第二章信源及其信息量
信息论

信息论第一章概论1.信息、消息、信号的定义及关系。
定义信息:事物运动状态或存在方式的不确定性的描述。
消息:指包含有信息的语言、文字和图像等。
信号:表示消息的物理量,一般指随时间而变化的电压或电流称为电信号。
关系信息和消息信息不等于消息。
消息中包含信息,是信息的载体。
同一信息可以用不同形式的消息来载荷。
同一个消息可以含有不同的信息量。
信息和信号信号是消息的载体,消息则是信号的具体内容。
信号携带信息,但不是信息本身。
同一信息可用不同的信号来表示,同一信号也可表示不同的信息。
2. 通信系统模型,箭头上是什么?通信的目的及方法。
通信的目的:是为了提高通信的可靠性和有效性。
信源编码:提高信息传输的有效性。
(减小冗余度)信道编码:提高信息传输的可靠性。
(增大冗余度)第二章 信源及其信息量★信源发出的是消息。
信源分类1、信源按照发出的消息在时间上和幅度上的分布情况可将信源分成离散信源和连续信源。
2、根据各维随机变量的概率分布是否随时间的推移而变化将信源分为平稳信源和非平稳信源。
单符号离散信源离散无记忆信源 无记忆扩展信源 离散平稳信源离散有记忆信源 记忆长度无限记忆长度有限(马尔可夫信源)一、单符号离散信源单符号离散信源的数学模型为定义:一个随机事件发生某一结果后所带来的信息量为自信息量。
定义为其发生概率对数的负值。
以 奇才 单位:•对数以2为底,单位为比特 (bit ) (binary unit ) •对数以e 为底,单位为奈特 (nat ) (nature unit)•对数以10为底,单位为笛特(det) (decimal unit) 或哈特 (hart) 物理含义:在事件xi 发生以前,等于事件xi 发生的不确定性的大小;在事件xi 发生以后,表示事件xi 所含有或所能提供的信息量。
性质:①I(x i )是非负值.②当p(x i )=1时,I(x i )=0. ③当p(x i )=0时,I(x i )=∞.④I(x i ) 是p(x i )的单调递减函数.联合自信息量条件自信息量自信息量、条件自信息量和联合自信息量之间有如下关系式:I(x i y j )= I(x i )+ I(y j / x i ) = I(y j )+ I(x i / y j )⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡)(,),(,),(),( ,, ,, , )( 2121n i n i x p x p x p x p x x x x X P X )(log )( i i x p x I -=)(log )( j i j i y x p y x I -=1)(,1)(01=≤≤∑=ni i i x p x p定义:各离散消息自信息量的数学期望,即信源的平均信息量.单位:比特/符号 物理含义: ① 信源熵H(X)表示信源输出后,离散消息所提供的平均信息量. ② 信源熵H(X)表示信源输出前,信源的平均不确定度. ③ 信源熵H(X)反映了变量X 的随机性.信源符号的概率分布越均匀,则平均信息量越大; 确定事件,不含有信息量。
信息论与编码[第二章离散信源及其信息测度]山东大学期末考试知识点复习
![信息论与编码[第二章离散信源及其信息测度]山东大学期末考试知识点复习](https://img.taocdn.com/s3/m/4f9eb902763231126edb115f.png)
第二章离散信源及其信息测度2.1.1 信源的分类信源是信息的来源,是产生消息或消息序列的源泉。
不同的信源输出的消息其随机性质不同。
根据消息所具有的随机性质的不同,对信源进行如下分类:按照消息取值集合以及取值时刻集合的离散性和连续性,信源可分为离散信源(数字信源)和波形信源(模拟信源);按照某取值时刻消息的取值集合的离散性和连续性,信源可分为离散信源和连续信源;按照信源输出消息所对应的随机序列的平稳性,信源可分为平稳信源和非平稳信源;按照信源输出的信息所对应的随机序列中随机变量前后之间有无统计依赖关系,信源可分为无记忆信源和有记忆信源。
2.1.2 基本信源的数学模型根据信源输出消息所对应的不同的随机特性就有不同的信源数学模型。
而基本的信源数学模型有以下几种。
1.离散信源信源输出的是单个符号或代码的消息,信源符号集的取值是有限的,或可数的,可以用一维离散型随机变量来描述。
信源的数学模型就是离散型随机变量x的概率空间,表示为2.连续信源信源输出的是单个符号或代码的消息,但信源符号集的取值是连续的,可以用一维连续型随机变量来描述。
相应的信源的数学模型就是连续型随机变量的概率空间,表示为其中(a,b)是连续随机变量X的取值区间,R表示全实数集,而p(x)是连续随机变量X的概率密度函数。
2.1.3 离散信源的信息熵1.自信息自信息即为某事件a i发生所含有的信息量。
事件的自信息定义为式中P(a i)是事件a i发生的概率。
自信息的单位有几种:以2为底的对数时单位是比特(bit);以e为底的自然对数时单位是奈特(nat);以10为底的常用对数时单位是哈特(hart)。
2.信息熵离散随机变量X的信息熵就是其概率空间中每个事件所含有的自信息量的数学期望,即其单位是:以2为底的对数时是比特/符号(bit/symbol);以e为底的对数时是奈特/符号(nat/symbol);以10为底的对数时是哈特/符号(hart/symbol)。
信息论与编码第二章信息的度量

14
2.1.1 自信息量
(1)直观定义自信息量为:
收到某消息获得的信息量 = 不确定性减少的量
= 收到此消息前关于某事件发生的不确定性 收到此消息后关于某事件发生的不确定性
15
2.1.1 自信息量
举例:一个布袋中装有对人手感觉完全 一样的球,但颜色和数量不同,问下面 三种情况下随意拿出一个球的不确定程 度的大小。
18
2.1.1 自信息量
应用概率空间的概念分析上例,设取红球的状 态为x1,白球为x2,黑球为x3,黄球为x4,则 概率空间为: x2 (1) X x1
P( x) 0.99 0.01
( 2)
( 3)
X x1 P( x) 0.5
一、自信息和互信息
二、平均自信息
2.1.2 互信息
三、平均互信息
2.1.1 自信息量
信源发出的消息常常是随机的,其状态存在某种 程度的不确定性,经过通信将信息传给了收信者, 收信者得到消息后,才消除了不确定性并获得了 信息。
获得信息量的多少与信源的不确定性
的消除有关。
不确定度——惊讶度——信息量
第二章:信息的度量
自信息和互信息 平均自信息 平均互信息
2.1.1 自信息(量) (续9)
例4:设在一正方形棋盘上共有64个方格,如果甲将一 粒棋子随意的放在棋盘中的某方格且让乙猜测棋子所 在位置。 (1) 将方格按顺序编号,令乙猜测棋子所在的顺序 号。问猜测的难易程度。
(2)将方格按行和列编号,甲将棋子所在方格的列编 号告诉乙之后,再令乙猜测棋子所在行的位置。问猜 测的难易程度。
自信息是事件发生前,事件发生的不确定性。
信息论基础第2章离散信源及其信息度量[83页]
![信息论基础第2章离散信源及其信息度量[83页]](https://img.taocdn.com/s3/m/a8bfc380a32d7375a5178051.png)
I (ai ) logr P(ai ) (r进制单位)
通常采用“比特”作为信息量的实用单位。在本书中,且为了 书写简洁,底数 2 通常省略不写。
【例】假设有这样一种彩票,中奖概率为 0.0001,不中 奖概率为 0.9999。现有一个人买了一注彩票。 试计算
定义: 设信源的概率空间为
X
P( x)
a1 P(a1
)
a2 P(a2 )
aq
P(aq )
则自信息量的数学期望定义为信源的平均自信息量,即
q
H ( X ) E[I (ai )] P(ai ) log2 P(ai ) (bit/符号) i 1
简记为
H ( X ) P(x) log2 P(x) xX
(1) 事件“彩票中奖”的不确定性; (2) 事件“彩票不中奖”的不确定性; (3) 事件“彩票中奖”和事件“彩票不中奖”相
比较,哪个提供的信息量较大?
【例】 对于 2n 进制的数字序列, 假设每一符号的出现相互 独立且概率相等,求任一符号的自信息量。
解:
根据题意, P(ai ) =1/2n,所以 I (ai ) log P(ai ) log(1/ 2n ) n(bit)
一般的多符号离散信源输出的随机序列的统计特性 比较复杂,分析起来也比较困难。将在第 3 章中详细讨 论。
《信息论基础》
2.3 离散随机变量的信息度量
一、自信息量I(xi)和信息熵H(X)
定义: 随机事件的自信息量定义为该事件发生概率的
对数的负值。设集合 X 中的事件 x ai 发生概率为 P(ai ) ,
按输出符号之间依赖关系分类,多符号离散信源 可分为无记忆信源和有记忆信源。
信息论与编码基础第2章离散信源及其信息测度

故:
P1(Xi) = P2 (Xi)= ···= PN (Xi)
N
P( X ) P( X1, X 2, , X N ) P( X i ) i 1
2.1 信源的数学模型及分类
15
设各随机变量 Xi 取自同样符号集 A={a1, a2, …, aq},则:
N
P( X i ) P(ai1 , ai2 ,..., aiN ) P(aik ), ik {1, 2,..., q} k 1
... ...
aq P(aq )
q
P(ai ) 1
i 1
称事件ai发生所含有的信息量为 ai 的自信息量。定义为:
I (ai )
f [P(ai )] logr
1 P(ai )
logr
P(ai )
2.2 离散信源的信息熵
24
I(ai)代表两种含义:(1) 当事件ai 发生以前,表示事件ai 发生 的不确定性;(2) 当事件ai 发生以后,表示事件ai 所提供的信 息量。
1
信息论与编码基础
第二章 离散信源及其信息测度
第二章 离散信源及其信息测度
2
消息是信息的载荷者。对信息的研究,要从消息开始。 信源是产生消息或消息序列的源头。我们并不关心信源的内
部结构,不关心消息的产生原因和过程,而研究信源各种可 能的输出,以及输出各种可能消息的不确定性。 对收信者而言,在收到消息之前,对于信源发送什么消息是 不可预知的、随机的。因此可以用随机变量和随机过程来描 述信源输出的消息,或者说用一个概率空间来描述信源。 不同的信源输出不同类型的消息。可以根据消息不同的随机 性质来对信源进行分类。
qN
qN N
k 1
P(i ) P(aik ) 1
第二章基本信息论5信源冗余度

信源编码:通过减少冗余来提高通信效率 信道编码:通过增加冗余来提高通信的抗干扰能力
E 0.103 N 0.057 W 0.018 F 0.021 O 0.063 X 0.001 G 0.015 P 0.015 Y 0.016
27
p(xi ) lb p( xi )
i 1
H 0.047 Q 0.001 Z 0.001
4.03比特/符号
I 0.058 R 0.048 空格 0.189
3)看成一阶马尔可夫信源,则信源熵: H2 ( X ) H11( X ) 3.32比特/符号
4)看成二阶马尔可夫信源,则信源熵: H3( X ) H21( X ) 3.1比特/符号
5)看成无穷阶马尔可夫信源,则信源熵: H ( X ) 1.4比特/符号
二、冗余的利用
消息的冗余为提高通信效率、压缩信号容量提供 了基础。
lb
1 27
英语 出现 英语 出现 英语 出现 字母 概率 字母 概率 字母 概率
4.75比特/符号
A 0.064 J 0.001 S 0.051 2)按实际概率分布,且 B 0.013 K 0.005 T 0.08 无相关性,则信源熵:
C 0.022 L 0.032 U 0.023
D 0.032 M 0.020 V 0.008 H1( X ) H01( X )
2
Hmax ( X ) p( xi ) lb p( xi )
i 1
2 1 lb 1 1比特/符号
i1 2 2
若发送12个符号,则12个符号含有的信息量为:
I12 12H max ( X ) 12比特
若信源符号间有相关性,则信源熵达不到最大熵。 若实际上为0.8比特/符号,则发送12个符号只能传 递12*0.8=9.6比特的信息量。
第二章 信源和信息熵

第二章 信源和信息熵
2.1 信源的数学模型及分类
通信系统模型及信息传输模型:
第二章 信源和信息熵
一、离散无记忆信源
例:扔一颗质地均匀的正方体骰子,研究其下落后, 朝上一面的点数。每次试验结果必然是1点、2点、3点、 4点、5点、6点中的某一个面朝上。每次试验只随机出 现其中一种消息,不可能出现这个集合以外的消息, 考察此事件信源的数学模型。
• 平均符号熵就是信源符号序列中平均每个信 源符号所携带的信息量。
• 条件熵≤无条件熵;条件较多的熵≤条件较少 的熵,所以:
第二章 信源和信息熵
离 散 平 稳 信 源 性 质(H1(X)<∞时):
• 条件熵随N的增加是递减的; • 平均符号熵≥条件熵; • 平均符号熵HN(X)随N增加是递减的; • 极限熵
且:I(X1;X2)=I(X2;X1)
第二章 信源和信息熵
注意:任何无源处理总是丢失信息的,至多保持原来 的信息,这是信息不可增性的一种表现。
二、离散平稳信源的极限熵 设信源输出一系列符号序列X1,X2, ‥XN 概率分布: 联合熵:
定义序列的平均符号熵=总和/序列长度,即:
第二章 信源和信息熵
即:收信者所获得的信息量应等于信息传输前 后不确定性的减少的量。
例:设一条电线上串联8个灯泡,且损坏的可 能性为等概,若仅有一个坏灯泡,须获知多少 信息量才可确认?
第二章 信源和信息熵
例解:
测量前,P1(x)=1/8,存在不确定性: I(P1(x))=log8=3bit
第一次测量获得信息量: 第二次测量获得信息量: 第三次测量获得信息量: 每次测量获得1bit信息量,需三次测量可确定坏灯泡
例:运用熵函数的递增性,计算熵函数 H(1/3,1/3,1/6,1/6)的数值。
信息论与编码第二章(1、2节)

第二章:信源与信源熵
2.1 信源的描述与分类
信源的统计特性
1)什么是信源?
信源是信息的来源,实际通信中常见的信源有:语音、 文字、图像、数据…。在信息论中,信源是产生消息 (符号)、消息(符号)序列以及连续消息的来源, 数学上,信源是产生 随机变量 U, 随机序列 U和 随机 过程U(t,ω)的源。
联合熵、条件熵的关系:
H(XY) = H(X) + H(Y / X) = H(Y) + H(X / Y)
当X,Y相互独立时,有:
p(ak , bj ) = p(ak ) p(bj )
p a | bj ) = p a ) ( k ( k p bj | a ) = p bj ) ( ( k
于是有:
H( X ) = H( X) + H( ) Y Y H( X | Y) = H(X) H( Y | X) = H( ) Y
1 [np(x1)I (x1) + np(x2 )I(x2 )] = −∑p(xi ) log p(xi ) n i
信源熵是在平均意义上来表征信源的总体特性。
1、离散信源熵 H(X) = −∑p(xi ) log p(xi )
i
例: 试验前:
X = P(x)
1
2
3 1/6
4 1/6
5 1/6
6 1/6
2)信源的主要特性
信Hale Waihona Puke 的最基本的特性是具有统计不确定性,它可用概 率统计特性来描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1 2
3
计算出各事件Байду номын сангаас自信息量列表2-1如下:
消息xi 概率分布q (xi) 自信息量I (xi)
x1 1/3 log 3
x2 1/6 log 6
x3 1/2 log 2
自信息量I(ai)代表两种含义:
1.事件ai发生以前,表示事件发生的先验不确定性
x1 x2 x3 X 3 x0 (3)信源三: 等概信源 q ( X ) 0 . 25 0 . 25 0 . 25 0 . 25 3 熵 H(X3) = -4×0.25 log 0.25 = log4 = 2(比特/符号)
(4)信源四: 信源为确定事件
⑵.平均互信息量
定义xi ∈ X和yj ∈ Y之间的互信息量为I(xi ;yj ),在集合X上对 I(xi ;yj )进行概率加权统计平均,可得I(X;yj)为:
I ( X ; y j ) p xi y j I ( xi ; y j ) p xi y j log
i i
p ( xi y j ) p ( xi )
第2章 离散信源及其信息熵
内容提要: 根据香农对于信息的定义,信息是一个系 统不确定性的度量,尤其在通信系统中, 研究的是信息的处理、传输和存储,所以 对于信息的定量计算是非常重要的。本章 主要研究离散信源下各种信息的定量计算 ,讨论它们的性质和相互关系。
2.1 信源基本分类及其数学模型
在通信系统中,收信者在未收到信息以前, 对信源发出什么样的消息是不确定的,是随机的, 所以可以用随机变量、随机矢量或随机过程来描 述信源输出的消息,或者说用一个样本空间及其 概率测度来描述信源。 不同的信源根据其输出消息的不同的随机性 质进行分类。
信源
信源符号集 {a1,a2,…, ak}
信道
信宿
干扰 简单的通信模型
信宿符号集 { b1,b2,…,bD}
事件xi是否发生具有不确定性,用I(xi)度量。 接收到符号 yj 后,事件xi 是否发生仍保留有一定的不确定性, 用I(xi︱yj)度量。 观察事件前后,这两者之差就是通信过程中所获得的信息量, 用I(xi ; yj )表示:
?思考题:
若有6行8列的棋方格看,现有A,B两个质点分别以 等概率落入方格内,但两质点不能落入同一格内 ,若 A,B 是可分辨的,求 A,B 同时落入的平均自信 息量。
2.2.3 互信息量
⑴.互信息量 从通信的角度引出互信息量的概念 信源符号X={x1,x2,…,xI} ,xi∈{a1,a2,…,ak},i = 1, 2 ,…, I。 经过信道传输,信宿方接收到符号 Y = {y1,y2,…,yJ},yj∈{b1,b2,…,bD},j = 1, 2, …,J。 {x1,x2,…xI} {y1,y2,…yJ}
。
I ( xi ; y j ) I ( xi ) I ( xi y j ) log
p ( xi y j ) p ( xi )
称上式为事件xi和事件yj之间的互信息量。 注:式I(xi ;yj ) 和式I(xi,yj )的区别在于: 前者是事件xi∈X和事件yj∈Y之间的互信息量, 后者是二维空间XY 上元素xi yj 的自信息量。
x 2 xi xi 1 x N x1 p( x ) p( x ) p( x ) p( x ) p( x ) 2 i i 1 N 1
则下式成立:
H(X)= H(x1,x2,…,xi,xi+1,…,xN)
pi pi 1 H ( x1 , x2 ,, xi 1 , xi xi 1 , xi 2 ,, xN ) ( pi pi 1 ) H ( , ) pi pi 1 pi pi 1
1 (2)在二维联合集X Y上的条件分布概率为 p( y j xi ) ,这一 12 事件提供给甲的信息量为条件自信息量 I(yj︱xi) = -log p(yj︱xi) = log12 = 3.585(比特)
2.2.2
离散集的平均自信息量
⑴ 平均自信息量(熵) 人们注意的是整个系统的统计特性,当信源各个消息的出现概率 相互统计独立时,这种信源称为无记忆信源,无记忆信源的平均自 信息量定义为各消息自信息量的概率加权平均值(统计平均值), 即平均自信息量H(X)定义为:
H X
q( x )I ( x ) q( x ) log q( x )
i i i i i i
H(X)的表达式与统计物理学中的热熵具有相类似 的形式,在概念上二者也有相同之处,故借用熵
这个词把H(X)称为集合X的信息熵,简称熵。
【例2.3】计算下列信源的熵
x1 (1)信源一: X 2 x0 q ( X ) 0.99 0.01 2
熵 H(X1) =-0.99 log 0.99 - 0.01 log 0.01 = 0.08(比特/符号)
(2)信源二:等概信源
X 2 x0 x1 q( X ) 0.5 0.5 2
熵 H(X2) = - 0.5 log 0.5 - 0.5 log 0.5 = 1(比特/符号)
再将式对集合Y进行统计平均,就可以得到平均互信息量
I X ; Y p( xi y j ) I ( xi ; y j ) p( xi y j ) log
i j i j
p( xi y j ) p( xi ) p( y j )
当X,Y统计独立时,I(xi ;yj )= 0,从而I(X ; Y)= 0
i i j
j
) I ( xi y j )
p( xi y j ) log p( xi y j )
⑷.熵函数的性质
(1)对称性 集合X = {x1,x2,…,xN }中的各元素x1,x2,…,xN任意改 变其顺序时,熵只和分布(概率)有关,不关心某个具体事 件对应哪个概率。
例如
x1 x 2 x3 x 4 x1 x 2 x3 x 4 1 1 1 1 和 1 1 1 1 的熵是相等的。 2 4 8 8 8 8 4 2
(2)非负性:H(X) 0 (3)确定性:在集合X = (x1,x2,…,xN)中,若有一个 事件是必然事件,则其余事件必为不可能事件,即该集合的 概率分布为 x x x x
1 0
2 i
0
1
0
N
(4)可加性:
集合X = {x1,x2,…,xi,xi+1,…,xN}的概率分布为:
2.当事件ai发生以后,表示事件ai所能提供的最大 信息量(在无噪情况下)
联合自信息量
二维联合集X Y上元素xi yj的联合自信息量I(xi yj)定义为:
I ( xi y j ) log p( xi y j )
条件自信息量
在已知事件yj条件下,随机事件xi发生的概率为条件概 率p(xi︱yj),条件自信息量 I ( xi y j )定义为:
针对信源X某一单个消息或符号
ai
I (ai ) log p(ai )
【例 2.1】若盒中有 6个电阻,阻值为 1Ω 、 2Ω 、 3Ω 的分别 为2个、1个、3个,将从盒子中取出阻值为iΩ 的电阻记为事 件 x i (i = 1,2,3),则事件集X = {x1, x2, x3},其概率 分布 x x x
1、离散信源 数学模型如下:
X a1 P p 1
a2 p2
... ...
xq pn
p
i 1
q
i
1
集合X中,包含该信源包含的所有可能输出 的消息,集合P中包含对应消息的概率密度,各 个消息的输出概率总和应该为1。
例:天气预报 无记忆信源 X的各时刻取值相互独立。
0 0.5 1 δ 图 2-2 H2(δ )与δ 关系
⑵.平均条件自信息量(条件熵) 若事件xi, yj的联合分布概率为p(xi yj ),给定yj条 件下事件xi的条件自信息量为I (xi︱yj),则H (X ︱Y) 定义为:
H(X Y)
p(x y )I (x y ) p(x y ) log
(1)对于无噪信道H (X︱Y) = 0 (2)在强噪声情况下,收到的Y与X毫不相干 ,可视为统计独立,H (X︱Y) = H (X)
从通信角度来看,H (Y︱X)是发出确定消息xi后,由 于信道干扰而使yj存在的平均不确定性,称H (Y︱X) 为噪声熵(散布度)。 存在以下两种极端情况: (1) 对于无扰信道,有H (Y︱X) = 0。
X 4 x0 q( X ) 0 4
x1 1
熵H(X4) = - 0 log 0 –1 log 1 = 0 计算结果说明确定事件的熵为零 (5) 信源五:一般情况下,二元信源的概率分布为
H 2(δ )
1 X 5 0 q( X ) 1 5 熵 H(X) = –δ log δ -(1-δ )log(1-δ ) 记H2(δ ) = –δ log δ -(1-δ )log(1-δ ) H2(δ )与δ 的关系如图2-2所示。
(2)对于强噪信道,有H (Y︱X)= H (Y) 。
⑶.联合熵
联合熵H (XY) 是定义在二维空间X Y上,对元素xi yj的自信息 量的统计平均值,若记事件xi yj出现的概率为p (xi yj),其自信息 量为I (xi yj),则联合熵H (X Y) 定义为
H XY
i j
p( x y
有记忆信源 X的各时刻取值互相有关联。
2、连续信源 数学模型如下:
X (a, b) p ( x) p ( x)
b