以下几类:①电力电子装置工业常用有整流、逆变、调压和变频器等。

②电弧炉用于钢铁等行业的交流和直流电弧炉等。

③家用电器如日光灯、电视机、调速风扇、空调、冰箱等。

④高新技术设备现代办公和商用计算机、节能灯、核磁共振设备等发达国家的经验表明,随着科学技术的发展,各种非线性用电设备容量的增长率大大超过电网的发电设备容量的增长率,若不进行有效的谐波控制,供电电压的谐波畸变率可能高达10%。

我国电网已开始遭遇并将迅速面临发达国家当前的谐波局面,即谐波源随着高新技术的发展而猛增,电网电压的畸变率也将上升。

无功补偿在电力系统中的作用与意义

无功补偿在电力系统中的作用与意义

无功补偿在电力系统中的作用与意义无功补偿是电力系统中的重要技术手段之一,其作用与意义广泛应用于电力系统的稳定运行和质量改善。

本文将从三个方面来阐述无功补偿的作用与意义。

一、无功补偿在电力系统中的作用1. 提升功率因数:无功补偿设备能够补偿电力系统中的无功功率,减少无功功率对有功功率的影响,从而提升功率因数。

功率因数是衡量电力系统运行效率的重要指标之一,高功率因数不仅能提高电力系统的运行效率,还能减少线路损耗,降低电流的谐波含量。

2. 调节电压稳定:电力系统运行中,无功功率的变化会导致电压波动,甚至引发电压失稳。

无功补偿能够通过调节功率因数来控制无功功率的流动,进而稳定电压,提高电力系统的可靠性。

3. 抑制谐波:电力系统中的谐波会对电力设备产生负面影响,如降低设备的寿命和运行效率,引发电网冗余和过载等问题。

无功补偿设备能够对谐波进行补偿,抑制谐波的产生和传播,提高电力系统的谐波抗扰能力。

二、无功补偿在电力系统中的意义1. 提高电力系统运行效率:通过无功补偿,能够减少电力系统中的无功损耗,提高有功功率的传输效率,降低线路损耗和电流损耗,从而提高电力系统的运行效率。

2. 降低电力系统负荷:无功补偿设备能够有效控制电压波动,稳定电力系统的运行,减轻系统负荷,提高供电质量。

特别是在大型工业厂短时间启动高功率设备时,无功补偿能够减少电压下降的幅度,降低电网的电压波动,保证电网的供电质量。

3. 降低线路损耗:无功补偿设备能够减少电力系统中的无功功率损耗。

无功功率的流动会产生感性和容性电流,这些电流会导致线路和设备的能量损耗。

通过无功补偿,能够减少这些损耗,降低线路损耗,提高电力系统的能效。

三、结语无功补偿在电力系统中具有重要的作用与意义,其能够提升功率因数,调节电压稳定,抑制谐波,提高电力系统的运行效率,降低负荷和线路损耗。

随着电力系统的发展与智能化技术的应用,无功补偿设备将发挥着更加关键的作用,为稳定供电和提高电力系统的可持续性发挥重要作用。

配电系统的谐波治理方案

配电系统的谐波治理方案

配电系统的谐波治理方案配电系统的谐波治理方案随着现代电子设备的广泛应用,谐波问题在配电系统中变得越来越突出。

谐波是指频率是原电源频率的整数倍的电流或电压成分。

谐波会引起各种问题,如电网设备的过载、损坏和功率因数下降等。

因此,为了确保配电系统的正常运行,谐波治理显得尤为重要。

谐波治理方案的核心目标是减少谐波的发生和传播。

下面,我将介绍几种常用的谐波治理方案。

第一种方案是使用谐波滤波器。

谐波滤波器是一种能够从电网中消除谐波的设备。

它通过选择性地吸收或衰减特定频率的谐波,从而将谐波限制在可接受的范围内。

谐波滤波器通常由电容器、电感器和电阻器组成,可以根据谐波频率的不同来选择不同的滤波器。

第二种方案是使用谐波抑制器。

谐波抑制器是一种能够主动抑制谐波的设备。

它通过产生与谐波相位相反的电流或电压来抵消谐波。

谐波抑制器通常由晶闸管组成,可以根据谐波的类型和频率进行调节和控制。

第三种方案是通过改变设备的结构和设计来减少谐波的产生和传播。

例如,在配电变压器的设计中添加谐波抑制装置,可以有效地降低谐波的水平。

此外,还可以采用各种特殊的变压器和电容器等设备来减少谐波。

第四种方案是通过提高配电系统的功率因数来减少谐波。

功率因数是指有功功率与视在功率之比。

当功率因数接近于1时,谐波的水平通常较低。

因此,通过使用功率因数校正装置来提高功率因数,可以有效地降低谐波的水平。

综上所述,谐波治理是保证配电系统正常运行的重要环节。

通过使用谐波滤波器、谐波抑制器、改变设备结构和提高功率因数等方案,可以减少谐波的发生和传播。

这些方案的选择和应用应根据具体的配电系统需求和实际情况来确定。

通过有效的谐波治理方案,我们可以提高配电系统的可靠性和稳定性,确保电力供应的质量和效率。

谐波、谐振的危害及防治措施

谐波、谐振的危害及防治措施

谐波、谐振的危害及防治措施前言随着电气自动化的迅速发展,工业生产中对电能质量的要求更高,但由于电能的复杂性和不稳定性,电力企业和电力用户都会面临许多问题。

其中一个关键问题就是谐波和谐振的危害,它们会对电力系统带来很多问题,同时也会对设备和工作人员的安全产生影响。

因此,谐波和谐振的危害需要引起我们的重视,有必要采取相应的措施进行防治。

谐波的危害谐波是指频率为整数倍基波频率的倍频波,当电网中出现谐波时,会对电力系统造成很多负面影响,主要表现在以下几个方面:1. 降低电网功率因数谐波会对电力系统的功率因数产生影响,使功率因数降低。

功率因数越低,电子设备就越难以正常工作,同时还会导致电能损失和电费增加。

因此,谐波应尽量减小。

2. 损害设备大量谐波会给设备带来很大的损害,造成设备寿命减少,安全储备降低和可靠性下降,这对生产带来很大的风险和影响。

谐波带来的损害主要包括:•电机过热损坏•物理变形•变压器局部过热•电容器和电感器损坏3. 干扰通信系统谐波会引起通信系统(尤其是无线电通信系统)的干扰,影响通信质量。

这种干扰会干扰射频通信的接收机、起伏机、响应器、发射机以及其他电子部件,使通信信号受到严重干扰,从而影响通信过程的稳定性和可靠性。

谐振的危害谐振是指电力系统在特定频率下的共振现象。

虽然谐振一般在正常运行条件下不会出现,但当出现谐振时,会对电力系统造成很大的威胁,主要表现在以下几个方面:1. 破坏电力设备谐振波能量巨大,一旦出现谐振,就会对电力设备造成破坏,严重时甚至会导致设备停产,影响生产。

因此,谐振的出现需要引起注意。

2. 对安全产生威胁谐振波会对人员和设备的安全产生威胁,严重时会导致设备火灾、电击事故等。

电力系统中所有的设备,不仅要承受电压和电流的冲击,还要承受谐振波的冲击,如果谐振波过大,会对设备造成严重威胁。

3. 影响电网稳定性谐振波的存在会破坏电力系统的稳定性,使电网不稳定,从而引起负荷不均衡、跳闸等故障,进一步危及电网的供电能力和稳定性。

电容电抗器的作用及原理

电容电抗器的作用及原理

电容电抗器的作用及原理电容电抗器作为一种重要的电力设备,在电力系统中发挥着重要的作用。

本文将从作用和原理两个方面,对电容电抗器进行详细介绍。

一、电容电抗器的作用电容电抗器主要有两个作用:一是提高电力系统的功率因数;二是抑制电力系统中的谐波。

1. 提高电力系统的功率因数功率因数是指电力系统中有功功率与视在功率的比值,它反映了电力系统的有功功率和无功功率之间的平衡程度。

当电力系统的功率因数低于1时,会导致电网中的电能损耗增加,电力系统运行效率下降。

而电容电抗器可以通过提供无功功率,改善电力系统的功率因数,降低电路中的无功功率流动,减少电能损耗,提高电力系统的运行效率。

2. 抑制电力系统中的谐波电力系统中存在着各种谐波,这些谐波会对电力系统的正常运行造成一定的影响。

而电容电抗器可以通过对谐波电流的吸收和滤波作用,减少电力系统中的谐波电流。

电容电抗器的电容分量可以吸收谐波电流的高频分量,而电感分量则可以滤除谐波电流的低频分量,从而实现对谐波电流的抑制。

通过电容电抗器的使用,可以保证电力系统中的电压和电流波形的纯正,提高电力系统的稳定性和可靠性。

二、电容电抗器的原理电容电抗器是由电容器和电感器两个基本元件组成的。

电容器是一种可以存储电荷的元件,它的主要作用是提供无功功率,改善功率因数。

而电感器是一种可以储存磁能的元件,它的主要作用是抑制谐波电流。

电容电抗器的原理可以用电路理论进行解释。

在交流电路中,电容器对交流电具有阻抗性质,即电容器的阻抗随着频率的增加而减小。

而电感器对交流电具有电抗性质,即电感器的阻抗随着频率的增加而增大。

在电容电抗器中,电容器和电感器的阻抗互相抵消,从而达到提高功率因数和抑制谐波的目的。

电容电抗器的原理还可以用功率三角形进行解释。

在电力系统中,有功功率、无功功率和视在功率之间存在一种特殊的关系,可以用功率三角形来表示。

而电容电抗器的作用就是通过提供无功功率,改善功率三角形的形状,使功率因数接近于1,从而提高电力系统的功率因数。

抑制谐波提高功率因数的几种方法

抑制谐波提高功率因数的几种方法

抑制谐波提高功率因数的几种方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!抑制谐波提高功率因数的有效策略在电力系统中,谐波和低功率因数是两个常见的问题,它们不仅影响了电力设备的效率,还可能导致能源浪费和设备损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抑制谐波与提高功率因素
2015109218何源达一、抑制谐波分量的方法
(1)加装LC滤波器
供配电系统中加装电抗器L与电容器C组成LC调谐滤波器,即可补偿无功功率,又可吸收谐波。

缺点是只能补偿固定频率的谐波,且易和系统中其他频率谐波发生谐振,导致谐波放大。

(2)设置有源的谐波器(APF)
它在工作时主动地注入一个电流来精确地补偿由负荷产生的谐波电流,就会获得一个纯粹的正弦波。

这种滤波设备的工作靠数字信号处理(DSP)技术来控制快速绝缘栅双极晶体管(IGBT)。

因为设备是与供电系统并联工作的,它只控制谐波电流,基波电流并不流过该滤波器。

(3)装用D,yn11接法的隔离变压器
其一次为三角形联结,3的奇次倍谐波在原边绕组内形成环流,不至于将谐波电流注入公共电网造成污染。

此外,D,yn11联结组别变压器还能提供更小的零序阻抗,有利于切除单相接地故障。

(4)增加换流装置的脉动数
换流装置是电网中的主要谐波源之一,其产生的谐波主要集中在特征谐波,非特征谐波含量通常很少,特征频谱为:n=kp士1,则可知脉动数p增加,n也相应增大,而工n、工l/n,故谐波电流将减少。

因此,增加整流脉动数,可平滑波形,减少谐波。

例如:当脉动数由6增加到12时,可有效的消除幅值较大的低频项,从而使谐波电流的有效值大大降低。

(5)利用脉宽调制(PWM)技术
PWM技术,就是在所需的频率周期内,通过半导体器件的导通和关断把直流电压调制成等幅不等宽的系列交流电压脉冲,可达到抑制谐波的目的。

若要消除某次特定谐波,可在控制PWM输出波形的各个转换时刻,保证四分之一波形的对称性,根据输出波形的傅里叶级数展开式,使需要消除的谐波幅值为零,基波幅值为给定量,组成非线性超越方程组计算各个开关通断时刻,达到消除指定谐波和控制基波幅值的目的。

PwM技术的优点是在载波频率高时,输出中所含低次谐波分量很小,从而提供了功率因数。

目前被采用的PWM技术有最优脉宽调制(OPWM)、改进正弦脉宽调制、△调制、跟踪型PWM和自适应PWM控制等。

(6)采用多电平变流技术
也称整流电路的多重化,即将多个方波叠加,以消除次数较低的谐波,从而得到接近正弦波的阶梯波。

重数越多,波形越接近正弦波,但其电路也越复杂,因此该方法一般只用于大容量场合。

该方法用于桥式整流电路中,不仅可以减少交流输入电流的谐波,同时也可以减少直流输出电压中的谐波幅值。

如果把上述方法与PWM技术配合使用,则会产生很好的谐波抑制效果。

(7)限制整流设备的容量
系统短路容量与所供电的整流器容量之比称为短路比,一般而一言,短路比愈大,允许注入的谐波电流越大。

因此,在进行报装审批时,应该根据系统短路容量的大小来限制新接入的非线性负荷的容量。

(8)在整流电路中串接电抗器
整流电路内部的感抗越大,则换流时间越长,电流波形变化越缓慢,因此,在整流电路中串接适当的电抗器也可以减少高次谐波电流。

(9)防止并联电容器组对谐波的放大
在电网中并联电容器组起改善功率因数和调节电压的作用。

当谐波存在时,在一定的参数下电容器组会对谐波起放大作用,危及电容器本身和附近电气设备的安全。

可采取串联电抗器,或将电容器组的某些支路改为滤波器,还可以采取限定电容器组的投入容量,避免电容器对谐波的放大。

(10)装设静止无功补偿装置
在网侧投入无功补偿装置是用来补偿由谐波造成的无功功率,从而提高功率因数。

另外,无功补偿装置中通过电感和电容的合理设置,可在某次频率点产生谐振,即可对该频率的谐波实现滤波。

可有效减少波动的谐波量,同时,可以抑制电压波动、电压闪变、三相不平衡,还可补偿功率因数。

二、提高负载功率因数的方法
提高自然功率因数,就是不添置任何补偿装置,采取措施来减少供电系统中无功功率的需要量。

它不需增加投资,是最经济的提高功率因数的方法。

在不进行任何人工补偿之前,首先从提高自然功率因数着手,能收到既节电又减少开支的效果。

其主要有:
(1)正确选用异步电动机的型号与容量
合理使用电动机;选择电动机既要注意机械性能,又要考虑电器指标。

若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。

故从节约电能和提高功率因数的观点出发,必须正确的合理的选择电动机的容量。

提高异步电动机的检修质量。

异步电动机定子绕组匝数变动和电动机定、转子间的今隙变动时对异步电动机无功功率的大小有很大的影响。

采用同步电动机或异步电动机同步运行提高功率因数。

只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给企业的无功功率,从而提高企业的功率因数。

异步电动机同步运行就是将异步电动机三相转子
绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是“异步电动机同步化”。

调节电机的直流励磁电流,使其呈过激状态,即能向电网输出无功,从而达到提高低压网功率因数的目的。

合理选择配变容量,改善配变的运行方式。

对负载率比较低的配变,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。

正确选用异步电动机,使其额定容量与所带负载相配合,对于改善功率因数是十分重要的。

在选型方面,要注意选用节能型,淘汰高能耗的电动机,并依据电机机械工作对启动力矩、启动次数、调速等方面的具体要求,选用不同的型号。

电动机的效率n与功率因数COSO 是反映电动机经济运行水平的主要标,都与负载率p有密切关系。

GB/T12497-90对三相异步电机三个运行区域规定如下:
当负载率p在70%-100%之间时,为经济运行区;
当40%s p s70%时,为一般运行区;
当p<40%时,为非经济运行区。

因此要防止“大马拉小车”,减少负载的无功消耗,使其尽可能在满载下运行,达到提高自然功率因数的目的。

(2)根据负荷选用相匹配的变压器。

电力变压器一次侧功率因数不但与负荷的功率因数有关,而且与负荷率有关,若变压器满载运行,一次侧功率因数仅比二次侧降低约3-5%;若变压器轻下降达11-18%,载运行,当负荷小于0.6时,一次侧功率因数就显著下降,所以电力变压器的负荷率在0.6以上运行时才较经济,一般应在60%一70%比较合适。

为了充分利用设备和提高功率因数,电力变压器一般不宜作轻载运行。

当电应当更换成容量较小的变压器。

根据变压器的最佳力变压器负荷率小于30%时,负载系数合理选用变压器,将变压器进行更换及调整,在负载小的时候切除部分变压器,这样可以减少无功功率的需求量,使自然功率因数得到提高。

(3)保证电动机的检修质量。

异步电动机定子与转子间的气隙是决定异步电动机需要较多无功功率的主要因素。

当定转子间气隙增大或定子线圈减少时都会使励磁电流增大,从而增加向电网吸收的无功功率而使功率因数降低,因此要提高检修质量,保证电动机的结构参数和性能参数。

(4)对于容量较大且又不需要调速的电动机,应尽量选用同步电动机。

通过调节励磁电流处于过励状态,使其功率因数COS的相位角变为超前(即成为感性负载),这样同步电动机不仅不会吸收无功功率,而且还可向电网输出无功功率,以补偿其他感性负载的无功功率要求,达到提高功率因数的目的。

通常对低速、恒速且长期连续工作的容量较大的电动机,宜采用同步电动机组,如轧钢的电动机组、水泵等设备。

这些设备采用同步电动机为原动机时,球磨机、空压机、鼓风机、而且停其容量一般在250KW以上环境与启动条件均能满足同步电动机的要求,歇时间较少,因此对改善功率因数能起很大作用。

相关文档
最新文档