四年级数学之相遇问题
小学数学相遇问题100道

小学数学相遇问题100道1. 两辆汽车从相距300公里的两个城市同时出发,相向而行。
一辆车的速度是60公里/小时,另一辆车的速度是70公里/小时。
请问它们需要多少小时才能相遇?2. 甲乙两人分别从A、B两地同时出发,相向而行。
甲每分钟走60米,乙每分钟走75米。
A、B两地相距900米,请问它们多少分钟后相遇?3. 两列火车从相距450公里的两个城市同时出发,相向而行。
一列火车的速度是80公里/小时,另一列火车的速度是110公里/小时。
请问它们需要多少小时才能相遇?4. 小明和小华在环形跑道上跑步,跑道长400米。
小明每秒跑3米,小华每秒跑5米。
他们从同一地点出发,同向而行。
请问多少秒后他们会再次相遇?5. 两辆汽车从相距240公里的两个城市同时出发,相向而行。
一辆车的速度是40公里/小时,另一辆车的速度是80公里/小时。
请问它们相遇时离出发地有多远?6. 甲从A地出发,乙从B地出发,两地相距1200米。
甲每分钟走80米,乙每分钟走70米。
他们同时出发,相向而行。
请问他们相遇时走了多少分钟?7. 两辆汽车从相距500公里的两个城市同时出发,相向而行。
一辆车的速度是65公里/小时,另一辆车的速度是75公里/小时。
请问它们相遇时各自行驶了多少公里?8. 小王和小李从两个相距1000米的村庄同时出发,相向而行。
小王每分钟走60米,小李每分钟走70米。
请问他们需要多少分钟才能相遇?9. 两列火车从相距600公里的两个城市同时出发,相向而行。
一列火车的速度是90公里/小时,另一列火车的速度是80公里/小时。
请问它们相遇时距离中点有多少公里?以下是继续从序号10开始的50道相遇问题:10. 甲、乙两车分别从A、B两地同时出发,相向而行。
甲车速度是60km/h,乙车速度是40km/h,两车相距100km。
问多少小时后两车相遇?11. 小王和小李同时从同一地点出发,沿着相反的方向行走。
小王每分钟走60m,小李每分钟走70m。
《人教版四年级小学数学相遇问题100道》

《人教版四年级小学数学相遇问题100道》姓名:__________ 班级:__________ 学号:__________一、基础相遇问题(共5题)1.甲、乙两人分别从A、B 两地同时出发相向而行,甲每小时走5 千米,乙每小时走4 千米,经过3 小时后两人相遇,A、B 两地相距多少千米?2.小明和小红同时从学校和图书馆相向而行,小明每分钟走60 米,小红每分钟走50 米,经过8 分钟两人相遇,学校和图书馆相距多少米?3.一辆汽车和一辆摩托车同时从相距240 千米的两地相向而行,汽车每小时行60 千米,摩托车每小时行40 千米,几小时后两车相遇?4.甲乙两地相距360 千米,A、B 两车分别从甲乙两地同时出发相向而行,A 车每小时行80 千米,B 车每小时行70 千米,经过几小时两车相遇?5.小强和小亮同时从相距180 米的两地相向而行,小强每分钟走10 米,小亮每分钟走8 米,几分钟后两人相遇?二、稍复杂的相遇问题(共5题)6.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走6 千米,乙每小时走5 千米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时共走了6 小时,A、B 两地相距多少千米?7.一辆客车和一辆货车同时从相距450 千米的两地相向而行,客车每小时行80 千米,货车每小时行70 千米,几小时后两车相距90 千米?8.甲乙两人在环形跑道上跑步,跑道一圈长400 米,甲每分钟跑280 米,乙每分钟跑240 米,两人同时同地同向出发,经过多少分钟甲第一次追上乙?如果两人同时同地反向出发,经过多少分钟两人第一次相遇?9.小明和小红同时从相距1200 米的两地相向而行,小明每分钟走70 米,小红每分钟走50 米,途中小明因事停留了2 分钟,两人相遇时各走了多少米?10.一辆汽车和一辆摩托车同时从A、B 两地相向而行,汽车每小时行60 千米,摩托车每小时行40 千米,两车相遇后汽车又行了 4 小时到达B 地,A、B 两地相距多少千米?三、多人相遇问题(共5题)11.甲、乙、丙三人同时从A 地出发到B 地,甲每小时走6 千米,乙每小时走5 千米,丙每小时走4 千米,甲到达B 地后立即返回,在距B 地12 千米处与乙相遇,A、B 两地相距多少千米?12.小明、小红和小刚同时从学校出发去公园,小明每分钟走60 米,小红每分钟走50 米,小刚每分钟走40 米,小明到达公园后立即返回,在距公园80 米处与小红相遇,学校到公园有多远?13.甲乙丙三人在环形跑道上跑步,甲每分钟跑200 米,乙每分钟跑180 米,丙每分钟跑160 米,三人同时同地同向出发,经过多少分钟甲第一次追上乙?再经过多少分钟甲第一次追上丙?14.一辆客车、一辆货车和一辆小轿车同时从甲地开往乙地,客车每小时行80 千米,货车每小时行70 千米,小轿车每小时行100 千米,小轿车到达乙地后立即返回,在距乙地60 千米处与客车相遇,甲乙两地相距多少千米?15.甲、乙、丙、丁四人同时从A 地出发到B 地,甲每小时走8 千米,乙每小时走7 千米,丙每小时走 6 千米,丁每小时走5 千米,甲到达B 地后立即返回,在距B 地20 千米处与乙相遇,此时丙、丁相距多少千米?四、不同速度的相遇问题(共5题)16.甲、乙两人分别从相距240 千米的A、B 两地同时出发,甲每小时走40 千米,乙每小时走60 千米,几小时后两人相遇?17.一辆汽车和一辆自行车同时从相距180 千米的两地相向而行,汽车每小时行60 千米,自行车每小时行15 千米,几小时后两车相遇?18.小明和小刚同时从相距1500 米的两地相向而行,小明每分钟走80 米,小刚每分钟走70 米,两人相遇时小明比小刚多走了多少米?19.甲乙两人在一条长400 米的环形跑道上跑步,甲每分钟跑260 米,乙每分钟跑240 米,两人同时同地反向出发,几分钟后两人第一次相遇?20.一辆卡车和一辆摩托车同时从相距320 千米的两地相向而行,卡车每小时行50 千米,摩托车每小时行70 千米,两车相遇时卡车行了多少千米?五、行程变化的相遇问题(共5题)21.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走5 千米,乙每小时走4 千米,途中甲休息了 2 小时,结果两人在距中点10 千米处相遇,A、B 两地相距多少千米?22.一辆汽车和一辆摩托车同时从相距360 千米的两地相向而行,汽车每小时行80 千米,摩托车每小时行60 千米,汽车在途中加油停了1 小时,两车相遇时汽车行了多少千米?23.小明和小红同时从相距1200 米的两地相向而行,小明每分钟走70 米,小红每分钟走50 米,小明中途休息了3 分钟,两人相遇时各走了多少分钟?24.甲乙两人在环形跑道上跑步,跑道一圈长480 米,甲每分钟跑300 米,乙每分钟跑240 米,甲先跑了20 秒后乙才出发,两人同向而行,经过多少分钟甲第一次追上乙?25.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行70 千米,货车每小时行60 千米,两车相遇后继续前进,到达对方出发地后立即返回,第二次相遇时客车比货车多行了120 千米,A、B 两地相距多少千米?六、有停留时间的相遇问题(共5题)26.甲、乙两人同时从相距270 千米的A、B 两地出发相向而行,甲每小时走60 千米,乙每小时走40 千米,乙中途停留了3 小时,结果两人在途中相遇,甲走了多少小时?27.小明和小刚同时从相距1600 米的两地相向而行,小明每分钟走80 米,小刚每分钟走60 米,小刚中途休息了4 分钟,两人相遇时各走了多少分钟?28.一辆汽车和一辆摩托车同时从相距300 千米的两地相向而行,汽车每小时行75 千米,摩托车每小时行45 千米,汽车中途停留了2 小时,两车相遇时摩托车行了多少千米?29.甲乙两人在环形跑道上跑步,跑道一圈长500 米,甲每分钟跑250 米,乙每分钟跑200 米,甲先跑了30 秒后乙才出发,乙中途休息了 1 分钟,两人相遇时各跑了多少分钟?30.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行80 千米,货车每小时行70 千米,客车中途停留了3 小时,结果两车在距中点40 千米处相遇,A、B 两地相距多少千米?七、往返相遇问题(共5题)31.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走6 千米,乙每小时走5 千米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时共走了3 小时,A、B 两地相距多少千米?32.一辆汽车和一辆摩托车同时从相距240 千米的两地相向而行,汽车每小时行70 千米,摩托车每小时行50 千米,两车相遇后继续前进,到达对方出发地后立即返回,第三次相遇时汽车行了多少千米?33.小明和小红同时从学校和图书馆相向而行,小明每分钟走60 米,小红每分钟走50 米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时小明比小红多走了200 米,学校和图书馆相距多少米?34.甲乙两人在环形跑道上跑步,跑道一圈长400 米,甲每分钟跑280 米,乙每分钟跑240 米,两人同时同地同向出发,第二次相遇时甲比乙多跑了多少米?35.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行80 千米,货车每小时行70 千米,两车相遇后继续前进,到达对方出发地后立即返回,第二次相遇时两车一共行了多少千米?八、分阶段的相遇问题(共5题)36.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走5 千米,乙每小时走4 千米,两人相遇后继续前进,甲到达B 地后立即返回,当甲回到A 地时,乙距A 地还有3 千米,A、B 两地相距多少千米?37.一辆汽车和一辆摩托车同时从相距300 千米的两地相向而行,汽车每小时行80 千米,摩托车每小时行60 千米,汽车先行了1 小时后摩托车才出发,两车相遇时汽车行了多少千米?38.小明和小红同时从相距1000 米的两地相向而行,小明每分钟走70 米,小红每分钟走50 米,走了一段时间后两人相距200 米,这时他们走了多少分钟?39.甲乙两人在环形跑道上跑步,跑道一圈长480 米,甲每分钟跑320 米,乙每分钟跑280 米,甲先跑了60 米后乙才出发,当甲第二次追上乙时,他们各跑了多少米?40.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行90 千米,货车每小时行80 千米,客车先行了2 小时后货车才出发,两车相遇时客车比货车多行了多少千米?九、带条件限制的相遇问题(共5题)41.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走6 千米,乙每小时走5 千米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时甲比乙多走了12 千米,A、B 两地相距多少千米?42.一辆汽车和一辆摩托车同时从相距280 千米的两地相向而行,汽车每小时行80 千米,摩托车每小时行60 千米,两车相遇时汽车比摩托车多行了40 千米,两车行驶了多少小时?43.小明和小红同时从相距1400 米的两地相向而行,小明每分钟走80 米,小红每分钟走60 米,小明到达中点后又走了100 米与小红相遇,两人相遇时各走了多少分钟?44.甲乙两人在环形跑道上跑步,跑道一圈长540 米,甲每分钟跑300 米,乙每分钟跑270 米,甲在乙后面180 米处同时同向出发,经过多少分钟甲第一次追上乙?45.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行85 千米,货车每小时行75 千米,两车相遇时距中点30 千米,A、B 两地相距多少千米?十、实际应用中的相遇问题(共5题)46.甲乙两地相距420 千米,一辆汽车从甲地开往乙地,每小时行70 千米,同时一辆摩托车从乙地开往甲地,每小时行50 千米,两车几小时后相遇?47.小明和小刚同时从学校和家相向而行,学校到家的距离是1200 米,小明每分钟走80 米,小刚每分钟走60 米,两人几分钟后相遇?48.一个工程队和一个运输队同时从工地和材料场相向而行,两地相距360 千米,工程队每小时行60 千米,运输队每小时行40 千米,几小时后两队相遇?49.甲乙两人同时从相距1800 米的两地相向而行,甲每分钟走100 米,乙每分钟走80 米,途中甲掉了东西停留了 2 分钟,两人相遇时各走了多少分钟?50.一辆公交车和一辆出租车同时从公交总站和机场相向而行,两地相距240 千米,公交车每小时行60 千米,出租车每小时行80 千米,两车几小时后相遇?十一、速度变化的相遇问题(共3题)51.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走5 千米,乙每小时走4 千米,走了一段时间后,甲的速度提高到每小时 6 千米,乙的速度提高到每小时5 千米,又经过3 小时两人相遇,A、B 两地相距多少千米?52.一辆汽车和一辆摩托车同时从相距270 千米的两地相向而行,汽车每小时行70 千米,摩托车每小时行50 千米,行驶了一段时间后,汽车速度变为每小时80 千米,摩托车速度变为每小时60 千米,两车又经过 2 小时相遇,两车一开始行驶了多少小时?53.小明和小红同时从相距1500 米的两地相向而行,小明每分钟走80 米,小红每分钟走70 米,走了一会儿后,小明速度变为每分钟90 米,小红速度变为每分钟80 米,两人又走了4 分钟相遇,他们一开始走了多少分钟?。
四年级数学应用题专题相遇问题

四年级数学应用题专题相遇问题Revised by BETTY on December 25,2020四年级一、知识要点:相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路、行车还是物体的移动,总是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度.二、学法引导:相遇问题的计算关系式为:总路程=速度和×相遇时间“总路程”指两人从出发到相遇共同的路程;“速度和”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析和理解题意,以突破难点.三、解题技巧:一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B地之间的某处相遇,实质上是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:(1)甲走的路程+乙走的路程=全程(2)甲(乙)走的路程=甲(乙)的速度×相遇时间(3)全程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间四、例题精讲:例1. 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过小时两车相遇.两个车站之间的铁路长多少千米?解法一、(48+78)×=126×=441(千米)答:两个车站之间的铁路长441千米.解法二、48×+78×=168+273=441(千米)答:两个车站之间的铁路长441千米.例2. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?(520-70)÷(30+20)=450÷50=9(时)答:9小时以后还相距70千米没有相遇.例3. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?(520+70)÷(30+20)=590÷50=(时)答:小时相遇以后相距70千米例4. 甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时56千米,问第二列火车的速度是多少?解法一、(840-56×8)÷8=(840-448)÷8=392÷8=49(千米)答:第二列火车的速度是每小时49千米.解法二、840÷8-56=105-56=49(千米)答:第二列火车的速度是每小时49千米.例5. 甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(680-60×2)÷(60+80)=(680-120)÷140=560÷140=4(时)答:快车开出4小时后两车相遇.小结:解答一般的相遇问题,我们常规的思路是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知和所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.一、抓住两个数量差并采用对应的思维方法例1. 甲车从A城到B城,速度是50千米/小时.乙车从B城到A城,速度是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?分析与解:这道题的条件与问题如图所示.要求A、B两城的距离,关键是求出相遇时间.因路程是未知的,所以用路程÷(甲速+乙速)求相遇时间有一定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正是两车相遇的时间.因此,求A、B两地距离的综合算式是:(50+40)×[30×2÷(50-40)]=90×[60÷10]=90×6=540(千米).答:A、B两地的路程是540千米.二、突出不变量并采用整体的思维方法例2. A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B 往A,他们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?分析与解:根据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的基本数量关系来求解是非常不易的.但可根据题中小张、小王三次相遇各自的车速不变和在相距96千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以看到:第三次相遇时,王涛走的路程是2AB+BE张华走的路程是AE,两人走的总路程是3个AB,所花的时间是80×3=240(分).可见,从第二次相遇到第三次相遇所经过的时间的综合算式是:80×3-80-40=120(分).答:再经过120分钟两人再次相遇.【模拟试题】(答题时间:30分钟)1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米第二匹马比第一匹马多跑多少千米4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?6、一辆汽车和一辆自行车从相距千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行千米,求汽车、自行车的速度各是多少?7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?【试题答案】1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?735÷(85+90)=735÷175=(时)答:小时两列火车相遇.2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过小时两车相遇.两个车站之间的铁路长多少千米?(85+78)×=163×=(千米)答:两个车站之间的铁路长千米.3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米第二匹马比第一匹马多跑多少千米165÷5-15 (18-15)× 5=33-15 =3×5=18(千米)=15(千米)答:第二匹马每小时跑18千米.第二匹马比第一匹马多跑15千米.4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?4320÷(160÷2+160)=4320÷(80+160)=4320÷240=18(分钟)答:18分钟后两人相遇.5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船每小时行多少千米?(654-22)÷8-42=632÷8-42=79-42=37(千米)答:甲船平均每小时行驶37千米.6、一辆汽车和一辆自行车从相距千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行千米,求汽车、自行车的速度各是多少?÷3=(千米)(-)÷2=26÷2=13(千米)13+=(千米)答:汽车每小时行驶千米,自行车每小时行驶13千米.7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?480-45×(5-1)=480-180=300(千米)300÷5=60(千米)答:乙车每小时行驶60千米.。
小学数学四年级 行程问题(二)相遇问题 PPT+答案

【分析】已知两人的路程和以及相遇时间,可求出两人的速度和。又已知两人 的速度差,利用和差问题方法求解。
速度和:2100÷15=140(米/分钟) 旭旭速度:(140-24)÷2=58(米/分钟) 答:旭旭的速度是58米/分钟.
货车各行驶了多少千米?
【分析】货车耽误2小时,则客车单独走了2小时,剩下的路程为两车同时走的路程和。
然后利用路程和与速度和求相遇时间。两车各自的路程利用速度×时间求解。
第1关 基本相遇问题 A-2 两个县城相距20 千米,甲、乙二人同时从两城出发,相向而行,甲
每小时行驶6千米,乙每小时行驶4 千米,几小时后两人相遇?
【分析】 已知两人路程和及速度,求相遇时间。
相遇时间:20÷(6+4)=2(小时) 答:2小时后两人相遇.
第1关 基本相遇问题 B-1 甲、乙两车从相距800 千米的两地同时出发,相向而行,甲车每小时
乙车在途中停了3 小时,然后继续行进,再过2 小时两车相遇,两地
间的铁路长多少千米?
【分析】采用整体思考方式,在相遇之前,甲车单独行驶3小时,甲乙又共同
行驶了3小时,全长则包含甲单独走的以及两人共同走的路程。
甲3小时路程:51×3=153(千米) 同行时间:1+2=3(小时) 甲乙路程和:(51+45)×3=288(千米) 全长:153+288=441(千米) 答:两地间的铁路长441千米.
相遇时间:(43-15)÷(3+4)=4(小时) 答:甲出发4小时后与B-2 甲、乙两座城市相距610 千米,货车和客车从两城同时出发,相向而
四年级数学应用题专题相遇问题

四年级数学应用题专题--相遇问题一、知识要点:相遇问题就是行程问题的一种典型应用题,也就是相向运动的问题.无论就是走路、行车还就是物体的移动,总就是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度.二、学法引导:相遇问题的计算关系式为:总路程=速度与×相遇时间“总路程”指两人从出发到相遇共同的路程;“速度与”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析与理解题意,以突破难点.三、解题技巧:一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B地之间的某处相遇,实质上就是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:(1)甲走的路程+乙走的路程=全程(2)甲(乙)走的路程=甲(乙)的速度×相遇时间(3)全程=(甲的速度+乙的速度)×相遇时间=速度与×相遇时间四、例题精讲:例1、两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过3、5小时两车相遇.两个车站之间的铁路长多少千米?解法一、(48+78)×3、5=126×3、5=441(千米)答:两个车站之间的铁路长441千米.解法二、48×3、5+78×3、5=168+273=441(千米)答:两个车站之间的铁路长441千米.例2、 A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?(520-70)÷(30+20)=450÷50=9(时)答:9小时以后还相距70千米没有相遇.例3、 A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?(520+70)÷(30+20)=590÷50=11、8(时)答:11、8小时相遇以后相距70千米例4、甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度就是每小时56千米,问第二列火车的速度就是多少?解法一、(840-56×8)÷8=(840-448)÷8=392÷8=49(千米)答:第二列火车的速度就是每小时49千米.解法二、840÷8-56=105-56=49(千米)答:第二列火车的速度就是每小时49千米.例5、甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(680-60×2)÷(60+80)=(680-120)÷140=560÷140=4(时)答:快车开出4小时后两车相遇.小结: 解答一般的相遇问题,我们常规的思路就是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知与所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.一、抓住两个数量差并采用对应的思维方法例1、甲车从A城到B城,速度就是50千米/小时.乙车从B城到A城,速度就是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?分析与解:这道题的条件与问题如图所示.要求A、B两城的距离,关键就是求出相遇时间.因路程就是未知的,所以用路程÷(甲速+乙速)求相遇时间有一定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正就是两车相遇的时间.因此,求A、B两地距离的综合算式就是: (50+40)×[30×2÷(50-40)]=90×[60÷10]=90×6=540(千米).答:A、B两地的路程就是540千米.二、突出不变量并采用整体的思维方法例2、 A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B往A,她们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?分析与解:根据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的基本数量关系来求解就是非常不易的.但可根据题中小张、小王三次相遇各自的车速不变与在相距96千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以瞧到:第三次相遇时,王涛走的路程就是2AB+BE张华走的路程就是AE,两人走的总路程就是3个AB,所花的时间就是80×3=240(分).可见,从第二次相遇到第三次相遇所经过的时间的综合算式就是: 80×3-80-40=120(分).答:再经过120分钟两人再次相遇.【模拟试题】(答题时间:30分钟)1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6、5小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?4、小明与张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,就是张楠步行速度的2倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?6、一辆汽车与一辆自行车从相距172、5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31、5千米,求汽车、自行车的速度各就是多少?7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?【试题答案】1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?735÷(85+90)=735÷175=4、2(时)答:4、2小时两列火车相遇.2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6、5小时两车相遇.两个车站之间的铁路长多少千米?(85+78)×6、5=163×6、5=1059、5(千米)答:两个车站之间的铁路长1059、5千米.3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?165÷5-15 (18-15)× 5=33-15 =3×5=18(千米)=15(千米)答:第二匹马每小时跑18千米.第二匹马比第一匹马多跑15千米.4、小明与张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,就是张楠步行速度的2倍,多少分钟后两人相遇?4320÷(160÷2+160)=4320÷(80+160)=4320÷240=18(分钟)答:18分钟后两人相遇.5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船每小时行多少千米?(654-22)÷8-42=632÷8-42=79-42=37(千米)答:甲船平均每小时行驶37千米.6、一辆汽车与一辆自行车从相距172、5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31、5千米,求汽车、自行车的速度各就是多少?172、5÷3=57、5(千米)(57、5-31、5)÷2=26÷2=13(千米)13+31、5=44、5(千米)答:汽车每小时行驶44、5千米,自行车每小时行驶13千米.7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?480-45×(5-1)=480-180=300(千米)300÷5=60(千米)答:乙车每小时行驶60千米.。
四年级数学应用题专题-相遇问题

四年级数学应用题专题-相遇问题四年级数学应用题专题--相遇问题一、知识要点:相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路、行车还是物体的移动,总是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度.二、学法引导:相遇问题的计算关系式为:总路程=速度和×相遇时间“总路程”指两人从出发到相遇共同的路程;“速度和”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析和理解题意,以突破难点.三、解题技巧:一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B 地之间的某处相遇,实质上是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:(1)甲走的路程+乙走的路程=全程(2)甲(乙)走的路程=甲(乙)的速度×相遇时间(3)全程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间四、例题精讲:例1. 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过3.5小时两车相遇.两个车站之间的铁路长多少千米?解法一、(48+78)×3.5=126×3.5=441(千米)答:两个车站之间的铁路长441千米.解法二、48×3.5+78×3.5=168+273=441(千米)答:两个车站之间的铁路长441千米.例2. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?(520-70)÷(30+20)=450÷50=9(时)答:9小时以后还相距70千米没有相遇.例3. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?(520+70)÷(30+20)=590÷50=11.8(时)答:11.8小时相遇以后相距70千米例4. 甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时56千米,问第二列火车的速度是多少?解法一、(840-56×8)÷8=(840-448)÷8=392÷8=49(千米)答:第二列火车的速度是每小时49千米.解法二、840÷8-56=105-56=49(千米)答:第二列火车的速度是每小时49千米.例5. 甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(680-60×2)÷(60+80)=(680-120)÷140=560÷140=4(时)答:快车开出4小时后两车相遇.小结:解答一般的相遇问题,我们常规的思路是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知和所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.一、抓住两个数量差并采用对应的思维方法例1. 甲车从A城到B城,速度是50千米/小时.乙车从B城到A城,速度是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?分析与解:这道题的条件与问题如图所示.要求A、B两城的距离,关键是求出相遇时间.因路程是未知的,所以用路程÷(甲速+乙速)求相遇时间有一定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正是两车相遇的时间.因此,求A、B两地距离的综合算式是:(50+40)×[30×2÷(50-40)]=90×[60÷10]=90×6=540(千米).答:A、B两地的路程是540千米.二、突出不变量并采用整体的思维方法例2. A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B往A,他们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?分析与解:根据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的基本数量关系来求解是非常不易的.但可根据题中小张、小王三次相遇各自的车速不变和在相距96千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以看到:第三次相遇时,王涛走的路程是2AB+BE张华走的路程是AE,两人走的总路程是3个AB,所花的时间是80×3=240(分).可见,从第二次相遇到第三次相遇所经过的时间的综合算式是:80×3-80-40=120(分).答:再经过120分钟两人再次相遇.【模拟试题】(答题时间:30分钟)1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6.5小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?6、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?【试题答案】1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?735÷(85+90)=735÷175=4.2(时)答:4.2小时两列火车相遇.2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6.5小时两车相遇.两个车站之间的铁路长多少千米?(85+78)×6.5=163×6.5=1059.5(千米)答:两个车站之间的铁路长1059.5千米.3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?165÷5-15 (18-15)× 5=33-15 =3×5=18(千米)=15(千米)答:第二匹马每小时跑18千米.第二匹马比第一匹马多跑15千米.4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?4320÷(160÷2+160)=4320÷(80+160)=4320÷240=18(分钟)答:18分钟后两人相遇.5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船每小时行多少千米?(654-22)÷8-42=632÷8-42=79-42=37(千米)答:甲船平均每小时行驶37千米.6、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?172.5÷3=57.5(千米)(57.5-31.5)÷2=26÷2=13(千米)13+31.5=44.5(千米)答:汽车每小时行驶44.5千米,自行车每小时行驶13千米.7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?480-45×(5-1)=480-180=300(千米)300÷5=60(千米)答:乙车每小时行驶60千米.。
四年级数学之相遇问题

四年级数学之相遇问题第十讲相遇问题知识要点与学法指导:相遇问题是行程问题中的一种情况。
两个运动着的物体从两个地方出发,相向运动,越行越近,到一定的时候两者可以相遇。
两个运动的物体同时出发时,相遇时所用的时间相同。
我们已经研究过速度、时间和路程这一组数量关系,在相遇问题中也存在着这样的数量关系,两个运动着的物体都各自有速度、时间和所行驶的路程。
在研究相向运动时,两个物体一小时一共所行驶路程又叫做速度和。
解答相遇问题的基本数量关系是:速度和×相遇时间=总路程总路程÷相遇时间=速度和总路程÷速度和=相遇时间例如:两人同时从两地对面走来,XXX每分钟走70米,XXX每分钟走60米,两人每分钟一共走多少米?走了3分钟,两人一共走了多少米?要求两人每分钟一共走多少米,就是求两人的速度和。
70+60=130(米)要求走了3分钟两人一共多少米,我们可以在前面速度和,也就是每分钟两人所走的路程的基础上解决。
即:70+60=130(米)130×3=390(米)我们还可以这样理解,两人走了3分钟,每一个人都走了3分钟,可以先分别计算每一个人3分钟所走的路程,最后再求和。
70×3=210(米)60×3=180(米)210+180=390(米)答:两人每分钟一共走130米。
两人一共走了390米。
例如1:两人同时从两地对面走来,XXX每分钟走70米,XXX每分钟走60米,9分钟后两人相遇,求两地距离。
分析与解】观察下面的图:两地距离就是两个人相遇的时候所走的路程和。
两人同时出发,所以所行的时间相同。
我们可以这样解决:70+60=130(米)130×9=1170(米)也可以这样解决:70×9=630(米)60×9=540(米)630+540=1170(米)答:两地路程相距1170米。
通过问题的解决,我们可以得到:速度和×相遇时间=总路程试一试1:两人同时从两地对面走来,甲每分钟走60米,乙每分钟走50米,走了5分钟后两人相遇,求两地相距多少米?例如2:两地之间的海上距离是400千米。
四年级数学相遇问题

下面的关系式必须牢记:(1)速度和×相遇时间=相遇路程(2)相遇路程÷速度和=相遇时间(3)相遇路程÷相遇时间=速度和速度和:两人或两车速度的和;相遇时间:两人或两车同时开出到相遇所用的时间。
【经典习题1】:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?【经典习题2】:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?【经典习题3】:王明和妹妹两人从相距2000米的两地相向而行,王明每分钟行110米,妹妹每分钟行90米,如果一只狗与王明同时同向而行,每分钟行500米,遇到妹妹后,立即回头向王明跑去,遇到王明再向妹妹跑去,这样不断来回,直到王明和妹妹相遇为止。
狗共行了多少米?【经典习题4】:甲每小时行7千米,乙每小时行5千米,两人由相隔18千米的两地相背而行,几小时后两人相隔54千米?【经典习题5】:甲乙两艘舰由相距418千米的两个港口同时相对开出,甲舰每小时行36千米,乙舰每小时行34千米,开出1小时候,甲舰因有紧急任务返回原港,又立即起航与乙舰继续相对开出,经过多少小时两舰相遇?【经典习题6】:甲地到乙地快车每小时行32千米,慢车每小时行18千米,如果两车同时从甲乙两地相对开出,可在距中点35千米的地方相遇,甲乙两地相距是多少千米??『经典习题解析』【经典习题1】:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?(86+102)×5=940千米或者86×5+102×5=940千米【经典习题2】:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?20÷2-6=4千米或者(20-6×2)÷2=4千米【经典习题3】:王明和妹妹两人从相距2000米的两地相向而行,王明每分钟行110米,妹妹每分钟行90米,如果一只狗与王明同时同向而行,每分钟行500米,遇到妹妹后,立即回头向王明跑去,遇到王明再向妹妹跑去,这样不断来回,直到王明和妹妹相遇为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十讲相遇问题
知识要点与学法指导:
相遇问题是行程问题中的一种情况。
两个运动着的物体,从两个地方出发,相向运动,越行越近,到一定的时候两者可以相遇。
两个运动的物体同时出发时,相遇时所用的时间相同。
我们已经学习过速度、时间和路程这一组数量关系,在相遇问题中也存在着这样的数量关系,两个运动着的物体都各自有速度、时间和所行驶的路程。
在研究相向运动时,两个物体一小时一共所行驶路程又叫做速度和。
解答相遇问题的基本数量关系是:
速度和×相遇时间=总路程
总路程÷相遇时间=速度和
总路程÷速度和=相遇时间
两人同时从两地对面走来,小王每分钟走70米,小张每分钟走60米,两人每分钟一共走多少米?走了3分钟,两人一共走了多少
米?
要求两人每分钟一共走多少米,就是求两人的速度和。
70+60=130(米)
要求走了3分钟两人一共多少米,我们可以在前面速度和,也就是每分钟两人所走的路程的基础上解决。
即:
70+60=130(米)
130×3=390(米)
我们还可以这样理解,两人走了3分钟,每一个人都走了3分钟,可以先分别计算每一个人3分钟所走的路程,最后再求和。
70×3=210(米)
60×3=180(米)
210+180=390(米)
答:两人每分钟一共走130米。
两人一共走了390米。
例1两人同时从两地对面走来,小王每分钟走70米,小张每分钟走60米,9分钟后两人相遇,求两地距离。
【分析与解】
观察下面的图:
两地距离就是两个人相遇的时候所走的路程和。
两人同时出发,所以所行的时间相同。
我们可以这样解决:
70+60=130(米)
130×9=1170(米)
也可以这样解决:
70×9=630(米)
60×9=540(米)
630+540=1170(米)
答:两地路程相距1170米。
通过问题的解决,我们可以得到:
速度和×相遇时间=总路程
试一试1
两人同时从两地对面走来,甲每分钟走60米,乙每分钟走50米,走了5分钟后两人相遇,求两地相距多少米?
例2 两地之间的海上距离是400千米。
两艘轮船同时从两地相向开出。
一艘轮船每小时行30千米,另一艘轮船每小时行20千米。
两艘轮船开出后几小时相遇?
【分析与解】
两艘轮船相遇时,所行的总路程就是两地距离。
可以先计算出两艘轮船一小时一共行驶多少千米。
30+20=50(千米)
两艘轮船一小时一共行驶50千米,几小时可以行驶400千米,就是求400千米里面包含几个50千米,就是需要几小时,也就是相遇时间。
400÷50=8(时)
答:两艘轮船开出后8小时相遇。
通过问题的解决,我们可以知道:
总路程÷速度和=相遇时间
试一试2
东西两镇相距54千米,甲乙二人骑自行车,分别从两镇同时出发相向而行,甲每小时走10千米,乙每小时走8千米,问几小时两人相遇?
例3甲、乙两地相距810千米,一辆客车和一辆货车同时从两地相向而行,9小时相遇。
已知客车每小时行50千米,货车每小时行多少千米?
【分析与解】
两辆车同时从两地相向而行,9小时相遇时一共行驶了810千米。
我们可以先求出两辆车一小时行多少千米,再从一小时一共行驶的路程中减去客车行驶的,就是货车每小时行的。
810÷9=90(千米)
90-50=40(千米)
我们还可以这样理解,两辆车同时从两地相向而行,9小时相遇时一共行驶了810千米。
从总路程中减去客车9小时行驶的路程,就是货车9小时行驶的路程,再计算出货车速度。
50×9=450(千米)
810-450=360(千米)
360÷9=40(千米)
答:货车每小时行40千米。
通过问题的解决,我们可以知道:
总路程÷相遇时间=速度和
试一试3
甲、乙两地相距1200千米,一辆客车和一辆货车同时从两地相向而行,12小时相遇,已知客车从甲地到乙地需20小时,问货车每小时行多少千米?
例4甲、乙两辆货车从相距820千米的两地相向而行,甲车每小时行50千米,乙车每小时行40千米。
甲车出发2小时后乙车才出发,乙车行几小时后与甲车相遇?
【分析与解】
观察题目,我们发现这道题与前面例题不同的是两车不是同时出发。
甲车先开出了2小时,先行了50×2=100千米,这时还剩下820-100=720千米,这720千米的路程就是两车共同行驶的路程。
根据总路程÷速度和=相遇时间,乙车还要行720÷(50+40)=8小时后与甲车相遇。
50×2=100(千米)
820-100=720(千米)
720÷(50+40)=8(小时)
答:乙车行8小时后与甲车相遇。
试一试4
甲、乙两车从相距570千米的东西两站相向而行,甲车每小时行45千米,开出2小时后,乙车才以每小时35千米的速度开出,乙车开出几小时后与甲车相遇?
练习十
1. 甲、乙两车同时从两地相向而行,甲车每小时行50千米,乙车每小时行60千米,4小时后两车在途中相遇。
求两地的距离。
2. 明明、刚刚两人从操场的东、西两端同时出发,相向而行。
明明每分钟走70米,刚刚每分钟走65米,6分钟后两人在途中相遇。
学校操场长多少米?
3.两列火车从郑州和北京同时相对开出,从郑州开出的火车每小时行79千米,从北京出发的火车每小时行60千米,经过5小时两车相遇。
郑州到北京的铁路长多少千米?
4.有两辆汽车同时从甲城出发背向开出,快车每小时行54千米,慢车每小时行40千米,经过4小时它们相距多少千米?
5. 东西两城相距210千米,甲骑车每小时行14千米,乙骑车每小时行16千米,两人同时从两地出发相向而行,几小时后相遇?
6.甲、乙两车分别从相距2400千米的A、B两城同时出发,相向而行,已知甲车到达B城需40小时,乙车到达A城需60小时,两车同时出发相向而行,需要多长时间相遇?
7.甲乙两车分别从相距540千米的A、B两城同时出发,相向而行,甲车每小时行30千米,乙车的速度是甲车的2倍,两车出发后多少小时相遇?
8. A、B两城相距2590千米,两架飞机同时从两城起飞,相对开出,经过两小时相遇。
从A城起飞的飞机每小时飞行645千米,从B城出发的飞机每小时飞行多少千米?
9. 东西两个车站相距900米,方方和玲玲从两站同时出发相向而行,6分钟相遇。
方方每分钟走78米,玲玲每分钟走多少米?
10.甲乙两车同时从相距480千米的两地相对开出,甲车每小时行45千米,5小时后两车相遇,乙车每小时行多少千米?
11.王师傅和徒弟共同加工384个零件,3小时加工完,已知王师傅每小时加工80个零件,比徒弟每小时多加工多少个?
12. 两地相距1120千米,两列火车相向而行。
第一辆火车每小时行60千米,开出后2小时,第二辆火车才以每小时40千米的速度开出,再过几小时后两车相遇。
13.A、B两地相距680千米,甲车从A地开往B地每小时行60千米,2小时后乙车从B地开往A地,每小时行80千米,乙车开出几小时后两车相遇?
14.甲乙两地相距340千米,一辆客车从甲地开往乙地,每小时行42千米,行了100千米。
这时一辆货车从乙地开往甲地,每小时行38千米,货车开出几小时后与客车相遇?
15.甲乙二人同时从相距38千米的两地相向行走,甲每小时行3千米,乙每小时行5千米,几小时后两人相距6千米?。