化工原理上册总结
整理的化工原理知识点上册

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。
2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。
3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。
4.两种流动形态:层流和湍流。
流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。
当流体层流时,其平均速度是最大流速的1/2。
5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。
6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。
孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。
其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。
转子流量计的特点——恒压差、变截面。
8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。
)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。
9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。
化工原理上 知识点总结

化工原理上知识点总结一、化工原理的基本概念1. 化工原理的概念化工原理是研究化工生产过程中的物理、化学、工程等基本原理与规律的学科,是化工工程技术的理论基础。
化工原理的研究对象是化工生产中的物质和能量转化过程,包括化工流程、反应过程、传质过程、能量转换过程等。
化工原理的研究目的是为了揭示化工过程中的相互作用规律,为化工工程技术的设计、控制和优化提供理论支持。
2. 化工原理的基本内容化工原理主要包括物质平衡、能量平衡、动量平衡、传质与反应动力学、流体力学、热力学等内容。
其中,物质平衡研究物质在化工过程中的流动分布和转化规律,能量平衡研究热量在化工过程中的转移和转化规律,动量平衡研究流动介质在化工过程中的运动规律,传质与反应动力学研究物质传输和化学反应的速率规律,流体力学研究流体运动的基本规律,热力学研究能量转换的基本规律。
3. 化工原理的应用领域化工原理是化工技术的理论基础,广泛应用于化工工程技术的设计、计算、控制、优化和改进等方面。
在化工生产中,化工原理被应用于化工过程的优化设计、生产参数的确定、生产过程的控制和调整、产品质量的改进等方面,对化工生产的安全、经济、高效具有重要意义。
二、化工过程中的物质平衡1. 物质平衡的基本概念物质平衡是研究物质在化工过程中的流动分布和转化规律的基本原理。
物质平衡的基本概念包括输入、输出、积累和转化等概念。
输入是物质进入系统的过程,输出是物质离开系统的过程,积累是系统中物质的变化过程,转化是物质在系统内发生变化的过程。
2. 物质平衡的计算方法物质平衡的计算方法包括物质平衡方程的建立和求解。
物质平衡方程是通过对系统内各环节进行物质平衡计算,建立系统物质平衡方程,求解得到系统内各环节的物质平衡量。
物质平衡的求解方法包括代数求解、图解法、矩阵法、数值积分法等。
3. 物质平衡的应用案例物质平衡在化工生产中有着广泛的应用。
例如,化工生产过程中的原料投入和产品产出量的计算、化工设备的负荷计算、化工废水、废气治理的效果评估等都需要进行物质平衡计算,以确保化工生产过程的稳定和经济效益。
化工原理知识点总结高中

化工原理知识点总结高中一、化工原理概述化工原理是指将原料经过一定的工艺、工序和条件,经过化学或物理变化,转变为有用的化工产品的理论和技术知识的总称。
化工原理是化学工程技术理论的基础和核心部分,是指导化学工程技术实践的理论方法和原则,它主要研究物质的结构、性质、组成、变化规律与化工产品的生产过程。
二、化工原理的基本概念1.化工原理的定义:指将原料经过一定的工艺、工序和条件,经过化学或物理变化,转变为有用的化工产品的理论和技术知识的总称。
2.反应工程:是利用化学变化来制造产品的过程。
反应器是进行反应工程的装置。
3.传热传质:为了促进和加快反应,通常需要在反应器内进行传热和传质过程。
4.质量平衡:是指在化学工艺反应过程中,原料、副产品和产品在重量上的平衡。
5.能量平衡:是指在反应工程中,热量在不同介质和各个反应阶段之间的平衡。
6.物料平衡:是指物料在工艺流程中的平衡问题,包括物料的投入、物料的输出和物料的转化系数。
7.反应工程的主要工艺过程有:加工、分离、纯化、反应、稀释、搅拌、传递等。
8.质量传递:物质在不同相之间的传递。
9.反应速率:反应速率是化学反应中的物质质量改变与时间改变的比例关系。
三、物质结构和性质1.物质的结构:物质的结构主要指化合物和元素的分子结构和晶体结构。
2.物质的性质:物质的性质是指物质的物理性质和化学性质。
3.常用的物质的性质有:密度、粘度、比热、导热系数、溶解度、流变性。
四、化学平衡及反应热1.化学反应平衡:在化学反应中,生成物的浓度与反应物的浓度之间的关系的平衡。
2.平衡常数:平衡常数是反应速率常数与逆反应速率常数之比。
3.反应热:反应热是指在化学反应过程中释放或吸收的热量。
五、化学工程热力学1.热力学基本概念:热力学是研究物质的能量及其转化形式、热运动规律和物质之间的相互转化规律的科学。
2.热力学基本定律:热力学的基本定律有:热力学第一定律、热力学第二定律和热力学第三定律。
化工原理知识点总结pdf

化工原理知识点总结pdf第一章:化工原理基础化工原理是化工学科的一门基础课程,主要研究化工过程的基本原理和基本规律。
本章将针对化工原理的基础知识进行总结。
1.1 化工过程基本概念化工过程是指将原材料通过化学反应、分离、精制等一系列工艺操作,转化成符合特定需求的产品的过程。
化工过程一般包括原料处理、反应、分离、精制和产品收率等环节。
1.2 热力学基础热力学是研究物质能量转化规律的科学,它主要包括热力学系统、热力学第一、二、三定律,熵增原理等内容。
在化工过程中,热力学原理对于理解和分析热力学系统的能量变化、效率提高和过程优化具有重要的意义。
1.3 物质平衡原理物质平衡是指在化工过程中,针对物质流量、组分和质量进行的平衡分析。
物质平衡原理是化工过程中不可或缺的理论基础,它体现了化工过程中原料转化成产品,各种物质在环境中传输和转化的基本规律。
1.4 动量平衡原理在流体力学和传递过程中,动量平衡原理是通过对流体流动、传输和转动的分析,确定系统内部及其与外界的动量交换关系。
动量平衡原理在化工过程中的应用十分广泛,对于管道流体、设备运转和动力传递等方面起着重要作用。
1.5 质量平衡原理质量平衡原理是指在化工过程中,对于物质的组分、浓度、流量等进行质量平衡的原理分析。
质量平衡原理是化工过程中最基本的原理之一,对于产品质量控制、环境保护和过程优化具有重要的指导意义。
1.6 界面传递原理界面传递原理是指在化工过程中,各种界面过程发生物质传递、热量传递、动量传递的基本规律。
界面传递原理的研究对于化工过程中的分离、精制、传质、传热等方面具有重要的意义。
第二章:化工反应原理化工反应原理是化工学科的重要分支之一,主要研究化工原料通过化学反应,转化成特定产品的原理和规律。
本章将总结化工反应原理的基本知识。
2.1 化学反应的基本概念化学反应是指化学物质在一定条件下,由原有的化学键断裂再组合成新的化学物质的过程。
化学反应包括各种离子反应、氧化还原反应、配位反应、配位反应、离子化合物的生成等。
化工原理上知识总结及重要公式

《化工原理》基本概念、主要公式第一、二、三章(流体流动)基本概念:连续性假定质点拉格朗日法欧拉法稳态与非稳态流动轨线与流线系统与控制体粘性的物理本质质量守恒方程静力学方程总势能理想流体与实际流体的区别可压缩流体与不可压缩流体的区别牛顿流体与非牛顿流体的区别伯努利方程的物理意义动量守恒方程平均流速动能校正因子均匀分布均匀流段层流与湍流的本质区别边界层边界层分离现象因次雷诺数的物理意义泊谡叶方程因次分析实验研究方法的主要步骤摩擦系数完全湍流粗糙管局部阻力当量长度、阻力系数毕托管驻点压强孔板流量计转子流量计的特点非牛顿流体的特性(塑性、假塑性与涨塑性、触变性与震凝性、粘弹性)重要公式:)(0ρρ-=∆Rg P质量衡算:N-S 方程流体输送机械 基本概念:管路特性方程 输送机械的压头或扬程 离心泵主要构件 离心泵理论压头的影响因素 叶片后弯原因tmq q out m in m d d ,,=-g u u ρμρ+∇+-∇=2 D D p t气缚现象 离心泵特性曲线 离心泵工作点 离心泵的调节手段 汽蚀现象 汽蚀余量离心泵的选型(类型、型号) 正位移特性 往复泵的调节手段 离心泵与往复泵的比较(流量、压头) 通风机的全压、动风压 真空泵的主要性能参数 重要公式:泵的有效功率 泵效率 允许安装高度风机全压换算离心泵的串联并联 第六章 基本概念:搅拌目的 搅拌器按工作原理分类 混合效果 调匀度 分隔尺度 宏观混合 微观混合 搅拌器的两个功能H Lη⋅=N N e ==NN e ηN gH Q ρ201,10,1001012f f g p p p p u h H H H z z g g gνρρ----=-=--=-∆-∑∑允允2222112122T e uuH h p p ρρρ==-+-2H 2A-2BQ =串串2Q H A-B 2⎛⎫= ⎪⎝⎭并并旋浆式搅拌器、涡轮式搅拌器、大叶片低转速搅拌器特点及适用范围改善搅拌效果的工程措施(转速、挡板、偏心、导流筒) 搅拌器功率的影响因素搅拌功率的分配搅拌器的放大准则第四、五章(过滤)基本概念:非球形颗粒的当量直径形状系数分布函数频率函数颗粒群平均直径的基准床层比表面床层空隙率数学模型法的主要步骤架桥现象过滤速率基本方程过滤常数及影响因素洗涤速率过滤机的生产能力叶滤机板框压滤机回转真空过滤机加快过滤速率的途径重要公式:()spkK-∆=12第四、五章 (沉降)基本概念:曳力(表面曳力、形体曳力) 曳力系数 斯托克斯定律区 牛顿区 (自由)沉降速度 重力沉降室加隔板离心分离因数 旋风分离器主要评价指标 总效率 粒级效率 分割直径 流化床的特点(混合、压降) 两种流化现象 聚式流化的两种极端情况 起始流化速度 带出速度 气力输送重要公式:)2223160m 6060ee V V Q KA n n n V V t n ϕ===+-∑第七章基本概念:传热过程的三种基本方式载热体三种传热机理的物理本质间壁换热传热过程的三个步骤傅里叶定律导热系数热阻推动力流动对传热的贡献牛顿冷却定律强制对流自然对流(加热、冷却面的位置) 关联式Nu=0.023Re0.8Pr n的定性尺寸、定性温度,n的取值努塞尔数、普朗特数的物理意义大容积自然对流的自动模化区液体沸腾的两个必要条件核状沸腾膜状沸腾临界点沸腾给热的强化蒸汽冷凝的两种形式膜状冷凝给热系数h 排放不凝性气体各种h 的相对大小斯蒂芬-波尔兹曼定律黑体黑度灰体克希霍夫定律角系数传热过程的控制步骤传热操作线K与A的对应对数平均推动力逆流并流冷、热流体流动通道的主要选择原则重要公式:圆筒壁稳定热传导多层传热无相变 只有相变()mA b T T k R L R L R R L R R T T k Q ⋅-⋅=-⋅--⋅=211212122122ln 2πππA A A A A m 1212ln -=)(21T T C W Q h h -=WrQ =()143241122332111ln ln ln l t t Q d d d k d k d k d π-=++。
化工原理知识点总结详细

化工原理知识点总结详细第一章:化工原理基础知识1.1 化工原理的定义和基本概念化工原理是研究化学工程过程的基本原理、基本规律和数学模型的学科。
化工原理包括物理化学、热力学、传质与分离、反应工程等方面的知识,其中热力学和传质与分离是化工原理的两个重要组成部分。
1.2 化工原理的基本原理和基本规律化工原理涉及到许多基本原理和基本规律,其中包括质量守恒、能量守恒、热力学第一、第二定律、传热、传质、反应动力学等。
这些基本原理和基本规律是化工过程描述、分析和设计的基础。
1.3 化工原理的应用领域化工原理的应用领域非常广泛,包括化学工程、环境工程、生物工程、材料工程等方面。
化工原理在工业生产、环境保护、能源开发、新材料研发等领域都有重要的应用价值。
第二章:热力学2.1 热力学基本概念热力学是研究能量转化和能量传递规律的科学。
热力学基本概念包括系统、热平衡、热力学过程、熵等。
热力学基本原理包括能量守恒、熵增原理等。
2.2 理想气体状态方程理想气体状态方程描述了理想气体的压力、温度、体积之间的关系,可以表示为PV=nRT。
理想气体状态方程是描述气体性质的重要方程之一。
2.3 热力学循环热力学循环是指气体、水蒸汽等工质在一定压力和温度条件下发生各种物理或化学变化,最后又回到原来状态的过程。
常见的热力学循环包括卡诺循环、斯特林循环、布雷顿循环等。
2.4 热力学第一、第二定律热力学第一定律:能量守恒,能量既不能被创造也不能被毁灭,只能从一种形式转化为另一种形式。
热力学第二定律:熵增原理,自然界熵不减少的倾向。
第三章:传质与分离3.1 传质基本概念传质是指物质在不同相间传递的过程,包括扩散、对流、传热等。
传质的重要概念包括浓度、摩尔通量、传质系数等。
3.2 传质方程和传质过程传质方程描述了物质在不同相间传递的规律,传质过程包括扩散传质、对流传质等,传质方程是描述传质过程的基本数学模型。
3.3 分离技术化工生产中,常需要对混合物进行分离和纯化,分离技术包括蒸馏、结晶、游离、萃取等,这些技术都是基于传质原理。
化工原理各章节知识点总结

化工原理各章节知识点总结化工原理是化学工程与技术的基础课程之一,主要涉及物质的物理性质、能量转化、传质现象、化学反应等方面的知识。
下面是化工原理各章节知识点的总结。
第一章:化工基本概念与物质的物理性质1.1化学工程与化学技术的发展历史与现状1.2化工过程及其特点1.3物质的物理性质-物质的密度、比重、相对密度-物质的表观密度、气体密度-物质的粘度、表面张力、折射率-物质的热容、导热系数、热膨胀系数-物质的流变性质第二章:能量转化与传递2.1能量的基本概念2.2热力学第一定律2.3热力学第二定律2.4热力学第三定律2.5热力学循环第三章:物质的传递过程3.1传质的基本概念与分类3.2质量传递平衡方程3.3传质速率和传质通量3.4界面传质-液-气界面传质-液-液界面传质-固-液界面传质-固-气界面传质3.5传质过程中的最速传质与弛豫时间第四章:化工流体的流动4.1流体的基本性质4.2流体的流动类别4.3流体的流动方程-流体的质量守恒方程-流体的动量守恒方程-流体的能量守恒方程4.4流体内运动的基本规律-斯托克斯定律-流体的相对运动-流体的运动粘度4.5流体的管道流动-管道内的雷诺数-管道的流动阻力第五章:多元物系中物质的平衡与分离5.1多元物系基本概念5.2雾滴定律5.3吸附平衡5.4蒸汽液平衡5.5溶液中的平衡情况5.6气相-液相-固相三相平衡第六章:化学反应与反应工程6.1化学反应动力学6.2化学平衡6.3化学反应速率6.4反应器的基本类型-批次反应器-连续流动反应器-均质反应器-非均质反应器6.5反应器的设计与操作以上是化工原理各章节的知识点总结,涵盖了物理性质、能量转化、传质现象、化学反应等方面的内容。
这些知识点是化学工程与技术的基础,对于理解和应用化工原理具有重要意义。
化工原理第一章流体流动知识点总结

第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。
■表压/真空度 :以大气压为基准测得的压力。
表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。
■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。
②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总传热公式
Q K A tm
Q 的计算
强化
对流
Δtm的计算
导热
总衡算 热辐射
K 的计算
传热过程 知识关联图
传热速率Q的计算:
热量衡算方程: Q ms1 cp1 (T1 T2 ) ms 2 cp 2 (t2 t1 )
牛顿冷却定律: Q A t
工作点:离心泵特性曲线与管路特性曲线的交点
由工作点,可以求出所需流量和压头;进而选择效率 较高的泵。
7.离心泵的组合操作:串联、并联
复杂管路的特点及其计算
并联管路:各支管阻力相等,并联部分总 阻力等于各支管阻力;主管流量等于各支 管流量之和。 分支管路:主管流量等于各支管流量之和; 可在主管任一截面与支管截面间列Bernoulli 方程,阻力为流体流过路径的阻力。单位重 量流体
U型管压差计的压力测量:等压面的选取
2.压力ห้องสมุดไป่ตู้表示方法及其单位
绝压、表压、真空度; Pa、mmH2O、mmHg、atm
阻力的计算:
1. 流体阻力计算方法:沿程阻力、局部阻力
2 l le u 2 l u hf d 2 g d 2 g
2 l le u 2 l u Pf g h f d 2 d 2
化工原理上册总结
2008. 12.29
主 要 内 容
流体流动与输送机械 传热过程 非均相分离
流体流动与输送机械知识关联图
Pressure Head of pump
Bernoulli equation
Resistance
Velocity
p1 u p2 u2 Z1 h e Z2 h f g 2g g 2g
增大管内强制对流传热系数的途径:
变化的根本原因:层流底层的厚度的变化
液体粘度随温度的升高而降低;气体粘度随温度 的升高而增大,随压力的升高而增大。
4.雷诺数的定义及流型的分类、速度分布和平均速度
Re
d u
层流时,um 0.5 umax ; 湍流时,um 0.817 umax
流体流量测量的原理及流量计的特点
1. 皮托管:测量处的动能转化成静压能--冲压头 2. 孔板与文丘里流量计:局部阻力导致压差变化 忽略局部阻力,依据Bernoulli方程和连续性方程 求孔口流速,进而求流量。
当流体被加热时,n=0.4; 流体被冷却时, n=0.3。 上式的应用条件:考试中一般满足
Re 10
4
0.7 Pr 120 L / d 50
物性参数的定性温度为流体进出口的平均温度。
管内强制对流的影响因素:
1. 进口段的影响 2. 热流方向的影响 3. 自然对流的影响
4. 其他因素的影响:管路弯曲,表面粗糙度
3.离心泵的特性曲线
压头-流量、轴功率-流量、效率-流量
4.汽蚀与气缚的概念及预防
汽蚀:叶轮中心压力< 液体饱和蒸汽压
气缚:吸入管路和泵体内没有液体
5.离心泵的安装高度
目的是预防汽蚀。
汽蚀余量的概念。 铭牌数值的测定与实际使用条件的差别。 能够计算泵的安装高度。
6.离心泵的工作点及选择--灵活运用
局部阻力系数
入口:0.5 ; 出口:1
2. 局部阻力变化对流量、上下游压力的影响
局部阻力增加(例如关小阀门),流量减小; 上游压力增大,下游压力降低。 原因:对于下游,在下游截面和出口内侧之间列 Bernoulli方程,利用流量的变化进行判断。绕过 阀门列方程!
3. 粘度的定义及其影响因素
du = ,速度梯度,粘度定义 dy
2 1
2
利用伯努利方程求解流动问题的步骤: 1).首先画出流体流动简图,标上已知量 和所求量; 2).按流动方向,确定上游截面为1-1截 面,下游截面为2-2截面。 3).选择位能基准面,确定各点的位头。 4).从上游到下游列伯努利方程。 5).求解
压力的测量:
1.流体静力学方程:单一、连续、静止的流体
总传热系数的计算:
Q K A tm
d0 d0 1 1 d0 1 RSi RSo kO i di di d m 0
对流传热系数的求解 导热系数:物性参数
金属>非金属固体>液体>气体
对流传热系数
无相变:
d 0.8 n Nu 0.023 Re Pr
2 l le u 2 l u wf g hf d 2 d 2
沿程阻力系数、局部阻力系数
沿程阻力系数
层流时: 湍流时:
64 Re
f (Re,
d
)
注意:流动处于阻力平方区时,λ与Re无关, 仅与相对粗糙度有关,此时,阻力损失与速 度的平方成正比。
Vs C0 A0
3. 转子流量计:
2 ( ' ) g R
转子一定,转子上下截面间的压差一定,环隙的流 速一定。即恒压差、恒环隙流速
流体输送机械
1.流体输送机械的分类及操作特点
液体输送机械:离心泵、往复泵 气体输送机械:通风机、压缩机、真空泵
离心泵的操作特点:
1)吸入管路注满液体;2)关出口阀门,开离心泵; 3)调节流量,采用阀门调节;4)关出口阀门,关泵
平壁: 导热速率方程
(局部)
温差差别
T1 Tn 1 Q n bi (i A) i 1
r2 r1 T1 Tn 1 rm n r2 bi ln (i Ami ) r1 i 1
圆筒壁: Q
辐射传热速率
Q1 2
T1 4 T2 4 C1 21 2 A1 100 100
往复泵的操作特点:
1)打开出口阀门,开往复泵; 2)调节流量,采用旁路或改变频率调节; 3)关泵前不关闭出口阀门,
2.离心泵的操作原理及流量和扬程的影响因素
叶轮的高速旋转导致吸入口压力下降,液体在 压差作用下被吸入;由于叶轮流道的扩大,流 速下降,压力增大。 扬程的影响因素:密度、粘度、叶轮转速、叶轮直径。