二次型理论起源于解析几何中的化二次曲线和二次曲面方.
数学论文

毕业论文(设计)论文(设计)题目:正定二次型的判定及应用姓名刘洁学号 11111022015院系数学与信息科学学院专业信息与计算科学年级 2011级2班指导教师王永忠年月日目录摘要 (1)ABSTRACT (2)第1章引言 (3)1.1 研究背景及意义 (3)第2章二次型 (4)2.1 二次型 (4)2.3 正定二次型与正定矩阵 (4)第3章正定二次型的判定及应用 (7)3.1 正定二次型的判别方法 (7)3.2 正定二次型在实际中的应用 (15)第4章结论 (18)参考文献 (19)致谢 (20)摘要在二次型中,正定二次型占有特殊的地位,本文总结了正定二次型的一些判断方法及其在证明不等式与极值问题中的应用。
关键词:正定二次型;正定矩阵;顺序主子式;ABSTRACTIn the quadratic form,the positive definite quadratic form has a special position.This paper has summarized some judjement methods of the positive definite quadratic form and given some applications in inequalities proving and extreme problems.Key words: positive definite quadratic; positive definite matrix; principal minor determinant第1章引言1.1 研究背景及意义在数学中,二次型的理论起源于解析几何中化二次曲线和二次曲面方程为标准形的问题. 二次型的系统研究是从18世纪开始的,柯西在其著作中给出结论:当方程式标准型时,二次曲面用二次型的符号来进行分类.然而,那是并不太清楚,在化简成标准型时,为何总是得到同样数目的正项和负项.西尔维斯特回答了这个问题,他给出了n个变数的二次型的惯性定律,但没有证明.这个定律后被雅克比重新发现和证明.1801年,高斯在《算术研究》中引进了二次型的正定、负定、半正定和半负定等术语.二次型化简的进一步研究涉及二次型或行列式的特征方程的概念。
浅谈正定二次型的判定方法

浅谈正定二次型的判定方法摘 要 二次型与其矩阵具有一一对应关系,可以通过研究矩阵的正定性来研究二次型的正定性及其应用.本文主要通过正定二次型的定义,实矩阵的正定性的定义,特征值法,矩阵合同以及相应的推导性质来判定二次型的正定性。
关键词 二次型 矩阵 正定性 应用1 引 言在数学中,二次型的理论起源于解析几何中化二次曲线和二次曲面方程为标准形的问题.现在二次型常常出现在许多实际应用和理论研究中,有很大的实际使用价值。
它不仅在数学的许多分支中用到,而且在物理学中也会经常用到,其中实二次型中的正定二次型占用特殊的位置. 二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别,下面将用二次型的性质来求函数的最值和证明不等式因此,对正定矩阵的讨论有重要的意义.2 二次型的相关概念 2.1 二次型的定义设p 是一个数域,ij a ∈p ,n 个文字1x ,2x ,…,n x 的二次齐次多项式22121111212131311(,,,)22nnn nn nij i j i j f x x x a x a x x a x x a x a x x ===++++=∑∑),...,2,1,,(n j i a a ji ij ==称为数域上p 的一个n 元二次型,简称二次型.当ij a 为实数时,f 称为实二次型.当ij a 为复数时,称 f 为复二次型.如果二次型中只含有文字的平方项,即12(,,...,)n f x x x =2221112...n n d x d x d x +++称f 为标准型.定义1 在实数域上,任意一个二次型经过适当的非退化线性替换可以变成规范性22222121z z z z z p p r ++++---…………,其中正平方项的个数p 称为f 的正惯性指数,负平方项的个数称为的f 负惯性指数.2.2 二次型的矩阵形式二次型12(,,...,)n f x x x 可唯一表示成12(,,...,)n f x x x =T x Ax ,其中12(,,...,)T n x x x x =,()ij n n A a ⨯=为对称矩阵,称上式为二次型的矩阵形式,称A 为二次型的矩阵(必是对称矩阵),称A 的秩为二次型f 的秩.2.3 正定二次型与正定矩阵的概念定义2.3.1 设12(,,...,)n f x x x =T x Ax 是n 元实二次型(A 为实对称矩阵),如果对任意不全为零的实数12,,...,n c c c 都有12(,,...)0n f c c c >,则称f 为正定二次型,称A 为正定矩阵;如果12(,,...)0n f c c c ≥,则称f 为半正定二次型,称A 为半正定矩阵;如果12(,,...)0n f c c c <,则称f 为负定二次型,称A 为负定矩阵;如果12(,,...)0n f c c c ≤,称f 为半负定二次型,称A 为半负定矩阵;既不是正定又不是负定的实二次型称为不定的二次型,称A 为不定矩阵.定义2 另一种定义 具有对称矩阵A 的二次型,AX X f T =(1) 如果对任何非零向量X , 都有0>AX X T (或0<AX X T )成立,则称AX X f T =为正定(负定)二次型,矩阵A 称为正定矩阵(负定矩阵). (2) 如果对任何非零向量X , 都有0≥AX X T (或0≤AX X T )成立,且有非零向量0X ,使000=AX X T ,则称AX X f T =为半正定(半负定)二次型,矩阵A 称为半正定矩阵(半负定矩阵).注:二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定性.不具备有定性的二次型及其矩阵称为不定的.二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别.定义3 n 阶矩阵)(ij a A =的k 个行标和列标相同的子式)1(21212221212111n i i i a a a a a a a a a k i i i i i i i i i i i i i i i i i i kk k k k k ≤<<<≤称为A 的一个k 阶主子式.而子式),,2,1(||212222111211n k a a a a a a a a a A kkk k k k k==称为A 的k 阶顺序主子式.3 实二次型正定的判别方法及其性质定理1 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是它的正惯性指数等于n证明 设实二次型AX X x x x f n '=),,,(21 经线形替换PY X =化为标准形2222211n n y d y d y d f +++= )1(其中.,,2,1,n i R d i =∈由于p 为可逆矩阵,所以n x x x ,,,21 不全为零时ny y y ,,,21 也不全为零,反之亦然.)(⇒如果f 是正定二次型,那么当n x x x ,,,21 不全为零,即n y y y ,,,21 不全为零时,有02222211>+++=n n y d y d y d f )2(若有某个),1(n i d i ≤≤比方说.0≤n d 则对1,0121=====-n n y y y y 这组不全为零的数,代入)1(式后得.0≤=n d f 这与f 是正定二次型矛盾.因此,必有),,2,1.(0n i d i =>即f 的正惯性指数等于n)(⇐如果f 的正惯性指数等于,n 则),,2,1(,0n i d i =>于是当n x x x ,,,21 不全为零,即当n y y y ,,,21 不全为零时)2(式成立,从而f 是正定型定理2 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是对任何n 维实的非零列向量X 必有0>'A X X证明 )(⇒由假设f 是正定二次型,故存在实的非退化的线形替换,QY X =使22221n y y y AX X +++=' )1(对,0≠X 因Q 非奇异,故,0≠Y 于是由)1(可知0>'A X X)(⇐设AX X '的秩与正惯性指数分别为r 与,p 先证,p r =如,r p <则由惯性定理,存在非退化的线形替换,QY X =使得221221'r p p y y y y AX X ---++=+ )2(由假设,对任何,0,0>'≠AX X X 但对列向量 0)0,,0,1,0,,0(≠'= Q X (因Q 是非奇异阵,1是X 的第1+p 个分量)却有 01<-='A X X这与假设矛盾.故p r =.再证n r =.如果,n r <则)2(式应化为n r y y y AX X r <+++=,22221')3( 于是取0)1,0,,0(≠'= Q X由)3(即得,0='A X X 又与假设矛盾,故,p n r ==即f 是正定二次型 定理3 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是f 的规范形为2222121),,,(n n y y y x x x f +++=证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理1可知f 的正惯性指数为n ,则二次型AX X x x x f n '=),,,(21 可经过非退化实线形替换成2222121),,,(n n y y y x x x f +++=)(⇐f 的规范形为2222121),,,(n n y y y x x x f +++= ,则f 的正惯性指数为,n 由定理1可知f 为正定二次型定理4 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 与单位矩阵合同证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理3,可知f 的规范形为2222121),,,(n n y y y x x x f +++=此即存在非退化线形替换(CY X =其中C 可逆),使得2222121)()(),,,(n n y y y ACY C Y CY A CY AX X x x x f +++=''='='=所以,E AC C ='因此矩阵A 单位矩阵合同)(⇐矩阵A 单位矩阵合同,则存在可逆矩阵,C 使得E AC C =',令CY X =则2222121)()(),,,(n n y y y ACY C Y CY A CY AX X x x x f +++=''='='=因此,由证明4,可知f 是正定二次型定理5 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的主子式全大于零证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,以k A 表示A 的左上角k 阶矩阵,下证),,,2,1(,0n k A k =>考虑以k A 为矩阵的二次型j k i kj i ijk x x ax x x g ∑∑===1121),,,(由于)0,,0,,,,(),,,(2121 k k x x x f x x x g =所以当k x x x ,,,21 不全为零时,由f 正定二次型可知,0>g 从而g 为正定二次型,故.0>k A)(⇐对二次型的元数n 作数学归纳法当1=n 时,,)(21111x a x f =因为,011>a 所以f 正定,假设,1>n 且对1-n 元实二次型结论成立由于,01111>=a a 用111a a i -乘A 的第1列到第i 列,再用111a ai -乘第A 的第1行到第i 行),,,3,2(n i =经此合同变换后A ,可变为以下的一个矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000111A a B = 因为矩阵A 与B 合同,所以B 是一个n 阶对称矩阵.从而1A也是对称矩阵.上述的变换不改变A 的主子式的值,因此B ,的主子式也全大于零,而B 的)2(n k k ≤≤阶主子式等于1A 的1-k 阶主子式乘以,11a 并且011>a 于是1A 的主子式全大于零,由归纳假设,1A 与1-n I 合同,所以A 与单位矩阵合同,此即f 是正定二次型定理6 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的顺序主子式全都大于零证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理5可知A 的主子式全大于零,所以A 的顺序主子式也全大于零.)(⇐对二次型的元数n 作数学归纳法当1=n 时,,)(21111x a x f =由条件知,011>a 所以)(1x f 是正定的.假设充分性的判断对于1-n 元的二次型已经成立,现在来证n 元的情形.令1A =⎪⎪⎪⎭⎫⎝⎛----1,11,11,111n n n n a a a a⎪⎪⎪⎭⎫ ⎝⎛=-n n n a a ,11 α于是矩阵A 可以分块写成:A =⎪⎪⎭⎫⎝⎛'nn a A αα1 则1A 的顺序主子式也全大于零,由归纳法假定,1A 是正定矩阵 则存在可逆的1-n 阶矩阵,G 使得1-='n E AG G 令1C =⎪⎪⎭⎫⎝⎛100G于是⎪⎪⎭⎫⎝⎛''=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛'⎪⎪⎭⎫ ⎝⎛'='-nn n nn a G G E Ga A G AC C αααα111110010再令2C =⎪⎪⎭⎫⎝⎛--10'1a G E n 则有⎪⎪⎭⎫⎝⎛''-=''-ααG G a E C AC C C nn n 0012112令 21C C C = d G G a nn =''-αα就有⎪⎪⎪⎪⎪⎭⎫⎝⎛='d AC C11两边取行列式,d A C=2,则由条件,0>A 因此0>d .⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛d d d 111111111 所以矩阵A 与单位矩阵合同,因此A 是正定矩阵即f 是正定二次型定理7 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵T T T A ('=是实可逆矩阵)证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则由定理4可知存在可逆矩阵,C 使得E AC C =' 则 1111)()(----'='=C C C C A令1-=CT ,则T T A '=)(⇐若,T T A '=则 )()(),,,(21TX TX TX T X AX X AX X x x x f n '=''='='= 令TX Y =则 2222121),,,(n n y y y Y Y x x x f +++='=所以f 为正定二次型.定理8 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是ATT '正定矩阵(其中T 是实可逆矩阵)证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则A 是正定阵,令(1Y X T=-其中T 可逆)则 ATY T Y TY A TY x x x f n ''='=)()(),,,(21 又因非退化线性替换不改变正定性,则ATY T Y x x x f n ''=),,,(21是正定二次型,所以AT T '是正定阵)(⇐AT T '是正定阵,令ATY T Y y y y g n ''=),,,(21 ,则),,,(21n y y y g 是正定二次型令TY X =则),,,(21n y y y g AX X x x x f n '==),,,(21 是正定二次型 定理9 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 的全部特征值都是正的证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型,则A 是正定阵,又对于任意一个n 阶实对称矩阵,A 都存在一个n 阶正交矩阵,T 使得AT T AT T 1'-=成为对角形令AT T AT T 1'-==⎪⎪⎪⎭⎫⎝⎛n λλ1则),,2,1(,0n i i =>λ否则与f 为正定二次型相矛盾, 则AT T1-特征值为n λλλ,,,21 均大于零,即为正的.又相似矩阵有相同特征值,则A 的特征值也均为正)(⇐ A 的全部特征值均为正的,则存在一个n 阶正交矩阵,T 使得AT T AT T 1'-==⎪⎪⎪⎭⎫⎝⎛n λλ1其中),,2,1(n i i =λ为A 的特征值,此由相似矩阵有相同的特征值得到.令,TY X =则 222221121),,,(n n n y y y ATY T Y AX X x x x f λλλ+++=''='=所以f 为正定二次型定理10 实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型的充要条件是矩阵A 是正定阵证明 )(⇒实二次型)(),,,(21A A AX X x x x f n =''= 是正定二次型, 则由正定阵的定义可知A 是正定阵.)(⇐ A 是正定阵,则A 的顺序主子式全都大于零.由定理6可知f 是正定二次型.性质:若A 为n 阶实正定阵,显然TA ,1A -也是正定阵注 (1) 若A 是负定矩阵,则A -为正定矩阵.(2) A 是负定矩阵的充要条件是:).,,2,1(,0||)1(n k A k k =>-其中k A 是A 的k 阶顺序主子式.(3) 对半正定(半负定)矩阵可证明以下三个结论等价:a.对称矩阵A 是半正定(半负定)的;b.A 的所有主子式大于(小于)或等于零;c.A 的全部特征值大于(小于)或等于零.例 1 考虑二次型22212312132344224f x x x x x x x x x λ=+++-+,问λ为何值时,f为正定二次型.解 利用顺序主子式来判别,二次型f 的矩阵为1142124A λλ-⎛⎫⎪= ⎪ ⎪-⎝⎭,A 的顺序主子式为 110∆=>;22144λλλ∆==-;23114214484(1)(2)124λλλλλλ-∆=-=--+=--+-.于是,二次型f 正定的充要条件是:230,0∆>∆>,有2240λ∆=->,可知,22λ-<<;由34(1)(2)0λλ∆=--+>, 可得12<<-λ,所以,当12<<-λ时, f 正定.例 2 已知A E -是n 阶正定矩阵,证明1E A --为正定矩阵.分析:只要证明1E A --的特征值全大于零即可 证明 由A E -正定知A 是实对称矩阵,从而111()()TT T E A E A E A ----=-=-即1E A --也是实对称矩阵.设A 的特征值为k λ(1,2,)k n =,则A E -的特征值为1k λ-(1,2,)k n =,而1E A --的特征值为11kλ-(1,2,)k n =,因为A E -是正定矩阵,所以,10k λ->(,从而11kλ<,故,110kλ->(1,2,)k n =即,1E A --的特征值全大于零,故,1E A --为正定矩阵.例 3 设有n 元二次型222121122231(,,)()()()n n n f x x x x a x x a x x a x =++++++其中(1,2,,)i a i n =为实数,试问:当12,,,n a a a 满足何种条件时,二次型1(,,)n f x x 为正定二次型.解 令1121221100001000010000000101n n n na y a x y x a x y a -⎛⎫ ⎪⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭第 11 页 共 13 页当121100001000010000001001n na a a a-=1121(1)0n n a a a ++-≠,即当12(1)n n a a a ≠-时,原二次型为正定二次型.例 4 设A ,B 分别是,m n 阶正定阵,试判定分块矩阵00A C B ⎛⎫= ⎪⎝⎭是否为正定矩阵解 因为,A B 都是实对称阵,从而C 也是实对称阵.且,0,m nX RX +∀∈≠令12X X X ⎛⎫= ⎪⎝⎭ 则12,m n X R X R ∈∈,且至少一个不为零向量.于是()11211222000T TT T TX A X CX X X X AX X BX X B ⎛⎫⎛⎫==+> ⎪ ⎪⎝⎭⎝⎭故C 为正定阵.例 5 若A 是n 阶实对称阵,证明:A 半正定的充要条件是对任何μ>0,B E A μ=+正定.证 A 是实对称阵,从而存在正交阵T ,使1'n A T T λλ⎛⎫⎪=⎪ ⎪⎝⎭,其中1,,n λλ为A 的全部实特征值.先证必要性 若A 半正定,则0,(1,2,,).i i n λ≥=又因为1'B E A T T n μλμμλ+⎛⎫⎪=+=⎪⎪+⎝⎭所以B 的全部特征值为0(1,2,,)i i n μλ+>=又'm nB B R+=∈,∴B 为正定阵.第 12 页 共 13 页 再证充分性 若A 不是正定阵,则存在0k λ<,此时可令2kλμ=-,则0μ>,但1'2kn B E A T T μλλμμλ+⎛⎫ ⎪ ⎪ ⎪=+= ⎪ ⎪⎪ ⎪+⎝⎭即B 中有一个特征值为02k λ<,这与B 为正定阵的假设矛盾,从而得证A 是半正定的.例 6 设()ij A a =是阶正定阵,证明:(1)对任意i j ≠,都有12();ij ii jj a a a < (2)A 的绝对值最大元素必在主对角线上. 证 (1)A 正定,从而A 的一切2阶主子式均大于0,当i j ≠时20iiijii jj ij ijjja a a a a a a =-> 移项后,开方即证12()(,,1,2,,)ij ii jj a a a i j i j n <≠=.(2)设的主对角线上最大元素为kk a (由于A 正定,0kk a >).再由第一问结论可知12()()ij ii jj kk a a a a i j <≤=≠由此即证(,1,2,,)ij kk a a i j n ≤=即A 中绝对值最大元素必在主对角线上.结束语二次型的研究起源于解析几何中二次曲线和二次曲面的理论,二次型的理论在数学和物理的许多分支都有着广泛的应用.用二次型来解决初等数学、微积分中的一些问题,有时会起到意想不到的效果.本文通过研究二次型的性质,借助例子说明二次型在求多元函数的的极值、最值、证明不等式、及判断二次曲线的形状等方面的应用.将多元元函数求极值问题化为一个二次型问题.在三元及三元以上多元函数求极值时,这个方法比一般工科高等数学教材中介绍的求极值方法好用,而且能够确定是极大值还是极小值.参考文献[1] 王萼方,石生明高等代数(第三版)[M].北京:高等教育出版社,2008.[2] 白蒙蒙,朱小琨实矩阵正定性的简单判别方法[M] 高等函授学报[3] Liu Maosheng The Extension of positive matrix,Journal of ChongQING vocational&technical institute[4]. He ChunLing The Discussion in positive Definite Property of Product Matrix,HeiBei Like JiaoXue YanJiu[5] Zhan ShiLin Zhan XuZhou,some criterions on real positive definite matrix,Journal ofAnHui University[6] 张淑娜,郭艳君正定二次型的几个等价条件以及正定阵的若干性质[M].2005.[7] 陈大新矩阵理论[M]. 上海交通大学出版社 2003.[8] 郭忠矩阵正定性的判定[J]. 科学通报 2007.[9] 钱志祥,林文生.浅谈正定二次型的实际应用[J].科学创新导报,2009.第13页共13 页。
天津大学线性代数教材第七章

记 B = STAS, 知 B 是对称矩阵, 是二次型 g(Y ) 的矩阵.
7.2 化二次型为标准形
· 149 ·
如果所作的线性替换 X = SY 是满秩的, 则 S 是可逆矩阵, 线性替换 Y = S−1X 可把 g(Y ) 还原到 f (X), 此时的二次型 f 与 g 是等价的.
定义 7.1.4 设 A, B 为 n 阶矩阵, 若存在 n 阶可逆矩阵 S 使得
津 数 因此, 一个二次型能否化成标准形, 用矩阵的语言来说, 就是对称矩阵 A 能否与一个对 学 角矩阵合同. 由于 S 是可逆矩阵, 所以 r(A) = r(STAS) = r(B). 因此, 二次型 f 的标准形 天 大 中不为零的平方项的项数等于二次型 f 的秩.
津 7.2.1 正交线性替换法
天 实二次型的矩阵为实对称矩阵. 由定理 6.3.4 知, 对于实对称矩阵 A, 必存在 n 阶正交矩
阵 Q, 使得 QTAQ = Q−1AQ = diag(λ1, λ2, . . . , λn), 其中 λ1, λ2, . . . , λn 为矩阵 A 的全部
特征值, 即一个实对称矩阵合同于一个对角矩阵. 因此, 一个实二次型一定能化为标准形.
版 所 f (x1, x2, . . . , xn) =a11x21 + 2a12x1x2 + 2a13x1x3 + · · · + 2a1nx1xn 院 + a22x22 + 2a23x2x3 + · · · + 2a2nx2xn + · · · + annx2n
(7.1)
学 权 称为数域 P 上的 (n 元) 二次型. 当 P = R 时称之为实二次型. 版 令 aij = aji(i > j), 则 2aijxixj = aijxixj + ajixjxi(i > j), 于是 (7.1) 式可写成
1二次型理论起源于解析几何中二次曲线

第九章二次型综述1.二次型理论起源于解析几何中二次曲线、二次曲面的简化问题.一般的n 元二次型化为标准型问题在很多工程问题中有广泛的应用,而n 维欧氏空间中二次型正交化为标准型问题,在相近学科如分析、统计学中有直接的应用,但内容本身作为高等代数(线性代数)的一部分,不太需要完整的论述而又必要作一讨论.2.n元二次型理论(一般数域F上)从体系结构上来讲,可作为一独立的内容,但其可建立与F上n 阶对称矩阵的一一对应,所以可安排在矩阵一节之后(北大教材即如此),而其又可与F上的向量空间v 上的对称内积(亦可为对称双线性函数(型))的集合一一对应,因而可放在欧氏空间后.(先推广欧氏空间即定义一般数域上的(对称)内积(或更一般的酉内积),具体见下补).特别是对欧氏空间中实二次型的讨论(主轴问题、正定等)因而可放在欧氏空间后(因有些结论是对称变换的推论).3.就本章内容而言,主要是二次型的概念及标准形问题,实二次型分类及实二次型的正定及主轴问题.如刚才所讲,实际上:一般数域F上的n元二次型的集合,F上n维向量空间的对称双线型(函数)的集合(亦是对称内积的集合),F上n 阶对称矩阵的集合是一一对应的,即是同一事物的三种表现形式,可通过一方研究(表示)另一方,且大多是通过对称矩阵来研究二次型的(如标准形(化简)、复、实二次型的规范型、实二次型的正定及主轴问题皆是如此),这是方法问题,而理论上为认识二次型是先介绍了双线性型(对称双线性函数),所以在具体内容上直接给出二次型定义,用上述方法讨论前述问题.4.本节重点难点是二次型的标准形,复、实二次型的规范形及正定二次型的判定,所以二次型的初等变换法化简、惯性定理是难点.5.简要介绍一下欧氏空间的推广——内积空间与西空间.(略)6.本教材是先定义双线性型(函数),对称双线性型(函数),引入与对称双线性型(函数)的关联函数得出二次型定义,好在理论上可进一步了解二次型,但不利于实质上(用对称矩阵)讨论二次型本章要解决的问题,以及9.2以后的内容;重要的是引导学生建立F上n元二次型与F上n阶对称矩阵的一一对应,通过对称矩阵研究本章所有问题.9.1 二次型一教学思考1.二次型的理论起源于解析几何中二次曲线、二次曲面的化简问题,但其理论在网络问题中、分析、热力学等中有广泛应用.仅从数学内容上言,其与F上n维向量空间v上所有对称双线性型(对称内积),F 上所有n 阶对称方阵是同一事物的三种表现形式,即存在一一对应.这样不管从理论上还是从方法上提供了讨论问题的方法.本节重要的是给出二次型的定义及二次型的表示,特别是其矩阵表示,从而建立n 元二次型与n 阶对称矩阵的对应,用对称矩阵来讨论二次型的标准形问题,为下面具体讨论C上R上的二次型的规范形(分类)(正定、主轴问题)打下基础.2.本节不从书中介绍,直接给出二次型的定义、表示、标准形等概念,及标准形的化法.二内容要求1.内容:二次型、二次型的矩阵、可逆性替换,矩阵的合同、二次型的等价、二次型的标准型2.要求:掌握上述概念及二次型的标准形的化法.三教学过程1.二次型及表示(1)定义数域F上n个文字x1,x2, (x)n的一个二次齐次多项式叫做F上n个文字的二次型或n元二次型(简称二次型).一个n 元二次型总可以写成:q(x 1,x 2,…x n )=a 11x 21+a 22x 22+…+a nn x 2n+2a 12x 1x 2+…+2a 1n x 1x n+2a 23x 2x 3+…+2a 2n x 2x n (Ⅰ) +……+2a 1n n -x 1n -x n (Ⅰ)式称为二次型的一般形式.q(x 1,x 2,…x n )ij jia a ==11nnij iji j a x x==∑∑ (Ⅱ)(2)二次型的矩阵定义 令A=()ij a 是由(Ⅱ)的系数所构成的矩阵.称为二次型(Ⅱ)的矩阵. 二次型(Ⅰ)(Ⅱ)又可表示为(矩阵)形式:q(x 1,x 2,…x n )= (x 1,x 2,…x n )A 12.n x x x ⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=x TAX. (Ⅲ)定义:一个二次型的矩阵叫做二次型的秩.(3)可逆(非退化、满秩)线形替换有矩阵的合同.定义 x 1,x 2,…x n 和12,,...,n y y y 是两组文字,系数在数域F 中的一组关系式111112211122.........n n nn n nn n x c y c y c y x c y c y c y=+++⎧⎪⎨⎪=+++⎩ (*)称为由x 1,x 2,…x n 到12,,...,n y y y 的一个线性替换.定理1 n 元二次型q(x 1,x 2,…x n )= x TAX 经(可逆)线性替换(*)X=CY 变为二次型Y TBY.其中B=C TAC.定义 设A,B ∈M n (F),若存在一可逆矩阵P ∈M n (F),使得B=TP AP ,则称A 与B 合同. 合同关系的性质:① 自反性:∀ A ∈M n (F),A 与A 合同.(∵A=TI AI ). ② 对称性:若A 与B 合同,则B 与A 亦合同.事实上: ∵A 与B 合同,即存在可逆矩阵P 使B=TP AP ∴A=1111()()T T P BPP BP ----=∵1P -可逆.故也.③ 传递性:若A 与B 合同,B 与C 合同,则A 与C 合同.事实上:存在可逆矩阵P ﹑Q 使B=TP AP ,T C Q BQ =∴()()T T T C Q P APQ PQ A PQ == 而PQ 可逆.故也.合同矩阵的简单性质:①若A 与B 合同,A 为对称矩阵,则B 亦是.事实上:∵存在可逆矩阵P 使B=TP AP ,∴()T T T T T TT T B P AP P A P P AP B ====,故也. ②合同矩阵有相同的秩.由195 5.2.8.P Th 显(反之不真). (4)二次型的等价:定义 设q(x 1,x 2,…x n )与'q (x 1,x 2,…x n )是数域F 上两个n 元二次型,若可以通过可逆现线性替换将前者化为后者(此时可互化)则 称这两个二次型等价.定理2:数域F 两个n 元二次型等价⇔它们的矩阵合同. 2.二次型的标准形 引言对二次型,当形式简单时便于讨论,比如解析几何中有?二次曲线,当仅有平方项时,其几何图形便一目了然;对于二次型成为二次型形式最简单那的一种是只含有平方项的二次型称之为:定义 只含有平方项的二次型称为二次型的标准形.问题:任给F 上一个二次型能否象解析几何中讨论有心(中心与原点重合、或否)二次曲线那样,通过(坐标旋转(加平移))可逆线形替代:若能,怎样做(即怎样找可逆线形替换)补例 化二次型222123112132233(,,)22285f x x x x x x x x x x x x =+++++为标准形. 22222123112323232123222123223322222123223333222123233(,,)2()()()285()64()2(3)(3)(3)4()(3)5f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xx x x x x x =++++-++++=+++++=+++++-+=++++-作线性替换,即令:1123223333y x x x y x x y x =++⎧⎪=+⎨⎪=⎩⇒11232233323x y y y x y y x y=-+⎧⎪=-⎨⎪=⎩ 则原二次型化为:2221235y y y +-.注:上述方法称为“配方法”,告知任一二次型可化为标准形(当定理3 设)(ij a A =是数域F 上一个n 阶对称矩阵,则总存在F 上一个n 阶可逆矩阵P 使证⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯='n c c c AP P (02)1,即A 与对角阵合同.例:将00030360061243040A ⎛⎫ ⎪-⎪= ⎪-- ⎪ ⎪-⎝⎭化为对角型(注:此提法不同于ch8对称矩阵正交化为对角型). 解:(略)P=21013310223001420103⎛⎫- ⎪⎪⎪-⎪⎪⎪- ⎪ ⎪ ⎪⎝⎭30000600800030000TP AP ⎛⎫⎪⎪= ⎪- ⎪⎪ ⎪⎝⎭. 将Th3应用于二次型得:定理4 设q(x 1,x 2,…x n )=11n nij i j i j a x x ==∑∑= x TAX 是数域F 上一个n 元二次型,则总可以通过变量替换12n x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=12n y y P y ⎛⎫⎪ ⎪ ⎪⎪ ⎪⎝⎭. 把它化为2211...n n c y c y ++,其中P 为可逆矩阵. 9.2 复数域、实数域上的二次型一 教学思考本节是将一般数域上的二次型的标准形问题具体到复数域、实数域上作深入的讨论,最终得到此二数域上二次型的典型(规范)型,进而得这两类二次型的分类,结果是:C 上二次型典范型由秩唯一决定,所以C 上n 元二次型可按秩分类为n+1类;R 上二次型典范性由秩与符号差决定,所以R 上二次型分类由此二者分为1(1)(2)2n n ++类.本节讨论问题的方法在上节(基础上)——行列同型初变(含同变换)化对称矩阵为对角形的基础上,仍利用讨论矩阵的思想,按上述方法很易讨论而得.但对实二次型典范形式的唯一 性(惯性定理)的证明较繁,本教材用双线性函数反证之,有直接用二次型证之(反证法).习题中反应求实二次型的秩、符号差(惯性指标等),用本节方法来讲化为典范型(实为标准型)便知,当然一般方法为初等变换法,特殊形式的可用特殊方法(9.4还有用求特征根法);求实(复)对称矩阵合同问题亦用初变化为标准[spI I O ⎛⎫⎪-⎪ ⎪⎝⎭、r I O ⎛⎫⎪⎝⎭]型. 二 内容及要求1.内容:复数域、实数域上二次型的典范形式与分类.2.要求:掌握C 、R 上二次型的典范形式及求法,及内容体现的通过对称矩阵讨论问题的思想,实二次型的秩、惯性指标、符号差的求法(本节为化为典范形、实际标准形即可);下节还将介绍用特征根法.复、实二次型的等价分类. 三 教学过程引言上节我们知道:数域F 上任一n 元二次型1(,,)n q x x =AX X ',都可以通过可逆线性替换X=PY 化为标准形:2211r r y c y c +⋯⋯+.其中r 为二次型的秩.用矩阵语言叙述(等价为):对()F M A n ∈∀,A A =',则A 合同于一个对角形矩阵D . 1 C 上的二次型:复二次型——复数域上的二次型称为复二次型. 先介绍一个重要定理,由此反映下述结论.定理9.2.1复数域上两个n 阶对称矩阵合同的充要条件是它们有相同的秩.()(),,,,A B Mn C A A B B AB A B ''∈==⇔=则秩秩2.R 上的二次型:实二次型——实数域上的二次型.(1) 实二次型等价的充要条件(⇔实对称矩阵合同的充要条件).为此:定理9.2.2 设()r A A A R Mn A =='∈秩,,则A 合同于pr pI I O -⎛⎫⎪-⎪ ⎪⎝⎭. 平行地定理9.2.3 秩为r 的n 元实二次型都与如下形式的一个二次型等价:(Ⅰ)r p p x x x x 21221-⋯⋯--⋯⋯++定理9.2.4 (惯性定理),设R 上一个n 元二次型等价于两个典范形式: ①r p p x x x x 21221-⋯⋯--⋯⋯++(r 为二次型的秩) ②222211P P r y y y y ''++⋯⋯+--⋯⋯-(r 为二次型的秩) 则P P '=.(反证略)定义 一个实二次型的典范形式中,正平方项的个数P 叫做这个二次型的(正)惯性指标(数),正项的个数P 与负项个数(负惯性指标)p r -的差:()2sp r p p r --=-,叫做这个二次型的符号差.定理9.2.5 两个n 元实二次型等价的充分条件是它们有相同的秩和符号差. 平行地:设B B A A R Mn B A ='='∈,),(,. 则A 与B 合同⇔它们有相同的秩与符号差. (2)n 元实二次型的分类:n 元实二次型按等价分类:由于n 元实二次型的典范形式由秩与惯性指标唯一确定,所以:推论9.2.6:n 元实二次型按等价分类,可分成:()()211++n n 类. 9.3 正定二次型一 教学思考本节研究一类特殊的实二次型——正定二次型.从定义上来讲,正定二次型是将n 元实二次型视为n 元实函数(即nR 上的实函数),由其函数值分类中的一种;因而由定义判定一个实二次型是否正定相当不易,那么本节在于寻求正定二次型的判定,得到两个判定定理;一个是由秩与符号差(或惯性指标)判定,一个用二次型自身的信息——矩阵的顺序主子式判定,结论方法明确具体,下节还给出一个用特征根判定.所以本节内容易讨论、接受,注意其中反映的一些结论,如可逆线性替换不改变二次型的正定性等. 二 内容和要求1.内容:正定二次型及其判定. 2.要求:掌握有关概念和判定方法. 三 教学过程1.定义 (由于二次型是n 个文字的二次齐次多项式,所以n 元实二次型可象一元多项式那样定义其在某一点的值,即将n 元实二次型看成定义在nR 上的n 元实函数,那么可按它的值的符号分类). 设()n x x x q ,⋯⋯,,21是一个n 元实二次型,若对任意一组不全为0的实数n c c ⋯⋯1;(1) 如果()01>⋯⋯n c c q ,则称()n x x x q ,⋯⋯,,21为正定二次型; (2) 如果()01<⋯⋯n c c q ,则称()n x x x q ,⋯⋯,,21为负定二次型; (3) 如果()10n q c c ⋯⋯≥,则称()n x x x q ,⋯⋯,,21为半正定二次型; (4) 如果()10n q c c ⋯⋯≤,则称()n x x x q ,⋯⋯,,21为半负定二次型; (5)若()n c c q ⋯⋯1有正、有负,则称()n x x x q ,⋯⋯,,21为不定二次型. 2.正定二次型的判定定理9.3.1 实数域上n 元二次型()n x x x q ,⋯⋯,,21是正定的⇔它的秩与符号差都等于n (惯性指标为n ).有时须从二次型的矩阵直接判定,不希望通过典范形式,为此下讨之. 定义 设()()R Mn a A ij ∈=,位于A 的前k 行、前k 列的子式1111kr kka a a a 叫做A 的k 阶顺序主子式.二次型()AX X x x x q n '=⋯⋯,,,21的矩阵的k 阶主子式叫做二次型()n x x x q ,⋯⋯,,21的k 阶主子式.定理9.3.2 n 元实二次型()AX X x x x q n '=⋯⋯,,,21是正定的⇔它的一切主子式全大于0.9.4主轴问题一 教学思考本节内容是在欧氏空间中将有心二次曲线、二次曲面,用正交变换化为标准形问题的推广——将实二次型用正交变换化为标准形.思想方法仍是将实二次型问题转化为实对称矩阵处理.由第八章第4节的结论,则此问题解决的具体完满.须注意的是:①此将实二次型化为标准形是用正交变换因而方法过程与前不同,从而结论中标准形的平方项系数为二次型的矩阵的全部特征根.②顺便得到了判定实二次型是否正定的又一方法(用特征根). 二 内容、要求1.内容:主轴问题;实二次型用正交变换化标准形 2.要求:掌握上述概念与方法. 三 教学过程:1.主轴问题:实数域上一个n 元二次型通过坐标的正交变换(正交线性替换)化为标准形的问题. 2.问题的提出及含义的由来我们知道(9.1)任何一个二次型都可经过线性替换化为标准形.用一般的线性替换把二次型化为标准形,可能会改变向量的度量性质(见霍元极379P ),在许多问题中都要求简化实二次型时,所作的线性替换不改变向量的度量性质,如在解析几何中一样,用坐标变换(旋转、平移)化二次曲面(线)为标准形,其特点是用正交变换;因而,一般地讨论把一个n 元实二次型通过正交线性替换化为标准形的问题,正是解析几何中的问题的推广,叫做主轴问题(因由此可知有关曲面、线的性态).3.问题的变通因为二次型通过可逆线性替换化为标准形问题等价于对称矩阵与对角形矩阵合同问题,所以主轴问题:n 元实二次型1(,,)n q x x X AX '=N 能否通过正交线性替换化为标准形的问题(),n A M R A A '⇔∈=是否存在正交矩阵U ,使得U AU '为对角形.4.问题的解决(由定理8.4.6) 定理9.4.1设1(,,)n q x x X AX '=是一个n 元实二次型,则可通过正交线性替换X UY =化为2211n n y y λλ++.其中U 为正交矩阵,1,,n λλ为A 的全部特征根.推论:设1(,,)n q x x X AX '=是一个n 元实二次型,则1)二次型的秩等于其矩阵A 的不为0的特征根的个数;而符号差为A 的正特征根的个数与负特征根的个数的差.2)1(,,)n q x x X AX '=是正定的充要条件是A 的所有正特征根为正实数.。
第七讲 二次型

f
x x1 , x 2 , , x n
因为 r A n ,故 A 可逆,且 T 1 1 T 知 A A A 1 。
A
1
1 A
A
,由 A 的对称
故 A 1也是实对称矩阵,因此二次型 f x 的矩阵为 A 1 。 T 1 1 1 T (2)因为 A A A A E A 1,所以 A 与 A 1 合同。 于是 g x
一、二次型的基本概念 形如
f
x1 , x 2 , x n
i 1 j 1
n
n
a ij x i x j
a
ij
a ji , i , j 1, 2 , , n
a1 1 a 21 x1 , x 2 , , x n a n1
1 2 0 1 2 0 1 0
1
2 1 2 r1 0 r2 c1 c 2 0 0 1
1 1 2 1 r2 r1 2 r3 r1 0 c 1 c1 2 2 c 3 c1 0 0 1
第三步:可逆线性变换 x
T 2
P y 化二次型为标准形
2 2
f y D y d 1 y1 d 2 y 2 d n y n
例1 化下列二次型为标准形,并写出所用的可逆线 性变换:
1 2
f f
x1 , x 2 , x 3 x1 , x 2 , x 3
即
y1 z1 z 3 z2 y2 y z3 3
x1 z 1 z 2 z 3 x 2 z1 z 2 z 3 z3 x3
线性代数 第五章 51

化为标准形
X AX (非 退 化 线 性 变 换 X CY ) Y BY
T T
A (非 退 化 线 性 变 换 X CY ) B
B C AC
T
三、矩阵的合同
n阶 对 称 矩 阵 , 如 果 存 在 定义5.3 设A, B为 两 个 n阶 非 奇 异 矩 阵 C,使 得 C T AC B
如果线性变换(5.3)是非退化线性变换, yT By 有下面的形状: d y 2 d y 2 d y 2 1 1 2 2 r r 其中
d i 0 (i )的一个标准型
例1:将二次型
2 2 2 f ( x1 , x2 , x3 ) x1 2 x1 x2 2 x1 x3 2 x2 4 x2 x3 x3
二、线性变换
对于二次曲线 ax2 bxy cy2 d,为了便于研究 曲线的性质,我们可以通过一个坐标旋转
x x 'cos y 'sin x cos 即 y sin y x 'sin y 'cos
a12 a22 an 2
a1n x1 a2 n x X 2 x ann n
则二次型可记作
f ( x1 ,, xn )=X AX (5.2) 其中 AT A
T
(5.2)称为二次型的矩阵形式
由此可见 任给一个二次型,可唯一确定一个对称矩阵; 反之,任给一个对称矩阵,可唯一确定一个二次型. 即:二次型与对称矩阵之间是一一对应关系 称对称矩阵 A 为二次型 f 的矩阵,也把 f 称为对 称矩阵 A 的二次型. 对称矩阵 A 的秩称为二次型 f 的秩.
第九章 二次型

2.R上的二次型: 实二次型——实数域上的二次型.
(1) 实二次型等价的充要条件(实对称矩阵合同的充要条 件).为此:
定理3 设是数域F上一个n 阶对称矩阵,则总存在F上一个n阶可逆矩 阵P使证,即A与对角阵合同.
例:将化为对角型(注:此提法不同于ch8对称矩阵正交化为对角 型). 解:(略)P= . 将Th3应用于二次型得:
定理4 设q(x,x,…x)== xAX是数域F上一个n元二次型,则总可以通过 变量替换=. 把它化为,其中P为可逆矩阵.
的等价标准形的化法.
三 教学过程
1.二次型及表示
(1) 定义 数域F上n个文字x,x,…x的一个二次齐次多项式叫做F上n个文
字的二次型或n元二次型(简称二次型).一个n 元二次型总可以
写成:
q(x,x,…x)=ax+ax+…+ax
+2axx+…+2axx
9.1 二次型
一 教学思考 1.二次型的理论起源于解析几何中二次曲线、二次曲面的化简问题,
但其理论在网络问题中、分析、热力学等中有广泛应用.仅从数学内容 上言,其与F上n维向量空间v上所有对称双线性型(对称内积),F上所有n 阶对称方阵是同一事物的三种表现形式,即存在一一对应.这样不管从理 论上还是从方法上提供了讨论问题的方法.本节重要的是给出二次型的
同.
合同关系的性质:
1 自反性: A∈M(F),A与A合同.(∵A=).
2 对称性:若A与B合同,则B与A亦合同.事实上:
线性代数5.5二次型

n
定理 5.10 任给二次型 f ai j xi x j (aij a ji ), i, j1
总有正交变换 x = Py,使 f 化为标准形
f 1y12 2 y22 L n yn2, 其中1,2, L ,n 是 f 的矩阵 A (aij ) 的特征值.
首页 上页 下页 返回 结束
定义 5.9 含有n 个变量 x1 , x2 ,… , xn 的二次齐次 函数
f (x1, x2 ,L , xn ) = a11x12 a22 x22 L ann xn2 (5-7)
2a12 x1x2 2a13 x1x3 L 2an1,n xn1xn 称为二次型.
x xcos ysin,
y
xsin +ycos,
把方程化为标准形
mx2 ny2 1
(5-6)式的左边是一个二次齐次多项式, 从代数
学的观点看,化标准形的过程就是通过变量的线性变
换化简一个二次齐次多项式,使它只含有平方项. 把
这类问题一般化,讨论n元二次齐次多项式化简问题.
k1 y12 k2 y22 L kn yn2 yT Λ y,
也就是要使C TAC 为对角阵. 因此,我们的主要问题 就是:对于对称阵A,寻求可逆矩阵C,使 C TAC 为 对角阵. 这个问题称为把对称阵A合同对角化.
首页 上页 下页 返回 结束
由上节定理5.9知,任给对称阵A,总有正交阵 P,使
这种只含平方项的二次型, 称为二次型的标准形,
它的矩阵形式为
对角阵
f
k
1
y , y ,L 12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章二次型二次型理论起源于解析几何中的化二次曲线和二次曲面方程为标准形的问题,这一理论在数理统计、物理、力学及现代控制理论等诸多领域都有很重要的应用•本章主要介绍二次型的基本概念,讨论化二次型为标准形及正定二次型的判定等问题§ 8.1二次型及其矩阵表示在解析几何中,我们曾经学过二次曲线及二次曲面的分类,以平面二次曲线为例,一条二次曲线可以由一个二元二次方程给出:2 2ax bxy cy dx ey f 0 (1.1) 要区分(1.1)式是哪一种曲线(椭圆、双曲线、抛物线或其退化形式),我们通常分两步来做:首先将坐标轴旋转一个角度以消去xy项,再作坐标的平移以消去一次项.这里的关键是消去xy项,通常的坐标变换公式为:x x cos y sin(1.2)y x sin y cos从线性空间与线性变换的角度看,(1.2)式表示平面上的一个线性变换.因此二次曲线分类的关键是给出一个线性变换,使(1.1)式中的二次项只含有平方项.这种情形也在空间二次曲面的分类时出现,类似的问题在数学的其它分支、物理、力学中也会遇到.为了讨论问题的方便,只考虑二次齐次多项式.定义8.1.1设f是数域P上的n元二次齐次多项式:2f (X1,X2 ,L ,X n) 印必242X1X2 L 2a1n X1X n2a22X2 2a23X2X3 L 2a2n X2X n (1.3)1 2 2 2L a n 1,n 1 x n 1 2a n 1,n x n 1 x n a nn x n称为数域P上的n元二次型,简称二次型.如果数域P为实数域R,则称f为实二次型;如果数域P为复数域C,则称f为复二次型;如果二次型中只含有平方项,即2 2 2f(X1,X2丄,X n) d j X1 d2X2 L d n X n称为标准形式的二次型,简称为标准形.说明:在这个定义中,非平方项系数用2a j主要是为了以后矩阵表示的方便例8.1.2下列多项式都是二次型:2 2f (x, y) x 3xy 3yf (x, y,z) 2x22xy 3xz y24yz ,3z2F列多项式都不是二次型f (x, y) x 2 3xy 3y 2 2x 1 f(x,y,z) 2x 3 2xy 4yz 3z 2 1定义8.1.3设X 1,X 2,L ,X n ;y i , y 2丄,y n 是两组文字,系数在数域P 中的一组关系式a :1 X 2X 1a :2X 2 L a :n 卷XiLa n1X n X 1a n 2X n X 2La nn X na 11 a 12 L a 1nX 1a 21a 22La 2nX 2 记A,xLLL L M a n1a n2La nnX n则二次型可记为f T X Ax ,其中A 是对称矩阵•称(1.5)式为二次型的矩阵形式C 11 y 1C|2y 2LX 2C 21 y 1022 y2 L C 2n%(1.4)L L LX nC n2y 2 LC nn y n称为由 X 1,X 2,L ,X n 到 y 1, y 2, L ,y n 的一个 线性替换,或简称线性替换.如果系数行列式q0,那么线性替换(1.4)就称为非退化的在研究二次型时,矩阵是- 「个有力工具 ,因此我们先把二次型用矩阵来表示 .令 a ija ji,则有 2a ij x i x ja j xxa ji X jX i , 于是(1.3)式可以改写为812^X 2 La 1n X 1X nf(x 1,X 2,L ,X n ) anxjX 1 (anX 1 LX 2(821X 1 822X 2 L L X n^nMa n2X 2 L(为,X 2,L ,X n ) (X i ,X 2,L ,X n )a^X ] a 〔2X L a 1n X n a 2[X 〔a 22X 2 La 2n片1La n1X 1an 2X2 L a nn^n a 11a12L a1n X 1 a 21 a 22L a2n X 2LLL LM a n1a n2La nnX n(1.5)a 1n^n )a 2n X n )a nn ^n )例8.1.4 二次型f (x, y,z) 2x2 2xy 3xz y2 4yz , 3z2的矩阵形式为21 x f(x ,y ,z) (x ,y ,z)1 12 y32z说明:任给一个二次型就唯一地确疋一个对称矩阵.反之,任给一个对称矩阵可唯一地确疋一个二次型.因此,二次型与对称矩阵之间有着 ---- 对应的关系 .把对称矩阵 A 称为二次型f 的矩阵,也把f 称为对称矩阵 A 的二次型.称对称矩阵 A 的秩为二次型的秩.例8.1.5给定对称矩阵12 13 2 2 31 A13 3 03104 则其对应的二次型为:样,对称矩阵B 同样定义了一个二次型.于是,线性替换将二次型化为二次型 定义8.1.6设A,B 是数域P 上的n 阶方阵,如果有数域P 上的n 阶可逆矩阵C ,使得C T AC B则称矩阵A 与B 合同,记作A ; B .合同是矩阵之间的一个关系 •易知,合同关系具有: (1) 反身性:即A 与A 合同,因为A E T AE ;⑵ 对称性:即若A 与B 合同,则B 与A 合同,因为由B C T AC ,即得A (C 1)T BC 1; ⑶传递性:即若A 与B 合同,B 与C 合同,则A 与C 合同,由B C 1T AC 1和C C 2 BC 2,即得 C C 2 BC 2 (C 1C 2) A(GC 2).说明:经过非退化的线性替换 ,新二次型的矩阵与原二次型的矩阵是合同的.这样,我们就对于二次型f x T Ax ,作线性替换x Cy ,其中c 11C|2L Gn*Cp 21 C 22LOn,yy 2LLL LMC n1C n2LC nny nf x T A x (Cy)T A(Cy)y T c T ACyy T (C T AC)yB C T AC ,则有 B T (C T AC )T C TA T (C T )TC TAC则 B ,即B 是对称矩阵.这令f (X 1,X 2, X 3, X 4) x !24x-|X 26x-|X 4 2x 226x 2x 32 22x 2x 4 3x 3 4x 4把二次型的变换通过矩阵表示出来,为以后的讨论提供了有力的工具•另外,在二次型变换时我们总是要求所作的线性替换是非退化的 , 因为这样我们可以把所得的二次型还原 . 定理 8.1.7 若 A 与 B 合同,则 rankA rankB .证明:因为A 与B 合同,所以存在n 阶可逆矩阵C ,使得C T AC B由于可逆矩阵乘以矩阵两边不改变矩阵的秩,故rankA rankB .说明:这个定理给我们化二次型为标准形提供了保证•这样,若B 是对角矩阵,则非退化的线性替换x Cy 就把二次型化为了标准形 .因此,把二次型化为标准形的问题其实质是 :对于对称矩阵 A ,寻找可逆矩阵C ,使得C T AC B 为对角矩阵.§8.2 化二次型为标准形现在来讨论用非退化的线性替换化简二次型的问题 . 1 配方法定理 8.2.1 数域 P 上任意一个二次型都可以经过非退化的线性替换化为标准形 ,即只含有平方项 .证明 : 对变量的个数 n 作数学归纳法 .2对于 n 1,二次型就是 f (x 1) a 11x 12 , 显然已经是平方项了 . 现假定对 n 1元的二次型 ,定nn 理的结论成立 .再设f (x 1,x 2,L ,x n) a ij x i x j(a ij a ji)i1 j 1分三种情形来讨论 :⑴a H (i 1,2,L ,n)中至少有一个不为零,例如0,这时nn这里b ij x i x ji2j2是一个关于X 2, X 3,L ,X n 的二次型.令nf(x 1,x 2,L ,x n ) a 11x 12nna 1j x 1x j j2a i1x i x 1a ij x i x ji2j22a 11x 1n2 a 1j x 1x jj2 nna ij x i x j2j2a 11 ( x 1n12 a 11 a 1 j x j )j2a 11 (a 1j x j )j2a ij x i x jj2a 11 ( x 112 a 11 a 1 j x j )j2nnb ij x i x ji2j2n12 a 11 (a 1j x j )j2nna ij x i x ji2j2ny 11 x 1 a 11 a 1j x jj2y 2 x 2LL L y n x nn 1 x 1 y 1a 111a 1 j y jj2x 2 y 2 LLL x n y n这是一个非退化线性替换 ,它使nn 2f(x 1,x 2,L ,x n ) a 11y 1b ij y i y ji2j2nn由归纳法假定 ,对b ij y i y j 有非退化的线性替换i2j2z 2 c 22 y 2 c 23 y 3 L z 3 c 32 y 2 c 33 y 3 LLLLz n c n2 y 2 c n3y 3 L c nn y nz 1y 1z 2 c 22 y 2c 23 y 3Lc 2n y nLL Lznc n2 y 2 c n3y 3 Lc nn y n就使f (x 1,x 2,L ,x n) 变成f (x 1,x 2,L ,x n ) a 11z 12 d 2z 22 d 3z 32 L d n z n 2 即变成平方和了 .根据归纳法原理 ,定理得证 .⑵ 所有a ii (i 1,2,L , n)都等于零,但是至少有一个 的 0( j2,3丄,n),不失普遍性,设c 2n y n c 3n y n能使它变成平方和于是非退化线性替换d 2z 22 d 3z 32 L d n z n 2a 12 0.令x 1 z 1 z 2 x 2 z 1 z 2 x 3 z 3 LLL x n z n它是非退化线性变换 ,且使f (X i ,X 2,L ,X n ) 2a i2X i X 2 L2a i2(Z i Z 2)(Z i Z 2) L 22 2a i2Z i 2a i2Z 2 L2这时,上式右端是Z i ,Z 2丄,Z n 的二次型,且乙的系数不为零,属于第一种情况,定理成立.⑶ an a i2 L am0,由对称性知 a ?ia 3i L a ni 0nn这时f(X i ,X 2,L ,x n )a j X j X j 是n 1元的二次型,根据归纳法假定,它能用非退化线i2j2性替换变成平方和 . 证毕 . 例 8.2.2 用配方法化二次型为标准形 ,并写出所用的非退化线性替换 解: 由定理的证明过程 ,令y i X i X 2 X 3y 2 X 2 , 即 y 3 X 3得: f(X i ,X 2,X 3) y i 2 y 22 4y 2y 3 4y 32 上式右端除第一项外已不再含y i , 继续配方 ,令y 3 Z 3得: f(X i ,X 2,X 3)Z i 2 Z 22所有的非退化线性替换为f(X i ,X 2,X 3)2X i2X 22 5X 322X i X 2 2X i X 3 6X 2X 3X i y i y 2 y 3X 2 y 2 X 3 y 3y i Z iy 2 Z 2 2Z 3 Z i y iZ 2y 2 2y 3 ,即Z 3 y 3X 1 Z 1 z 2 z 3为标准形,并写出所用的非退化性替换 解:由定理的证明过程,令X i y iy 2X 2 y i y 2X 3 y 3X 4 y 4代入原二次型得:2f (X i ,X 2,X 3, X 4) 2y i2y 222y 』3 2y 』4 2丫3丫42这时y i 项不为零,于是f(X i ,X 2,X 3,X 4) (2y i 2 2yy 2y 』4)2暇 2y 3『4 2[(y i i 2y3i 2卯i 24y3i 2屛丫4] 2y 22 2 y 3『42(y i i i y3i 2尹4)2y 22i 2i 2 i y42(y ii 2y3i、2y 4)2y 22如3y 4)2令Z i y i 1iy 3y 4 2 2Z 2 y 2Z 3 y 3 y 4Z 4 y 4于是,f (X i ,X 2,X 3,X 4)2z i 22Z「2 Z32其中Z 4的系数为零,故没有写出•为求非退化线性替换,我们可将第二个替换代入第一个替换中,得例8.2.3用配方法化二次型f (X i ,X 2,X 3,X 4)X Z 2 2 Z 3X 3 Z 32X 1X 2 X 1X 3 X 1X 4 X 2X 3 X 2X 4 2X 3X 4的乘积,即C RP 2L P m ERP 2L P m(2.2)X i Z i Z 2 2Z3 1ZX 2 Z i Z 2 Z 3 Z 42X 3 Z3 Z 4X 4 Z 4说明:在用配方法化二次型为标准形时,必须保证线性替换是非退化的 •有时,我们在配方过程中会遇到看似简单的方法,但得到的结果未必正确•如2 2 22X 1 2X 2 2X 3 2X 1X 2 2X 1X 3 2X 2X 3X i X 3)2 若令然而,2初等变换法矩阵的方法做到,由§ 8.1我们知道,矩阵合同可以将矩阵化为对角阵 .于是,定理8.2.1可以用矩阵的语言描述出来定理8.2.4数域P 上任意一个对称矩阵A 都合同于一对角矩阵 D .即存在可逆矩阵C ,使d id n现在我们就根据定理 8.2.4,讨论用矩阵的初等变换来求定理8.2.4中的可逆矩阵C 及对角矩阵D .由前面的知识,我们知道,可逆矩阵C 可以表示为有限个初等矩阵P 1, P 2,L ,P mf (捲公2必) (X i X 2)2 X 3)2y i X i y 2 X i X 3 y 3X 2 X 3则 f(X i ,X 2,X 3)2y i2y 22 y3 .所以,此处所作的线性替换是退化的,于是最后的结果并不是所求的由于二次型与对称矩阵对应 ,所以能用非退化线性替换化标准形的过程也可以用C T AC Dd 2(2.i)f (x 1,x 2,x 3) 2x 1x 2 2x 1x 3 6x 2x 3(2.3)式表明,对对称矩阵 A 施行m 次初等行变换及相同的 m 次初等列变换,A 就变为了对角矩阵D .而(2.2)式表明对单位矩阵 E 施行上述的初等列变换,E 就变为可逆矩阵 C .C 及对角矩阵D ,使得A 与D 合同的方法称为 初等变A对A 施行初等行变换D对2n n 矩阵施行相同的初等列变换则 C T AC D . 例 8.2.5 已知对称矩阵111 A 1 2 3 135且 C T AC D . 例 8.2.6 已知二次型1 1 11 0 11 0 0 12 30 1 20 1 2A 解: 1 3 5r 2 ( 1)r 11 2 5r 3 ( 1)r 10 2 4E 1 00c2 ( 1)c 11 1 0 c 3 ( 1)c 11 1 10 1 00 1 01 00 0 10 0 10 0 11 0 00 1 0r 3 ( 2)r 2 0 0 0c 3 ( 2)c 21 1 1120 1所求可逆矩阵C 及对角矩阵D 为:11 110 0C01 2 ,D 01 00 0 100用初等变换法求可逆矩阵C 及对角矩阵D ,使得A 与D 合同.将 (2.2) 式代入 (2.1)式, 得P m T L P 2T P 1T AP 1P 2L P m D(2.3)这种利用矩阵的初等变换求可逆矩阵 换法 . 具体做法 : 对以 n 阶对称矩阵A 和n 阶单位矩阵E 做成的2nn 矩阵进行初等变换用初等变换法将其化为标准形,并求非退化的线性替换 解:二次型对应的矩阵为:于是有,0 1121 0 31A 1 3 0r 1 r22 E1 0C 1 C1 0 110 0121 22「3 *22 「3 (4)r 2 C 3 C 111 2 1C 3 (4)C 21 1 210 10 1 1A 1 0 3131220 231 22 3 0 r 2(丄兀22 2 00 0 C 2(21 12 0 1 01 1 210 12 0 0120 061 1231 1 210 01故非退化线性替换为X i X X 3这样,二次型化为21 2 22y 1y 2 6y 3§ 8.3惯性定理我们知道,二次型与对称矩阵一一对应,并且对称矩阵可以合同化为对角矩阵 •又因为合同不改变矩阵的秩,这样一来,任意一个对称矩阵合同的对角矩阵对角线上不为零的元素的个数是不变的,就是矩阵的秩•因此,在一个二次型的标准形中,系数不为零的项的个数是唯123y i1 41y20 0 1 y 3一确定的,与所作的非退化的线性替换无关•至于标准形中的系数,就不是唯一确定的•比如在例8.2.6中,我们还可以进一步,令2则二次型化为 2 2 2Z 1Z 2Z 3.这说明,在一般的数域内,二次型的标准形不是唯一的,而与所作的非退化的线性替换有关 F 面只就实数域和复数域的情形来进一步讨论唯一性的问题 设对称矩阵A 的秩为r ,则由定理 824知,存在可逆矩阵C ,使得矩阵A 合同于对角矩 阵D ,即 d 1C T ACD d r ,d i 0,i 1,2,L ,r即此时原二次型化为 2 f (X 1,X 2 ,L , X n ) d 1X 1 在这些不为零的 d j 中,假设d 1 0, d 2 (1)在实数域内,我们令 2 2 d 2X 2 d 3X 3d r X r 2 (3.1)0,L ,d p 0;d p 1 0,d p 20,L ,d r0 ,这样:d 2 X 2 ,L y 1 小必小 y p 1 \ d p 1 X p 1,y p 2 ,y p d p 2 X p 2,L,y r、.、d r X r则(3.1)式变为:f(X|,X 2,L ,X n ) yj 鸟2 2 2 y p y p 1 2y p ■ 22Ly r这就是说对称矩阵 A 合同于下列对角矩阵:,其中有p 个 1, rp 个 1, n r个0.(2)在复数域内,我们令 y 1则(3.1)式变为:f (知 X 2,L ,x n )4必,y 22y 1 y2.d 2X 2 ,L ,y r . d r X rL y r 2这就是说对称矩阵 A 合同于下列对角矩阵1, 其中有r 个1.O定义8.3.1在实数域内, 称f(x1,x2,L ,x n) y12y22L2 2 2 2y p2y2p 1y2p 2L y r2为实二次型的规范形; 在复数域内, 称f (x1,x2,L2,x n ) y122y2 L y r 为复二次型的规范形.定理8.3.2 (惯性定理) 设 f (x1,x2,L,x n)是一个n 元实二次型,且f 可化为两个规范形222222y12y22L y p2y2p 1y2p 2L y r2,222222z1z22L z q2z q 1z q 2L z r则必有p q.证明: 用反证法. 设p q,由前面知识知,222222y1y2 L y p2y p 1y p 2 L y r222222(3.2)z1z22 L z q z q 1z q 2 L z r又设x By,x Czx1 y1 z1其中x x2,yMx n y2M,zy nz2M z n于是,z C By .令c11c12L c1n1c21c22L c2nC1B 21L L L Lc n1c n2L c nnz1c11y1c12 y2L c1n y n 则z2c21y1c22 y2L c2n y nLLLz n c n1y1c n2 y2L c nn y n 因为p q ,齐次线性方程组c 11y 1c 12 y 2L c 1n y n 0 c 21y 1c22 y2L c 2n y n 0L LLc q1y 1 c q2y 2L c qn y ny p 1 0LLLy n 0必有非零解(n 个未知数,n ( p q)个方程式).令其中一个非零解为y 1 a 1,y 2 a 2,L ,y p a p ,y p 1这样就得出了矛盾 . 同理可证 p q 也不可能 . 是 p q .证毕.说明 : 这个定理表明了实二次型的规范形是唯一的f 的 符号 推论 8.3.4 两个实二次型合同当且仅当它们有相同的秩和正惯性指数 .定理835设f(XsX 2丄,x n )是一个n 元复二次型,则f 经过适当的非退化线性替换可以 化为规范形 ,且规范形是唯一的 .推论 8.3.6 两个复二次型合同当且仅当它们有相同的秩 .§8.4 正定二次型在实二次型中 ,正定二次型占有特殊的地位 . 所以本节主要介绍实二次型 ,并讨论它们的 正定性 .定义8.4.1设f (X i ,X 2,L ,X n ) X T A X 是一个n 元实二次型,如果对任意n 维列向量x 0 都有 : (1) f 0,则称 f 为正定二次型 ,并称实对称矩阵 A 为正定矩阵 ; (2) f 0,则称 f 为负定二次型 ,并称实对称矩阵 A 为负定矩阵 ; (3) f 0,则称f 为半正定二次型,并称实对称矩阵 A 为半正定矩阵; (4) f 0,则称 f 为半负定二次型 ,并称实对称矩阵 A 为半负定矩阵 ;(5) f 既不满足 (3) ,又不满足 (4) ,则称 f 为不定二次型 ,并称实对称矩阵 A 为不定矩阵 . 例 8.4.2 已知 A 和 B 都是 n 阶正定矩阵 , 证明 A B 也是正定矩阵 .0,L , y n把这组解代入 (3.2)式中的上式 , 得到:2 2 2 2y12y 22 L yp 2 y 2p 1 Lz 2 Lz q0,故(3.2)式中的下式为2 2 2 2 2z 1z 2Lz qz q 1 Lz r但这时 z 1 2y r 22a122a222a p2z q 12 z r定义 8.3.3 在实二次型的规范形 f (x 1, x 2,L ,x n )2 y 12y 22 y p 22y p 1中 , 则称 r 是该 二次型的秩 , p 是它的 正惯性指数 ,q r p 是 负惯性指数 ,22y p 2L y r s p q 称为证明:因为A和B都是n阶正定矩阵,所以A A, B T B ,于是(A B)T A T B T A B即A B 也是对称矩阵.又任意x 0,有x T Ax 0,x T Bx 0,从而x T(A B)x x T Ax x T Bx 0即X T(A B)X是正定二次型,故A B是正定矩阵.定理843 n元实二次型f(X i,X2丄,X n) X T A X正定的充分必要条件是它的正惯性指数等于n.证明:设n元实二次型f (X I,X2,L ,X n) X T A X经过非退化线性替换X Cy化为标准形nf d i y i2i1充分性.已知d j 0(i 1,2,L , n),对于任意X 0有y C 1X 0,故nf d i y i 2 0i1必要性.用反证法.假设有某个d t 0,当取y t (0,L ,1,L ,0)T时,有X C t 0 ,此时f x T Ax t T C T AC t d t 0 这与已知f为正定二次型矛盾•故d j 0(i 1,2丄,n).证毕.推论8.4.4实对称矩阵A为正定矩阵的充分必要条件是A的特征值全为正数.推论8.4.5实对称矩阵A为正定矩阵的充分必要条件是A合同于单位矩阵E .推论8.4.6 实对称矩阵A 为正定矩阵的必要条件是detA 0.证明:因为A为正定矩阵,由推论8.4.5, A合同于单位矩阵E,所以有可逆矩阵C使A C T EC C T C两边取行列式,有T T 2detA det(C T C) detC T detC (detC)20说明:从定义可以看出,如果我们根据定义来判断二次型的正定性是比较麻烦的.所以我们下面给出一个方便判断的结论.定义8.4.7 子式,(i1,2丄,n)称为矩阵A (3j )nn 的顺序主子式式全大于零n n证明:f (x 1, x 2,L ,x n ) x T Axa q X j X ji 1 j 1必要性•已知二次型f 是正定的•令f k (X 1,X 2,L ,X k )k ka ij XX j (k 1,2,L ,n)i 1 j 1则对任意的列向量(VX 2丄,x k )T 0,有f k (X i ,X 2,L ,xj f(X i ,X 2, L ,X k ,O,L ,0) 0 (k 1,2,L , n)从而f k (x 1,x 2,L ,x k )是k 元正定二次型•由上面的推论846知,a 11312L a 1k321 322L32k0,(k 1,2,L ,n)LLL L 3k13k2 L 3kk2 充分性•已知k0(k 1,2,L ,n).对阶数n 作数学归纳法•当n 1时,f 內凶,由1 a 11 0知f 是正定的•假设论断对n 1元二次型成立•以下来证n 元二次型的情形•注意到13110,将f 关于X 1配方,得1(311X 1 812X 2 LamX n )2a 11n nb j X i X ji 2 j 2其中 b ja j31i C j 311(i, j 2,3,L ,n)k k由3ja ji知 b ijb ji•如果能证明n 1元实二次型b j X j X j 是正定的,则由定义知f 也i 2 j 2是正定的.根据行列式性质,得311 312 La 21322L LLL 3i1a i2 L aiia 2i La ii定理848 n 元实二次型f(x 4,x 2丄,x n )x T Ax 正定的充分必要条件是矩阵的顺序主子a 12LOi kb kk由归纳假设知n1元实二次型ib j xX j 是正定的例849判断下列二次型的正定性解:二次型f 的矩阵为所以f 是正定的.解:二次型对应的矩阵为1 t 1 0 t 42 0 A12 4 0 00 3 矩阵A 的顺序主子式为从而 On O 12 L O 1ka 21a 22La 2kL LL La k1 a k2La kkkO i1 r i A a ni 2,3,L ,nan 0 b 22 M 鸟2Lb 2nM 0(k Pk La 112,3,L,n)b 2nM (k 2,3 丄,n)b k25X 122 X25X 32 4X 1X 2 8X 1X 3 4X 2X 3因为 15 0, 20,例8.4.10试求t 的取值范围 ,使下列二次型为正定二次型2 X14X 22 4 X 32 3X 422txx 2 2X -|X 3 4X 2X 3 ;1 t 1t 4 2 4(t 1)(t 2),1 2 41 t 1 0 t 42 0 124 00 0 0 3解得 2 t 1.最后,我们注意到正、负定二次型的关系,于是有下面的结论.定理8.4.11 n 元实二次型f(x 1,X 2, L ,X n ) X T A X 负定的充分必要条件是下列条件之一成(1) f 的负惯性指数为n ; (2)A 的特征值全为负数;⑶A 合同于 E ;⑷A 的各阶顺序主子式负正相间,即奇数阶顺序主子式为负数,偶数阶顺序主子式为正数 定理8.4.12 n 元实二次型f(x 1,X 2,L ,X n ) X T A X 半正定的充分必要条件是下列条件之一成(1) f 的正惯性指数与秩相等; (2) A 的特征值全为非负数;E r 0⑶A 合同于 r,其中r 为矩阵A 的秩;0 0⑷存在实矩阵C 使得A C T C ;(5) A 的各阶主子式都非负,其中主子式就是指行指标与列指标相同的子式 说明:仅有顺序主子式非负是不能保证半正定性的•如20 0 x 1f(X 1,X 2) X 2(为,X 2)0 1 x 2就是一个反例.习题八(A)1. 证明:秩等于r 的对称矩阵等于r 个秩为1的对称矩阵之和•2.设i1,i2丄,in 是1,2,L ,n 的一个排列,则下面两个对角阵为了使A 正定,必须有:即有i0(i 123,4) 4 t 20,(t 1)(t 2)1 t 11 0,2t 1t 2,12(t 1)(t 2)1 i1(1) A 是反对称矩阵当且仅当对于任一个 n 维向量 2)如果 A 是对称矩阵,且对任一个 n 维向量 X 有 X T AX 0,那么 A 0.7.如果把实n 阶矩阵按照合同分类,即两个实 n阶矩阵属于同一类当且仅当它们合同,问 共有几类?8. 证明: 一个秩大于 1 的实二次型可以分解为两个实系数的一次多项式之积的充分必要条 件是它的秩等于 2 且符号差等于零 .9. 设 n 阶实对称矩阵 A 是正定的, P 是 n 阶实可逆矩阵,证明: P T AP 也是正定矩阵 . 10. 设 A 是 n 阶实对称矩阵,证明: A 是正定的当且仅当存在 n 阶实可逆矩阵 P ,使得 AP T P .11. 设 A 是一个正定矩阵,证明:(1) 对于任意正实数 k , kA 是正定矩阵;(2)对于任意正整数 k , A k 是正定矩阵;1*(3)A 1是正定矩阵;(4) A 的伴随矩阵 A * 也是正定矩阵 .12. 判别下列二次型是否正定:(1 ) 5x 12 8x 22 5x 32 4x 1x 2 8x 1x 3 4x 2x 3 ;2 2 2(2) 10x 1 8x 1x 2 24x 1 x 3 2x 2 28x 2x 3 x 3 ;1)4x 1x 2 2x 1x 3 2x 2x 3;2) 2 x 1 2x 1x 2 22 2x 2 4x 2x 3 4x 3;3) 2 x 1 2 x 2 2x 1x 2 4x 1x 3 2x 2x 32x 2x 4 2x 3x 4; 4) x 1x 2x 1x 3 x 1x 4 x 2x 3 x 2x 4 x 3x 4. 用初等变换法把下列二次型化为标准形,并求可逆矩阵 C 1) 3(x 1 22 x 2 2 x 3 x 42) 2x 1x 2 2x 1x 4 2x 2x 3 2x 2x 4 2) 2 x 1 2 x 2 3x 32 4x 1x 4 2x 1x 3 2x 2x 3;(3)2 x 13x 32 2x 1x 2 2x 1x 3 8x 2x 3;(4) x 1x 2x 2x 3 x 1x 4 4x 2x 4 6x 3x 44. 用配方法把下列二次型化成标准形52x 3x 4; 6. 设 A 是一个 n 阶矩阵,证明i2合同。