高压电缆智能综合在线监测系统24页PPT

合集下载

大电流的测量和电力系统的在线监测课件

大电流的测量和电力系统的在线监测课件

L
RL
R
u2
C
um
u2
M
di1 dt
i2 (RL
R)
L
di2 dt
um
如果R很大,且有 即 1L R 且
L
di2 dt
i2RL
1 R
2C
um i2R
上下限频率

i2 M (di1 / dt) / R
um
1 C
t 0
i2dt
M CR
t 0
di1 dt
dt
M CR
i1
i1
um CR M
12
温度监测
可用于电力系统的在线监测的传感器主要有两类: 1 接触式传感器,即热敏式电阻传感器;
主要用热电偶式温度传感器。由于热电偶由金属 构成,因此只能安放在绝缘层外。 2 非接触式传感器,即红外感温式传感器 解决绝缘问题。
13
绝缘油的气相色谱分析
主要用于变压器的绝缘油 分析。
理论依据:变压器油与油中的固体有机绝缘材料在运行电压下因
u2q
2Z2 Z1 Z2
u1q
u1q
u1 f
Z2 Z1 Z1 Z2
u1q
u1q
23
8.2.1 折反射的计算
折射系数 2Z2
Z1 Z2
反射系数 且满足
Z2 Z1 Z1 Z2
1
变化范围 0 2
1 1
Z1=Z2时, = 1, = 0,
即无折反射现象 Z1<Z2时,折射波大于入射波
2 1 L
LC
增加电流的方法:
1 增加电容量
2 减小回路电感,减小回路电阻
5
6.5.3 冲击电流的测量

电缆在线监测及故障预警测距系统方案实践

电缆在线监测及故障预警测距系统方案实践

电缆在线监测及故障预警测距系统方案实践卢忠亮【期刊名称】《《冶金动力》》【年(卷),期】2019(000)011【总页数】5页(P11-15)【关键词】电缆; 行波; 在线监测; 故障预警; 故障测距【作者】卢忠亮【作者单位】鞍钢股份鲅鱼圈钢铁分公司能源动力部辽宁营口 115007【正文语种】中文【中图分类】TM2471 概述近年来,随着鞍钢鲅鱼圈电网建设的发展,66 kV变电站及10 kV主电室的数量不断增加,电力电缆的应用范围也在不断增加。

由于10 kV电缆铺设一般为桥架、电缆沟、直埋等方式,在冶金企业内运行环境较复杂,所带负荷经常出现接地、过电压等状况,电力电缆绝缘性能不断经受考验。

另一方面,电缆本体存在的缺陷以及电缆头制作水平的差异随着运行时间的增长,电缆绝缘加剧劣化。

现阶段分公司电力电缆的维护手段为日常巡检测温,同时结合停电后测量主绝缘的电阻值,这种方法不能及时有效地发现电缆初期隐患。

因此,找到一种行之有效手段,能够对电缆运行状态进行实时预判,并对隐患点进行精确定位,提前告警对于分公司电网安全运行具有重要意义。

2 电力电缆故障检测定位方法电力电缆故障一般分为导体类损伤和绝缘类损伤。

导体类损伤一般为导体开路故障,而绝缘类损伤包含绝缘的泄漏性故障和闪络性故障,对于单芯电力电缆还有护套故障。

绝缘类损伤表现为电介质特性变坏,如电导特性的变坏、击穿特性的变坏,当对电缆所施加的电压超过某一数值时,电缆绝缘材料的泄漏电流突然增大,电介质完全失去绝缘特性而变成导体,绝缘击穿。

如果绝缘击穿时所施加的电压大于电缆额定电压则说明电缆存在故障,如果故障在所施加电压降低后不能恢复其击穿特性则称该故障类型为泄漏性故障,如果能够自行恢复则称其为闪络性故障。

电力系统中电缆故障检测定位方法比较多,大家比较熟知同时也是比较简单的是电桥法(阻抗法)检测电缆绝缘故障。

通常有三种电桥测试方法:(1)低压电桥法,适用于电缆相间或相对地故障电缆值小于10 kΩ的故障,即低阻故障;(2)高压电桥法,适用于电缆相间或相对地故障电缆值大于10 kΩ的故障,即高阻故障,但阻值大于数百千欧,高压电桥法是无能为力的;(3)开路故障,适用于电容电桥法,即电缆导体线芯出现断线的情况。

智能高压电缆接地箱技术说明书

智能高压电缆接地箱技术说明书
高压电缆金属护套环流检测是主网电缆线路日常运行维护的一项重 要技术检测工作。现有传统模式的接地环流技术检测工作,主要靠依赖运 行人员持钳型电流表人工测量的方式、季度检测的周期进行,不能有效、 实时的反应接地环流,不便于进行主网电缆线路的健康水平监测 。
因此需要建立一套既防盗,又能实时在线监测的系统来解决目前电力 电缆实时运行中的电缆环流、电缆护层电压、电缆温度、设备安全问题。 根据上述的现状需求,我公司研发生产的智能型高压电缆接地箱,内置一 套高压电缆在线监测系统,来监测接地环流的状况,监测电缆中间接头的
4.1.1 市电供电方式:220V 交流供电 4.1.2 电缆感应式 CT 取电:(目前此功能处于可拓展功能) 电缆感应取电方式及技术参数
5
这种取电方式采用在主电缆上安装 CT 取电环,在主电缆有电流通过时通
过 CT 环感应取电,一方面供给主板电源,同时也给蓄电池充电,其主要
技术参数如下:
额定工作频率(一次侧) 50Hz
板,给主板和蓄电池供电,这种方式比较稳定可靠,常采用这种方式进行
取电。
主要技术参数如下:
输出电压:DC15V~18V
输出最大电流:1.68A
开路电压:20V
短路电流:3.6A
功率:30W
重量:2.4KG
6
4.2 信息采集板参数(根据实际情况写,包含电流、电压、温度、防盗
传感器参数)
4.2.1、精确接地电流采集装置技术参数
主要技术参数如下:
技术参数名称
主要技术参数指标
备注
待机电流
<100μA
电流采样范围
0~100A
分辨率
12bit
转换时间
10μs
线性误差
±1LSB max

高压电缆线路在线监测技术及应用

高压电缆线路在线监测技术及应用

高压电缆线路在线监测技术及应用摘要:我国城市输配电网当中广泛使用到高压电缆,但由于当下在线检测高压电缆技术仍需要完善。

那么要想使电缆的安全运行得到保障,就要将高压电缆线路在线监测技术进行深入探讨,如此才能够符合实际应用需求,本文主要对高压电缆线路在线监测技术进行分析,根据110kV电缆一、二线智能接地在线检测系统运用,探讨该技术的相关问题。

关键词:高压电缆线路,在线检测技术,应用我国城市化以及工业化的进程不断深入,越来越多城市需要更多的电力支持。

电力电缆有着非常多的优势,慢慢成为城市电力传输的关键手段。

那么,分析高压电缆线路在线监测技术,能够更好地保障城市电力传输。

电力系统的主要构成就是高压输电线路,有着非常高的危险性,如果有关监测工作没有做好,那么会威胁到整个电力系统运行的安全,那么强化其系统建设是非常有必要的,在线监测技术能够有效提升高压输电线路的输送能力以及安全运行能力,且能够全面监测高压输电线路的运行幸苦,从而能可以使采集的数据更具精确性以及信息类型更加多样化,给我国电力事业良好发展起到促进作用。

1 高压电缆线路在线监测技术简介高压电缆具有诸多优势,包括有节约用地、可靠性较高以及美观等,能够与我国城市电网的发展需要相满足,我国目前多个城市区域。

逐步替代架空线路,被广泛应用于城市中。

当前不少主干电缆管理仍使用计划检修的形式,通过按时巡视及监测接电线、电缆保护层和接地电流的形式对电缆运行情况进行全方位检查。

如果定期检修和试验,那么就会增加运行维护的人力,另外由于计划检修不连续,造成电缆绝缘缺陷无法处理,另外对于潜在故障排查的实时性也难以保障。

智能电网的建设过程当中,接地电流和高压电缆保护层在线监测系统是非常关键的组成,但由于当前国内外对有关标准以及规定还不够充分,从目前相关文献资料上而言,对于测高压电缆线路、电缆绝缘在线监测技术进行分析等方面的文章比较多,但对于在线监测系统有关的题目却不多。

高压电缆局放在线监测系统(亿森)

高压电缆局放在线监测系统(亿森)

高压电缆局放在线监测系统设计方案福州亿森电力设备设备有限公司2016年9月摘要:在XLPE电缆投入运行后,由于绝缘的老化变质、过热、机械损伤等,使得电缆在运行中绝缘裂化,为了防止由于绝缘劣化造成电缆运行事故,需要对电缆的运行状态进行即时监测,监测系统控制着电缆及其附件的质量。

局部放电是目前比较有效的在线监测方法,局部放电检测目前相应有电磁耦合法、超高频法和超声波法、光学测量法等,本文将着重论述这些方法各自的优势与不足,同时对目前发展起来的PD混沌监测方法进行讨论。

关键词:XLPE电缆;在线监测;局部放电;混沌法0引言随着电力系统的飞速发展以及旧城改造工程的进行,电力电缆在电力网络中的应用愈发广泛。

电力电缆的基本结构包括线芯、绝缘层、屏蔽层和保护层四个部分。

其中线芯即导体,是电力电缆中传输电能的部分,是电缆的主要结构。

绝缘层将线芯与外界电气上隔离。

屏蔽层包括导体屏蔽层和绝缘屏蔽层,一般存在于15kV及以上电缆中。

保护层是用来防止外界的杂质和水分的渗入和外力的破坏[1]。

电力电缆按照电压等级分类有低压电缆(35kV及以下输配电线路)、中低压电缆(35kV及以下)、高压电缆(110kV及以上)、超高压电缆(275~800kV)、特高压电缆(1000kV及以上)。

按照绝缘材料电力电缆可以分为塑料绝缘电缆和橡皮绝缘电缆。

其中油纸绝缘电缆应用历史最长。

它安全可靠,使用寿命长,价格低廉。

主要缺点是敷设受落差限制。

塑料绝缘电缆主要用于低压电缆,常用的绝缘材料有聚氯乙烯、聚乙烯、交联聚乙烯。

橡皮绝缘电缆弹性好,适合用于移动频繁弯曲半径小的敷设地点。

我国早期使用的多是油纸绝缘电缆,但自1970 年以来,交联聚乙烯(XLPE)电力电缆得以广泛应用,并逐渐取代了油纸绝缘电缆的地位。

XLPE电缆电气性能优越,具有击穿电场强度高、介质损耗小、载流量大等优点因而得到了广泛的应用。

在线检测电缆故障的方法有很多,如直流分量法、损耗电流谐波分量法、局部放电法等,其中,局部放电法是目前用于现场比较有效的在线检测方法。

高压电力设备在线监测技术

高压电力设备在线监测技术
耗的大小。
讨论介质损耗角正切tg的意义
绝缘结构设计时,必须注意到绝缘材料的tg。如 果tg过大会引起严重发热,是绝缘材料迅速老化, 进而导致热击穿。
在绝缘预防性试验中, tg是基本测试项目,当绝 缘受潮或劣化时, tg将急剧上升。绝缘内部是否存
在可疑的放电现象,也可以通过测量 tg - U的关系 曲线加以判断(随电压增高, tg应不变,若变化,
Hale Waihona Puke 750kV 电容式电压互感器









悬浮 电位 屏蔽
接 地 屏
法 兰
支 撑 绝


750kV断路器充SF6引线套管结构图
变电站中的主要电容性设备
▪ 电力电容器 ▪ 电容式套管 ▪ 高压电流互感器(CT) ▪ 高压电压互感器(PT) ▪ 电容式电压互感器(CVT)
数量约占变电站设备总台数的40%~50%。 电容型设备在变电站中具有重要地位,它们的绝缘状态
如果要求信噪比至少为2(SNR>2) 则 Y 230.150.9时,才能较准确地测量,这显然是
Y 不合要求的。
因此在实际测量中,需将谐波滤去,尤其是三次谐波,抑制 比应为300倍(50dB) ,才能保证 Y 0.003 时, 既可测出。
Y
影响因素
由于这种方法必须在一次回路中接入取样电阻R,虽然已并 有保护元件,但一次侧接地线一旦断开,则设备浮地,后果 不堪设想。
在线检测tg电桥法
一般采用正接法,对运行设备进行 检测。
CN为高压标准电容,通常存在一
定的损耗tgN(已知)。当电桥平衡
时,测量值为tgm,有
tgm ICc 4R4 tg(X N)

高压电缆隧道(综合管廊)机器人应用经验汇报材料

高压电缆隧道(综合管廊)机器人应用经验汇报材料

高压电缆隧道(综合管廊)机器人应用经验汇报材料随着城市建筑的高层化、城市市容、环境保护及特殊安全的要求,越来越多的城市中心区域采用地下电缆供电来代替架空输电线路的供电方式,而为了提高地下资源合理利用率,近年来,采用综合管廊和电缆隧道的方式敷设电缆的情况层出不穷,这也给运维人员保障电缆安全运行提出了更高的要求。

一、应用背景(一)设备情况国网温州供电公司目前管辖高压电缆线路长度382.6公里,其中在运的电缆隧道及综合管廊有4座,七都隧道、上田隧道、瓯江北口隧道及龙江路综合管廊,总长度8.3公里。

每座电缆隧道在建设阶段都安装了电缆隧道智能机器人。

表1 电缆隧道(综合管廊)现状(二)电网需求国网公司已经明确了“具有中国特色国际领先的能源互联网企业”的战略目标,而构建能源互联网业务智能化应用体系也成为了主要任务之一,因此电缆隧道及综合管廊的智能化运维要求也促使我们加快配置机器人,提高隧道智能巡检水平。

地下隧道和综合管廊内存在易积水、易产生有害气体、空气不易流通、散热较慢等问题,对日常巡检提出了更高要求,也增加了人工巡检的危险性。

为了减少人员处在有限空间的作业时间,实现安全生产目标,利用机器人开展巡视任务成为保障人身安全的有效手段。

二、应用情况(一)配置要求1.电缆隧道及综合管廊运行环境一是环境潮湿。

四个隧道顶部都有存在不同程度的凝露甚至水现象,在机器人长期放置的充电房需要尤其注意对湿度的控制二是坡度较大。

部分电力隧道坡度达到30°以上,对机器人设备的动力要求需要更高。

三是里程需求。

由于隧道普遍超过2公里,结合电池电量,可以通过增设充电站的方式提高机器人的巡视范围。

同时,长距离通讯对于通讯信号的覆盖强度和信号稳定性提出了较高要求。

四是空间限制。

电力隧道内可用于监测机器人监测时行走空间不大,在隧道建设阶段应该率先让各设备厂家及时做好空间布局与相互沟通,避免机器人轨道建设与土建、附属设备冲突。

2.专业化巡检要求一是携带的在线式红外测温仪,提高巡检专业化水平;二是增加环境监测单元,实时掌握环境状况;三是具备自主巡视能力,提高巡检效率。

高压电缆线路运行综合监控技术探究

高压电缆线路运行综合监控技术探究

高压电缆线路运行综合监控技术探究【摘要】绝缘老化、外力破坏、运行环境变化等因素都有可能会影响高压电缆线路的安全运行,传统的高压电缆线路运行维护管理模式已经无法适应新时期电力发展的需求,需要进一步改革、创新。

本文主要结合某地区高压电缆线路运行情况分析,提出综合监控高压电缆线路的运行环境参量以及运行参量的想法,建立一套综合监控高压电缆线路的监控系统,从而可以对电缆运行状态进行实时监控。

【关键词】高压电缆线路;安全运行;监控系统近年来随着我国电力行业的快速发展,高压电缆线路的数量越来越多,高压电缆线路在整个国家输电网系统中占有极其重要的地位,因此确保高压电缆线路的高效、安全、稳定运行显得尤为重要和必要。

然而传统的高压电缆线路运行管理主要采用的是人工操作模式,这种管理方式通常需要投入大量的物力、人力,工作效率低下,并不能及时、有效的发现高压电缆线路运行过程中的隐患、缺陷,导致高压电缆线路受损。

因此,传统的高压电缆线路运行管理并不满足经济性、高效性、安全性等原则,也无法适应新时期电力发展的要求,我们应尽快研究出一种高效、经济的电缆线路安全运行监控技术。

1 高压电缆线路安全运行的影响因素分析本次研究的地区高压电缆线路的敷设方式以电缆隧道、电缆沟为主。

就该地区高压电缆线路运行情况分析,运行过程中的安全隐患主要体现在以下几点:1.1 绝缘老化在较强的电场下,电力电缆由于内部局部缺陷、潮湿环境等因素的影响会在绝缘体内部形成水树。

水树老化、电老化是导致电缆老化的主要原因,在电场作用下,尤其是在经过电压冲击过程中,电缆气隙会放电,进而慢慢形成电树。

水浸入后由于电场、水分、内部缺陷等各方面原因长期的相互作用,会慢慢损耗整电缆的介质。

如果电缆水树枝顶端场强达到某种程度,水树也会慢慢形成电树枝,同时也会发生局部放电现象。

一旦电缆中形成了电树枝,在较短的时间内,电缆就会被击穿。

其次,由于一般情况下都是在现场安装电缆附件,因此人为因素可能会有很多隐患和缺陷,在过电压、运行电压长期运行过程中,这些隐患和缺陷会导致电缆局部放电,最终会使绝缘老化而被击穿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档