中考数学圆(大题培优).pptx

合集下载

九年级数学下册 第27章 圆培优专题(七)课件

九年级数学下册 第27章 圆培优专题(七)课件
12/11/2021
【变式跟进】 ︵
1.已知等边△ABC内接于⊙O,点P是劣弧 BC 上的一点(端点除外),延长 BP至D,使BD=AP,连结CD.
(1)若AP过圆心O,如图1,且⊙O的直径为10 cm,求CD的长; (2)若AP不过圆心O,如图2,PC=3 cm,求CD的长.
图1
12/11/2021
第27章 圆
培优专题(七) 圆的综合(二)探索型问题
方法管理 归类探究
12/11/2021
方法管理
圆中探究型试题是近几年中考的一个热点.因为问题本身具有不确定性,或 具有某种规律,需要我们在题目给定的条件下,联系所学的知识,通过合理的观 察、比较、分析、综合、猜想、类比、模拟等途径,加以探究.
12/11/2021
(2)如答图,连结 OD.∵DP 切⊙O 于点 D,∴OD⊥DP,即∠ODP=90°. ∵DP∥AC,∠BAC=38°,∠AOD 是△ODP 的外角, ∴∠AOD=∠ODP+∠P=128°, ∴∠ACD=12∠AOD=64°. ∵OA=OC,∴∠ACO=∠A=38°, ∴∠OCD=∠ACD-∠ACO=64°-38°=26°.
12/11/2021
3.[2017·天津]已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT 交⊙O于点C,E是AB上一点,延长CE交⊙O于点D,连结BD.
(1)如图1,求∠T和∠CDB的大小; (2)如图2,当BE=BC时,求∠CDO的大小.
图1
12/11/2021
图2
.解:(1)如答图1,连结AC. ∵AB是⊙O的直径,AT是⊙O的切线, ∴AT⊥AB,即∠TAB=90°. ∵∠ABT=50°, ∴∠T=90°-∠ABT=40°. ∵AB是⊙O的直径,∴∠ACB=90°, ∴∠CAB=90°-∠ABC=40°. ∴∠CDB=∠CAB=40°.

初三数学圆(2020年整理).pptx

初三数学圆(2020年整理).pptx

y B
D
C
O
P Ax
y B
D F C
E
O
P
Ax
图1
图2
︵ 14.(浙江模拟)如图,以△ABC 的边 BC 为弦,在点 A 的同侧画BC 交 AB 于 D,且∠BDC
=90°+
1 2
∠A,点
P
︵ 是 BC
上的一个动点.
1 判定△ADC 的形状,并说明理由; 2 若∠A=70°,当点 P 运动到∠PBA=∠PBC=15°时,求∠ACB 和∠ACP 的度数;
D C
P AB
O
A
O
备用图
A
O
备用图
6.(上海模拟)在 Rt△ABC 中,∠C=90°,AC=6,sinB= 53,⊙B 的半径长为 1,⊙B 交
边 BC 于点 P,点 O 是边 AB 上的动点. 1 如图 1,将⊙B 绕点 P 旋转 180°得到⊙M,请判断⊙M 与直线 AB 的位置关系; 2 在(1)的条件下,当△OMP 是等腰三角形时,求 OA 的长; 3如图 2,点 N 是边 BC 上的动点,如果以 NB 为半径的⊙N 和以 OA 为半径的⊙O 外切 ,设 NB=y,OA=x,求 y 关于
B
P
G
QE
O
D AM
O
M
备用图
3
10.(浙江杭州)如图,AE 切⊙O 于点 E,AT 交⊙O 于点 M、N,线段 OE 交 AT 于点 C,
OB⊥AT 于点 B,已知∠EAT=30°,AE=3 3,MN=2 22. 1 求∠COB 的度数;
A
E
2 求⊙O 的半径 R; ︵
(3)点 F 在⊙O 上(FME是劣弧),且 EF=5,将△OBC 经过平移、 旋转和相似变换后,使它的两个顶点分别与点 E、F 重合.在 EF 的同 一侧,这样的三角形共有多少个?你能在其中找出另一个顶点也在⊙

圆 初三 ppt课件ppt课件ppt

圆 初三 ppt课件ppt课件ppt

圆的性质
01
圆的直径是半径的两倍 ,半径是直径的一半。
02
圆内接正多边形的所有 边都相等,所有内角也 都相等。
03
圆的外切正多边形的所 有边都相等,所有内角 也都相等。
04
圆的周长和面积都随着 半径的增加而增加。
圆的度量
圆的周长公式
C = 2πr,其中r是圆的半径。
圆的面积公式
A = πr^2,其中r是圆的半径。
圆弧的长度公式
圆内接多边形的周长和面积公式
L = θ/360° × 2πr,其中θ是圆心角的大小 ,r是圆的半径。
P = nπr/180,A = nr^2/4,其中n是多边 形的边数,r是圆的半径。
02 圆的对称性
圆的中心对称性
总结词
圆关于其圆心对称
详细描述
圆关于其圆心具有中心对称性 ,即任意一点关于圆心的对称 点也在圆上。
• 总结词:掌握圆的综合问题需要理解圆的性质和定理,以 及与其他几何知识的结合。
圆的综合问题 圆的综合问题
圆的综合题解题思路 利用圆的性质和定理解决实际问题。
结合其他几何知识,如三角形、四边形等,进行解题。
圆的综合问题 圆的综合问题
运用代数、方程等数学方法进行求解。 圆的综合题解题方法
观察题目,分析已知条件和未知量。
C = 2πr,其中r是圆的半 径,π是一个常数约等于 3.14159。
周长计算方法
使用圆的半径计算出周长 ,可以通过公式直接计算 ,也可以使用计算器或图 形计算软件进行计算。
周长计算实例
假设一个圆的半径为5厘 米,那它的周长就是 31.4厘米。
圆在几何作图中的应用
圆规作图
圆规是用来画圆的工具,通过固定半径长度,可以在纸上 画出标准的圆形。

§5.1 圆的性质及圆的有关位置关系(试题部分).pptx

§5.1 圆的性质及圆的有关位置关系(试题部分).pptx

.
答案 50°
解析 由条件,得∠BOD=2∠A=140°,∠BCD=180°-∠A=110°,因为∠OBC=60°,所以∠ODC= 360°-110°-60°-140°=50°.
8.(2016扬州,16,3分)如图,☉O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为 .
答案 2 2 解析 连接DC.∵∠ABC=∠ADC,∠ABC=∠DAC, ∴∠ADC=∠DAC,∴AC=DC, ∵AD为☉O直径,∴∠ACD=90°, ∴△ACD为等腰直角三角形, ∵AD=4,∴AC=4×sin 45°=2 .2
∵BC是☉O的切线, ∴OB⊥BC, ∴∠OBA+∠CBP=90°, ∵OC⊥OA, ∴∠A+∠APO=90°, ∵OA=OB,∠OAB=22°, ∴∠OAB=∠OBA=22°, ∴∠APO=68°,∵∠APO=∠CPB, ∴∠APO=∠CBP=68°,
∴∠CPB=∠ABC=68°, ∴∠OCB=180°-68°-68°=44°. 故答案为44.
°.
答案 215
解析 连接AO,CO,DO,则∠COD=2∠CAD=70°,又因为∠B= 1 (∠AOD+∠COD),∠E= 1 (∠
2
2
AOC+∠COD),所以∠B+∠E= 1 (∠AOD+∠COD+∠AOC+∠COD)= 1 ×(360°+70°)=215°.
2
2
评析 本题考查同弧所对的圆周角与圆心角的关系.
A.70° B.35° C.20° D.40° 答案 D 因为AB是☉O的直径,AC是☉O的切线,所以AC⊥AB.又因为∠C=70°,所以∠B=20°, 所以∠AOD=40°,故选D.

人教中考数学 圆的综合 培优练习(含答案)及详细答案

人教中考数学 圆的综合 培优练习(含答案)及详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙A过▱OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).(1)若∠BOH=30°,求点H的坐标;(2)求证:直线PC是⊙A的切线;(3)若OD=10,求⊙A的半径.【答案】(1)(132)详见解析;(3)5 3 .【解析】【分析】(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;(2)先判断出∠PCD=∠DAE,进而判断出∠PCD=∠CAE,即可得出结论;(3)先求出OE═3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论.【详解】(1)解:如图,过点H作HM⊥y轴,垂足为M.∵四边形OBCD是平行四边形,∴∠B=∠ODC∵四边形OHCD是圆内接四边形∴∠OHB=∠ODC∴∠OHB=∠B∴OH=OB=2∴在Rt△OMH中,∵∠BOH=30°,∴MH=12OH=1,33∴点H的坐标为(13(2)连接AC.∵OA=AD,∴∠DOF=∠ADO∴∠DAE=2∠DOF∵∠PCD=2∠DOF,∴∠PCD=∠DAE∵OB与⊙O相切于点A∴OB⊥OF∵OB∥CD∴CD⊥AF∴∠DAE=∠CAE∴∠PCD=∠CAE∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°∴直线PC是⊙A的切线;(3)解:⊙O的半径为r.在Rt△OED中,DE=12CD=12OB=1,OD=10,∴OE═3∵OA=AD=r,AE=3﹣r.在Rt△DEA中,根据勾股定理得,r2﹣(3﹣r)2=1解得r=53.【点睛】此题是圆的综合题,主要考查了平行四边形的性质,圆内接四边形的性质,勾股定理,切线的性质和判定,构造直角三角形是解本题的关键.2.如图1,已知扇形MON2,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.【答案】 (1)证明见解析;(2) 2=+y x 02<≤x 1422=x . 【解析】分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出DM ME BD AE =,进而得出AE =122x (),再判断出2OA OC DMOE OD OD==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论. 详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°. ∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM . ∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM , ∴AC =AM .(2)如图2,过点D 作DE ∥AB ,交OM 于点E . ∵OB =OM ,OD ⊥BM ,∴BD =DM . ∵DE ∥AB ,∴DM ME BD AE =,∴AE =EM .∵OM 2,∴AE =122x (). ∵DE ∥AB ,∴2OA OC DM OE OD OD==, ∴22DM OA y OD OE x =∴=+,02x ≤< (3)(i ) 当OA =OC 时.∵111222DM BM OC x ===.在Rt △ODM 中,222124OD OM DM x =-=-. ∵2121224xDM y OD x x==+-,1422x =,或1422x =(舍). (ii )当AO =AC 时,则∠AOC =∠ACO .∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在.(ⅲ)当CO =CA 时,则∠COA =∠CAO =α.∵∠CAO >∠M ,∠M =90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA =2α>90°.∵∠BOA ≤90°,∴此种情况不存在. 即:当△OAC 为等腰三角形时,x 的值为142-.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y 关于x 的函数关系式是解答本题的关键.3.如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E .(1)判断直线DE 与⊙O 的位置关系,并说明理由; (2)若AE =8,⊙O 的半径为5,求DE 的长.【答案】(1)直线DE 与⊙O 相切(2)4 【解析】试题分析:(1)连接OD ,∵AD 平分∠BAC ,∴EAD OAD ∠∠=,∵OA OD =,∴ODA OAD ∠∠=,∴ODA EAD ∠∠=,∴EA ∥OD ,∵DE ⊥EA ,∴DE ⊥OD ,又∵点D 在⊙O 上,∴直线DE 与⊙O 相切 (2)如图1,作DF ⊥AB ,垂足为F ,∴DFA DEA 90∠∠︒==,∵EAD FAD ∠∠=,AD AD =,∴△EAD ≌△FAD ,∴AF AE 8==,DF DE =,∵OA OD 5==,∴OF 3=,在Rt △DOF 中,22DF 4OD OF -==,∴AF AE 8== 考点:切线的证明,弦心距和半径、弦长的关系点评:本题难度不大,第一小题通过内错角相等相等证明两直线平行,再由两直线平行推出同旁内角相等.第二小题通过求出两个三角形全等,从而推出对应边相等,接着用弦心距和弦长、半径的计算公式,求出半弦长.4.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A 作出直径BC 所在射线的垂线.【答案】画图见解析. 【解析】【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下:【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线.5.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD =12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF = 【解析】分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解. 详解:⑴证明:连结OC ∵AB 是⊙O 的直径 ∴∠ACB=90° ∴∠B+∠BAC=90° ∵OA=OC ∴∠BAC=∠OCA ∵∠B=∠FCA ∴∠FCA+∠OCA=90° 即∠OCF=90° ∵C 在⊙O 上 ∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD 12AE EC = ∴CE=8∵直径AB ⊥弦CD 于点E ∴AD AC = ∵∠FCA =∠B ∴∠B=∠ACD=∠FCA ∴∠EOC=∠ECA ∴tan ∠B=tan ∠ACD=1=2CE BE∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE⊥AB∴∠CEO=∠FCE=90°∴△OCE∽△CFE∴OC OECF CE=即106=8 CF∴40CF3=点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.6.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2﹣kx+23 =0的两根(k为常数).(1)求证:PA•BD=PB•AE;(2)求证:⊙O的直径长为常数k;(3)求tan∠FPA的值.【答案】(1)见解析;(2)见解析;(3)tan∠FPA=2﹣3 .【解析】试题分析:(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA•BD=PB•AE;(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.试题解析:(1)证明:如图,∵PB切⊙O于点B,∴∠PBD=∠A,∵PF平分∠APB,∴∠APE=∠BPD,∴△PBD∽△PAE,∴PB:PA=BD:AE,∴PA•BD=PB•AE;(2)证明:如图,∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.又∵∠PBD=∠A,∠EPA=∠BPD,∴∠BED=∠BDE.∴BE=BD.∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),∴AE+BD=k,∴AE+BD=AE+BE=AB=k,即⊙O直径为常数k.(3)∵PB切⊙O于B点,AB为直径.∴∠PBA=90°.∵∠A=60°.∴PB=PA•sin60°=PA,又∵PA•BD=PB•AE,∴BD=AE,∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数).∴AE•B D=2,即AE2=2,解得:AE=2,BD=,∴AB=k=AE+BD=2+,BE=BD=,在Rt△PBA中,PB=AB•tan60°=(2+)×=3+2.在Rt△PBE中,tan∠BPF===2﹣,∵∠FPA=∠BPF,∴tan∠FPA=2﹣.【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.7.在O中,AB为直径,C为O上一点.(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小. 【答案】(1)∠P =34°;(2)∠P =27° 【解析】 【分析】(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;(2)因为D 为弧AC 的中点,OD 为半径,所以OD ⊥AC ,继而求得答案. 【详解】 (1)连接OC , ∵OA =OC , ∴∠A =∠OCA =28°, ∴∠POC =56°, ∵CP 是⊙O 的切线, ∴∠OCP =90°, ∴∠P =34°;(2)∵D 为弧AC 的中点,OD 为半径, ∴OD ⊥AC , ∵∠CAB =12°, ∴∠AOE =78°, ∴∠DCA =39°, ∵∠P =∠DCA ﹣∠CAB , ∴∠P =27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.8.如图,AB 为O 的直径,C 、D 为O 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】 解:(1)AB 是O 的直径,且D 为O 上一点,90ADB ∴∠=︒, CE DB ⊥, 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =,12∴∠=∠. 312∠=∠+∠,321∴∠=∠.42BDC ∠=∠,1BDC ∠=∠,421∴∠=∠,43∴∠=∠,//OC DB ∴.CE DB ⊥,OC CF ∴⊥.又OC 为O 的半径,CF ∴为O 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =483AD BD ∴==, 226810AB ∴=+=,5OB OC ==.OC CF ⊥,90OCF ∴∠=︒,3tan 4OC F CF ∴==, 解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.9.如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与A 、B 重合),连AP ,BP ,过C 作CM ∥BP 交PA 的延长线于点M ,(1)求证:△PCM 为等边三角形;(2)若PA =1,PB =2,求梯形PBCM 的面积.【答案】(1)见解析;(21534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH ⊥CM 于H ,∵△ABC 是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM ∥BP ,∴∠BPC=∠PCM=60°,∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA ,∴∠BCP=∠ACM ,在△BCP 和△ACM 中, BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ACM (SAS ),∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt △PMH 中,∠MPH=30°,∴332∴S 梯形PBCM =12(PB+CM )×PH=12×(2+3)331534【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.10.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQ k CQ +=,则称点A (或点B )是⊙C 的“K 相关依附点”,特别地,当点A 和点B 重合时,规定AQ=BQ ,2AQ k CQ =(或2BQ CQ ). 已知在平面直角坐标系xoy 中,Q(-1,0),C(1,0),⊙C 的半径为r .(1)如图1,当2r =时,①若A 1(0,1)是⊙C 的“k 相关依附点”,求k 的值.②A 2(1+2,0)是否为⊙C 的“2相关依附点”.(2)若⊙C 上存在“k 相关依附点”点M ,①当r=1,直线QM 与⊙C 相切时,求k 的值.②当3k =时,求r 的取值范围.(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 的“3相关依附点”,直接写出b 的取值范围.【答案】(1)2.②是;(2)①3k =②r 的取值范围是12r <≤;(3)333b -<. 【解析】【分析】(1)①如图1中,连接AC 、1QA .首先证明1QA 是切线,根据2AQ k CQ =计算即可解决问题; ②根据定义求出k 的值即可判断; (2)①如图,当1r =时,不妨设直线QM 与C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,根据定义计算即可; ②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,可得()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=,2CQ ,推出2MQ NQ DQ k DQ CQ CQ +===,可得当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C 经过点Q ,此时2r ,因为点Q 早C 外,推出r 的取值范围是12r <; (3)如图4中,由(2)可知:当3k =时,12r <.当2r 时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =-,当直线3y x b =-+经过点E 时,33b =,即可推出满足条件的b 的取值范围为333b -<<.【详解】(1)①如图1中,连接AC 、1QA .由题意:1OC OQ OA ==,∴△1QA C 是直角三角形,190CA Q ∴∠=︒,即11CA QA ⊥,1QA ∴是C 的切线,12222QA k QC ∴=== ②2(12,0)A +在C 上,2212122k +∴==,2A ∴是C 的“2相关依附点”.2(2)①如图2,当1r =时,不妨设直线QM 与C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥.(1,0)Q -,(1,0)C ,1r =,2CQ ∴=,1CM =,∴3MQ =,此时23MQ k CQ ==; ②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,()222MQ NQ MN NQ NQ ND NQ DQ ∴+=++=+=,2CQ =,∴2MQ NQ DQ k DQ CQ CQ +===,∴当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C 经过点Q ,此时2r ,点Q 早C 外,r ∴的取值范围是12r <.(3)如图4中,由(2)可知:当3k =时,12r <.当2r 时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =+经过点Q 时,3b =3y x b =-+经过点E 时,33b =,∴满足条件的b 的取值范围为333b -<.【点睛】本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点A (或点)B 是C 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.。

2018中考数学专题复习 第二十三讲 圆的有关计算(共69张PPT)

2018中考数学专题复习 第二十三讲 圆的有关计算(共69张PPT)

命题角度1:阴影部分面积由扇形的面积与其他图形的 面积和差得到 【示范题3】(2017·青岛中考)如图,直线AB,CD分别 与☉O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若 BD=4,则阴影部分的面积为________.
【思路点拨】根据阴影部分的面积=扇形OBD的面积△OBD的面积,计算得出答案.
360 2
=2π-4.
答案:2π -4
命题角度2:阴影部分由多个扇形等简单组合而成 【示范题4】(2017·德州中考)某景区修建一栋复古 建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对 角线的交点重合,且圆与矩形上下两边相切(E为上切 点),与左右两边相交(F,G为其中两个交点),图中阴影 部分为不透光区域,其余部分为透光区域.已知圆的半
2
∴阴影部分的面积=S△BTD=
1 2 2 1. 2
【答题关键指导】 求解一些几何图形的面积,特别是不规则几何图
形的面积时,常通过平移、旋转、分割等方法,把不 规则图形面积转化为规则图形面积的和或差,使复杂 问题简单化,便于求解.这种解题方法也体现了整体
思想、转化思想.将不规则图形面积转化为规则图形 的面积,常用的方法有:①直接用公式法;②和差法; ③割补法.
∠B1A1B2=30°,A1A2=A2B2,
∴B1B2= 1 3
A1B1= 3 3
,∴A2B2=12
A1B2=B1B2=3
3
,
∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,
∴正六边形A2B2C2D2E2F2的面积∶正六边形A1B1C1D1E1 的面积=( 3 )2 1 ,
2
【答题关键指导】
正多边形的有关边的计算的常用公式
(1)r2+ ( a ) 2 =R2(r表示边心距,R表示半径,a表示边长).

专题9圆的综合题ppt课件

专题9圆的综合题ppt课件
(1)试判断 DE 与⊙O 的位置关系,并说明理 由.
(2)过点 D 作 DF⊥AB 于点 F,若 BE=3 3,DF=3,求图 中阴影部分的面积.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
专题九 圆的综合题
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
专题九 圆的综合题
数学
典题剖析
(2017·呼和浩特)如图,点 A,B,C,D 是

直径为 AB 的⊙O 上的四个点,C 是劣弧BD 的中点, AC 与 BD 交于点 E.
专题九 圆的综合题
数学
(2)∵∠ABC 的平分线交⊙O 于点 D,DE⊥
BE,DF⊥AB,∴DE=DF=3.∵BE=3 3,∴
BD= 32+3 32=6.∵sin∠DBF=36=12,∴∠
DBA=30°.∴∠DOF=60°.∴sin 60°=DDOF=D3O
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
专题概述 典题剖析 真题演练
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
专题九 圆的综合题
数学
专题概述
圆的综合题在中考中主要有三个方面的考查点:一是圆的基本元 素的考查,包括运用垂径定理的有关计算,运用圆周角定理及推论的 有关证明及计算,还可能与三角形的相似和解直角三角形相联系;二 是切线的证明与计算,也往往与三角形的相似和锐角三角函数相联 系;三是与面积相关的计算,注意扇形的面积计算公式的熟练应 用.解决此类问题的方法灵活,三角形的全等与相似、中位线等等都 是在题目中常用的方法,在解题时要学会抓解题的线索,层层深入来 解决题目.

2020年九年级中考数学总复习课件:圆 %28共34张PPT%29

2020年九年级中考数学总复习课件:圆 %28共34张PPT%29

第 5页
二 圆心角、弧、弦、弦心距之间的关系
1.圆心角定理 在同圆或等圆中,相等的圆心角所对的⑪__弧____相等、所对的 ⑫__弦____相等、所对的⑬___弦__心__距___相等.如图,在⊙O 中,若∠
︵︵
AOB=∠COD,则AB =CD ,AB=CD,OM=ON. 2.圆心角定理的推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一
第 4页
(1)对称性:圆既是中心对称图形(圆心是对称中心),也 是轴对称图形(任何一条直径所在的直线都是它的对称 轴).
(2)旋转对称性:圆是旋转对称图形(绕圆心旋转任何一 个角度都与原图形重合).
(3)同圆或等圆的半径相等. (4)圆的直径等于同圆或等圆半径的2倍. (5)弧的度数等于它所对圆心角的度数.
(D)
A.4
B.2 2
C. 3
D.2 3
第 17 页
7.(2019·江苏连云港中考)如图,点A、B、C在⊙O上,BC= 6,∠BAC=30°6,则⊙O的半径为_____.
第 18 页
8.(2019·湖南娄底中考)如图,C、D两点在以AB为直径的圆 上,AB=2,∠ACD=30°,则AD=__1___.
第 2页
(1)圆:圆是到定点的距离等于定长的点的集合,这个 定点叫做①__圆__心____,这个定长叫做②__半_径_____.圆心确 定圆的③_位_置______,半径确定圆的④___大_小____.
(2)弧:圆上任意两点间的部分叫做弧;圆上任意一条 直径的两个端点把圆分成两条弧,每一条弧都叫做半 圆.小于半圆的弧叫做⑤___劣_弧____,大于半圆的弧叫 做⑥__优__弧____.
推 周角是 ○23 __9_0_°____; ___9_0_°___;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(12.00 分)(2018•福建 B 卷)如图,D 是△ABC 外接圆上的动点,且 B,D 位于 AC 的两侧,DE⊥AB,垂足为 E,DE 的延长线交此圆于点 F.BG⊥AD,垂足为 G, BG 交 DE 于点 H,DC,FB 的延长线交于点 P,且 PC=PB. 1 求证:BG∥CD; 2 设△ABC 外接圆的圆心为 O,若 AB= DH,∠OHD=80°,求∠BDE 的大小.
23.(10.00 分)(2018•恩施州)如图,AB 为⊙O 直径,P 点为半径 OA 上异于 O 点和 A 点的一个点,过 P 点作与直径 AB 垂直的弦 CD,连接 AD,作 BE⊥AB, OE∥AD 交 BE 于 E 点,连接 AE、DE、AE 交 CD 于 F 点. 1 求证:DE 为⊙O 切线; 2 若⊙O 的半径为 3,sin∠ADP= ,求 AD; 3 请猜想 PF 与 FD 的数量关系,并加以证明.
25.(10.00 分)(2018•扬州)如图,在△ABC 中,AB=AC,AO⊥BC 于点 O,OE ⊥AB 于点 E,以点 O 为圆心,OE 为半径作半圆,交 AO 于点 F. 1 求证:AC 是⊙O 的切线; 2 若点 F 是 OA 的中点,OE=3,求图中阴影部分的面积; 3在(2)的条件下,点 P 是 BC 边上的动点,当 PE+PF 取最小值时,直接写 出 BP 的长.
5
25.(10.00 分)(2018•株洲)如图,已知 AB 为⊙O 的直径,AB=8,点 C 和点 D 是⊙O 上关于直线 AB 对称的两个点,连接 OC、AC,且∠BOC<90°,直线 BC 和 直线 AD 相交于点 E,过点 C 作直线 CG 与线段 AB 的延长线相交于点 F,与直线 AD 相交于点 G,且∠GAF=∠GCE. 1 求证:直线 CG 为⊙O 的切线; 2 若点 H 为线段 OB 上一点,连接 CH,满足 CB=CH, ①△CBH∽△OBC; ②求 OH+HC 的最大值.
学海无涯 23.(2018•荆门)如图, AB 为 O 的直径,C 为 O 上一点,经过点C 的切线交 AB 的 延长线于点 E , AD EC 交 EC 的延长线于点 D , AD 交 O 于 F , FM AB 于 H , 分别交 O 、 AC 于 M 、 N ,连接 MB , BC .
1 求证: AC 平方DAE ; 2 若 cos M 4 , BE 1,①求 O 的半径;②求 FN 的长.
学海无涯 25.(10.00 分)(2018•湘潭)如图,AB 是以 O 为圆心的半圆的直径,半径 CO ⊥AO,点 M 是 上的动点,且不与点 A、C、B 重合,直线 AM 交直线 OC 于点 D,连结 OM 与 CM. 1 若半圆的半径为 10. ①当∠AOM=60°时,求 DM 的长; ②当 AM=12 时,求 DM 的长. 2探究:在点 M 运动的过程中,∠DMC 的大小是否为定值?若是,求出该 定 值;若不是,请说明理由.

学海无涯 25.(10.00 分)(2018•河北)如图,点 A 在数轴上对应的数为 26,以原点 O 为 圆心,OA 为半径作优弧 ,使点 B 在 O 右下方,且 tan∠AOB= ,在优弧 上 任取一点 P,且能过 P 作直线 l∥OB 交数轴于点 Q,设 Q 在数轴上对应的数为 x, 连接 OP. 1 若优弧 上一段 的长为 13π,求∠AOP 的度数及 x 的值; 2 求 x 的最小值,并指出此时直线 l 与 所在圆的位置关系; 3 若线段 PQ 的长为 12.5,直接写出这时 x 的值.
学海无涯 (2018•福建 A 卷)已知四边形 ABCD 是⊙O 的内接四边形,AC 是⊙O 的直径, DE⊥AB,垂足为 E. 1 延长 DE 交⊙O 于点 F,延长 DC,FB 交于点 P,如图 1.求证:PC=PB; 2 过点 B 作 BC⊥AD,垂足为 G,BG 交 DE 于点 H,且点 O 和点 A 都在 DE 的 左侧,如图 2.若 AB= ,DH=1,∠OHD=80°,求∠BDE 的大小.
相关文档
最新文档