第二章_信源熵-习题答案
信息论与编码理论习题答案

信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。
解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。
信息论、编码与密码学课后习题答案

第1章 信源编码
1.1考虑一个信源概率为{0.30,0.25,0.20,0.15,0.10}的DMS。求信源熵H(X)。
解: 信源熵
H(X)=-[0.30*(-1.737)+0.25*(-2)+0.2*(-2.322)+0.15*(-2.737)+0.1*(-3.322)]
10100+11110=01010 10100+00111=10011
10100+01101=11001
11110+00111=11001 11110+01101=10011
00111+01101=01010
满足第一条性质
2、全零码字总是一个码字
{00000,01010,10011,11001,10100,11110,00111,01101}
(1)给出此信源的霍夫曼码并确定编码效率。
(2)每次考虑两个符号时,给出此信源的霍夫曼码并确定编码效率。
(3)每次考虑三个符号时,给出此信பைடு நூலகம்的霍夫曼码并确定编码效率。
解:
(1)本题的霍夫曼编码如下图所示:
图1.11 霍夫曼编码
则霍夫曼码如下表:
符号
概率
码字
x1
0.5
1
x2
0.4
00
x3
0.1
01
该信源的熵为:
(2)全零字总是一个码字,
(3)两个码字之间的最小距离等于任何非零码字的最小重量,即
设 ,即 , , , ,
首先证明条件(1):
, , , , , ,
很明显,条件(1)是满足的。条件(2)也是显然成立的。
信息论与编码第二章答案

2—1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。
画出状态图并求出各符号稳态概率。
解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P (0|00)=0.8,P(0|11)=0.2,P (1|00)=0.2,P(1|11)=0.8,P (0|01)=0.5,p(0|10)=0。
5,p(1|01)=0。
5,p (1|10)=0。
5画出状态图,并计算各符号稳态概率。
解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2—1-17)可得方程组。
1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2—3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量;(2)、“两个1同时出现"事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵; (5)、两个点数中至少有一个是1的自信息量。
信息论与编码第二章答案

2-1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。
画出状态图并求出各符号稳态概率。
解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P(0|00)=0.8,P(0|11)=0.2,P(1|00)=0.2,P(1|11)=0.8,P(0|01)=0.5,p(0|10)=0.5,p(1|01)=0.5,p(1|10)=0.5画出状态图,并计算各符号稳态概率。
解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2-1-17)可得方程组。
1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2-3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量;(2)、“两个1同时出现”事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵; (5)、两个点数中至少有一个是1的自信息量。
第三版信息论答案

【】设有 12 枚同值硬币,其中有一枚为假币。
只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。
现用比较天平左右两边轻重的方法来测量。
为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:从信息论的角度看,“12 枚硬币中,某一枚为假币”该事件发生的概率为P 1;12“假币的重量比真的轻,或重”该事件发生的概率为P 1;2为确定哪一枚是假币,即要消除上述两事件的联合不确定性,由于二者是独立的,因此有I log12log2log 24 比特而用天平称时,有三种可能性:重、轻、相等,三者是等概率的,均为P 1 ,因此天3平每一次消除的不确定性为Ilog 3 比特因此,必须称的次数为I1log24I2log3次因此,至少需称 3 次。
【延伸】如何测量?分 3 堆,每堆 4 枚,经过 3 次测量能否测出哪一枚为假币。
【】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为 2”或“面朝上点数之和为 8”或“两骰子面朝上点数是 3 和 4”时,试问这三种情况分别获得多少信息量?解:“两骰子总点数之和为 2”有一种可能,即两骰子的点数各为 1,由于二者是独立的,因此该种情况发生的概率为P1 16 61,该事件的信息量为:36I log 36比特“两骰子总点数之和为 8”共有如下可能:2 和 6、3 和 5、4 和 4、5 和 3、6 和2,概率为P 1 1 56 65,因此该事件的信息量为:36I log365比特“两骰子面朝上点数是 3 和 4”的可能性有两种:3 和 4、4 和 3,概率为P因此该事件的信息量为:1 121,6 6 18I log18比特【】如果你在不知道今天是星期几的情况下问你的朋友“明天星期几?”则答案中含有多少信息量?如果你在已知今天是星期四的情况下提出同样的问题,则答案中你能获得多少信息量(假设已知星期一至星期日的顺序)?解:如果不知今天星期几时问的话,答案可能有七种可能性,每一种都是等概率的,均为P 1,因此此时从答案中获得的信息量为7I log 7比特而当已知今天星期几时问同样的问题,其可能性只有一种,即发生的概率为1,此时获得的信息量为0 比特。
信息论与编码习题答案-曹雪虹

3-14
信源 符号 xi x1 x2 x3 x4 x5 x6 x7
符号概 率 pi 1/3 1/3 1/9 1/9 1/27 1/27 1/27 1/3 1/3 1/9 1/9 2/27 1/27 1/3 1/3 1/9 1/9 1/9
编码过程
编码 1/3 1/3 1/3 2/3 1/3 00 01 100 101 111 1100 1101
得p0p1p223当p0或p1时信源熵为0第三章无失真信源编码31321因为abcd四个字母每个字母用两个码每个码为05ms所以每个字母用10ms当信源等概率分布时信源熵为hxlog42平均信息传递速率为2信源熵为hx0198bitms198bitsbitms200bits33与上题相同351hu12log2?14log4?18log8?116log16?132log32?164log64?1128log128?1128log128?1984111111112481632641281282每个信源使用3个二进制符号出现0的次数为出现1的次数为p0p134相应的香农编码信源符号xix1x2x3x4x5x6x7x8符号概率pi12141811613216411281128累加概率pi00507508750938096909840992logpxi12345677码长ki12345677码字010110111011110111110111111011111110相应的费诺码信源符号概符号xi率pix1x2x3x4x5x6x7x812141811613216411281128111第一次分组0第二次分组0第三次分组0第四次分组0第五次分组011第六次分组01第七次分组01二元码0101101110111101111101111110111111105香农码和费诺码相同平均码长为编码效率为
第二章 信源熵-习题答案
· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0=== 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生) P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm ) P(Y) 0.5 0.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(11111111=⨯-=-=-=2.3 一副充分洗乱了的牌(含52张牌),试问(1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x p bit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:· 2 ·bit C x p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p此消息的信息量是:bit p I 811.87log =-= (2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?解: 男士:sym bolbit x p x p X H bitx p x I x p bit x p x I x p i i i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X ,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。
信息论与编码第二章答案
第二章信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。
2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。
2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:kk k xi q xi q X H i log 1log 1)(log )()(2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。
答:)|;();();(Y Z X I Y X I YZ X I 2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量)()|(log );(xi q yj xi Q y x I ,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告知的是xi 出现的可能性更小了。
从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。
2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。
答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201s x p s x p s x p s x p s x p s x p 即:43)|(0)|(41)|(31)|(32)|(0)|(0)|(41)|(43)|(222120121110020100s s p s s p s s p s s p s s p s s p s s p s s p s s p 可得:1)()()()(43)(31)()(31)(41)()(41)(43)(210212101200s p s p s p s p s p s p s p s p s p s p s p s p得:114)(113)(114)(210s p s p s p )]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 0.25(bit/符号)2.8一个马尔可夫信源,已知:0)2|2(,1)2|1(,31)1|2(,32)1|1(x x p x x p x x p x x p 试画出它的香农线图,并求出信源熵。
信息论与编码第2章习题解答
2.1设有12枚同值硬币,其中一枚为假币。
只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。
现用比较天平左右两边轻重的方法来测量(因无砝码)。
为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:分三组,每组4个,任意取两组称。
会有两种情况,平衡,或不平衡。
(1) 平衡:明确假币在其余的4个里面。
从这4个里面任意取3个,并从其余8个好的里面也取3个称。
又有 两种情况:平衡或不平衡。
a )平衡:称一下那个剩下的就行了。
b )不平衡:我们至少知道那组假币是轻还是重。
从这三个有假币的组里任意选两个称一下,又有两种情况:平衡与不平衡,不过我们已经知道假币的轻重情况了,自然的,不平衡直接就知道谁是假币;平衡的话,剩下的呢个自然是假币,并且我们也知道他是轻还是重。
(2) 不平衡:假定已经确定该组里有假币时候:推论1:在知道该组是轻还是重的时候,只称一次,能找出假币的话,那么这组的个数不超过3。
我们知道,只要我们知道了该组(3个)有假币,并且知道轻重,只要称一次就可以找出来假币了。
从不平衡的两组中,比如轻的一组里分为3和1表示为“轻(3)”和“轻(1)”,同样重的一组也是分成3和1标示为“重(3)”和“重(1)”。
在从另外4个剩下的,也就是好的一组里取3个表示为“准(3)”。
交叉组合为:轻(3) + 重(1) ?=======? 轻(1) + 准(3)来称一下。
又会有3种情况:(1)左面轻:这说明假币一定在第一次称的时候的轻的一组,因为“重(1)”也出现在现在轻的一边,我们已经知道,假币是轻的。
那么假币在轻(3)里面,根据推论1,再称一次就可以了。
(2)右面轻:这里有两种可能:“重(1)”是假币,它是重的,或者“轻(1)”是假币,它是轻的。
这两种情况,任意 取这两个中的一个和一个真币称一下即可。
(3)平衡:假币在“重(3)”里面,而且是重的。
根据推论也只要称一次即可。
2.2 同时扔一对骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为8”或“骰子面朝上之和是3和4”时,试问这三种情况分别获得多少信息量?解:设“两骰子面朝上点数之和为2”为事件A ,则在可能出现的36种可能中,只能个骰子都为1,这一种结果。
信息论与编码习题与答案第二章
第一章信息、消息、信号的定义?三者的关系? 通信系统的模型?各个主要功能模块及作用? 第二章信源的分类?自信息量、条件自信息量、平均自信息量、信源熵、不确定度、条件熵、疑义度、噪声熵、联合熵、互信息量、条件互信息量、平均互信息量以及相对熵的概念?计算方法? 冗余度?具有概率为)(x i p 的符号x i 自信息量:)(log )(x x i i p I -= 条件自信息量:)(log )(y x y x iiiip I -=平均自信息量、平均不确定度、信源熵:∑-=ii i x x p p X H )(log )()(条件熵:)(log ),()(),()(y x y x y x y x jijijijijiji p p I p Y X H ∑∑-==联合熵:),(log ),(),(),()(y x y x y x y x ji jiji ji jiji p p I p Y X H ∑∑-==互信息:)()(log)()()()(log),();(y x yx yx y x yy x jiji jiji jijjiji p p p p p p p Y X I ∑∑==熵的基本性质:非负性、对称性、确定性2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下:11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 6162 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)两个点数求和的概率分布如下:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5){(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),(1,1)}bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2.7 设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()log log 1.415()3I x bit p x === 同理可以求得bit x I bit x I bit x I 3)4(,2)3(,2)2(===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++=平均每个符号携带的信息量为87.811.9545=bit/符号 2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 居住某地区的女孩子有 25%是大学生,在女大学生中有 75%是身高 160 厘米以上的,而女 孩子中身高 160 厘米以上的占总数的一半。假如我们得知“身高 160 厘米以上的某女孩是大 学生”的消息,问获得多少信息量?
解: 设随机变量 X 代表女孩子学历 X x1(是大学生) P(X) 0.25 设随机变量 Y 代表女孩子身高 Y y1(身高>160cm) P(Y) 0.5
2.9 设有一个信源,它产生 0,1 序列的信息。它在任意时间而且不论以前发生过什么符号, 均按 P(0) = 0.4,P(1) = 0.6 的概率发出符号。 (1) 试问这个信源是否是平稳的? (2) 试计算 H(X2), H(X3/X1X2)及 H∞; (3) 试计算 H(X4)并写出 X4 信源中可能有的所有符号。
2.5 从大量统计资料知道,男性中红绿色盲的发病率为 7%,女性发病率为 0.5%,如果你问一 位男士: “你是否是色盲?”他的回答可能是“是” ,可能是“否” ,问这两个回答中各含多少 信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量 是多少?
解: 男士:
p ( xY ) 7% I ( xY ) log p ( xY ) log 0.07 3.837 bit p ( x N ) 93% I ( x N ) log p ( x N ) log 0.93 0.105 bit H ( X ) p ( xi ) log p ( xi ) (0.07 log 0.07 0.93 log 0.93) 0.366 bit / symbol
2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?
解: 四进制脉冲可以表示 4 个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示 8 个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示 2 个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则: 四进制脉冲的平均信息量 H ( X 1 ) log n log 4 2 bit / symbol 八进制脉冲的平均信息量 H ( X 2 ) log n log 8 3 bit / symbol 二进制脉冲的平均信息量 H ( X 0 ) log n log 2 1 bit / symbol 所以: 四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的 2 倍和 3 倍。
x2(不是大学生) 0.75
y2(身高<160cm) 0.5
已知:在女大学生中有 75%是身高 160 厘米以上的 即: p ( y1 / x1 ) 0.75 bit 求:身高 160 厘米以上的某女孩是大学生的信息量 即: I ( x1 / y1 ) log p ( x1 / y1 ) log
p( x1 ) p ( y1 / x1 ) 0.25 0.75 log 1.415 bit 0.5 p( y1 )
2.3 一副充分洗乱了的牌(含 52 张牌) ,试问 (1) 任一特定排列所给出的信息量是多少? (2) 若从中抽取 13 张牌,所给出的点数都不相同能得到多少信息量?
解: (1) 52 张牌共有 52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:
解: (1) 此消息总共有 14 个 0、13 个 1、12 个 2、6 个 3,因此此消息发出的概率是:
1 3 1 p 8 8 4
14
25
6
此消息的信息量是: I log p 87.811 bit (2) 此消息中平均每符号携带的信息量是: I / n 87.811 / 45 1.951 bit
·3·
I ( X N ; X 1 X 2 ... X n1 ) 0
H ( X N ) H ( X N / X 1 X 2 ... X n1 )
H ( X 1 X 2 ... X n ) H ( X 1 ) H ( X 2 ) H ( X 3 ) ... H ( X n )
p ( xi )
1 52!
I ( xi ) log p ( xi ) log 52! 225.581 bit
(2) 52 张牌共有 4 种花色、13 种点数,抽取 13 张点数不同的牌的概率如下:
·1·
p ( xi )
413 13 C52 413 13.208 bit 13 C52
H(X) > log6 不满足信源熵的极值性。
解:
·2·
H ( X ) p( xi ) log p ( xi )
i
6
(0.2 log 0.2 0.19 log 0.19 0.18 log 0.18 0.17 log 0.17 0.16 log 0.16 0.17 log 0.17) 2.657 bit / symbol H ( X ) log 2 6 2.585
I ( xi ) log p( xi ) log
X x1 0 x2 1 x3 2 x4 3 2.4 设离散无记忆信源 ,其发出的信息为 1/ 4 1/ 4 1/ 8 P( X ) 3 / 8
(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少? (2) 此消息中平均每符号携带的信息量是多少?
2.8 证明:H(X1X2 。 。 。 Xn) ≤ H(X1) + H(X2) + … + H(Xn)。
证明:
H ( X 1 X 2 ... X n ) H ( X 1 ) H ( X 2 / X 1 ) H ( X 3 / X 1 X 2 ) ... H ( X n / X 1 X 2 ... X n 1 ) I ( X 2; X1) 0 I ( X 3; X1 X 2 ) 0 ... H ( X 2 ) H ( X 2 / X1) H ( X 3 ) H ( X 3 / X1 X 2 )
不满足极值性的原因是
p( x ) 1.07 1 。
i i
6
2.7 证明:H(X3/X1X2) ≤ H(X3/X1),并说明当 X1, X2, X3 是马氏链时等式成立。
证明:
p( xi1 xi 2 xi 3 ) log p ( xi 3 / xi1 xi 2 ) p ( xi1 xi 3 ) log p( xi 3 / xi1 ) p( xi1 xi 2 xi 3 ) log p ( xi 3 / xi1 xi 2 ) p ( xi1 xi 2 xi 3 ) log p( xi 3 / xi1 )
当
p( xi 3 / xi1 ) 1 0时等式成立 p( xi 3 / xi1 xi 2 )
p( xi 3 / xi1 ) p( xi 3 / xi1 xi 2 ) p( xi1 xi 2 ) p( xi 3 / xi1 ) p ( xi 3 / xi1 xi 2 ) p( xi1 xi 2 ) p( xi1 ) p( xi 2 / xi1 ) p( xi 3 / xi1 ) p( xi1 xi 2 xi 3 ) p( xi 2 / xi1 ) p( xi 3 / xi1 ) p( xi 2 xi 3 / xi1 ) 等式成立的条件是X 1 , X 2 , X 3是马 _ 氏链
i
H lim H ( X N / X 1 X 2 ... X N 1 ) H ( X N ) 0.971 bit / symbol
N ห้องสมุดไป่ตู้
(3)
H ( X 4 ) 4 H ( X ) 4 (0.4 log 0.4 0.6 log 0.6) 3.884 bit / symbol X 4的所有符号: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
i 2
女士:
H ( X ) p( xi ) log p ( xi ) (0.005 log 0.005 0.995 log 0.995) 0.045 bit / symbol
i
2
x2 x3 x4 x5 x6 X x1 2.6 设信源 ,求这个信源的熵,并解释为什么 P( X ) 0.2 0.19 0.18 0.17 0.16 0.17
2.10 一阶马尔可夫信源的状态图如下图所示。信源 X 的符号集为{0, 1, 2}。 (1) 求平稳后信源的概率分布; (2) 求信源的熵 H∞。
解: (1) ·4·
p (e1 ) p (e1 ) p (e1 / e1 ) p (e2 ) p (e1 / e2 ) p ( e 2 ) p ( e 2 ) p ( e 2 / e 2 ) p ( e3 ) p ( e 2 / e 3 ) p ( e ) p (e ) p ( e / e ) p ( e ) p ( e / e ) 3 3 3 1 3 1 3 p (e1 ) p p (e1 ) p p (e2 ) p ( e 2 ) p p (e 2 ) p p ( e3 ) p (e3 ) p p (e3 ) p p (e1 ) p (e1 ) p (e2 ) p (e3 ) p (e1 ) p (e2 ) p (e3 ) 1 p(e1 ) 1 / 3 p (e 2 ) 1 / 3 p (e ) 1 / 3 3 p ( x1 ) p (e1 ) p ( x1 / e1 ) p (e2 ) p ( x1 / e2 ) p p (e1 ) p p (e2 ) ( p p ) / 3 1 / 3 p ( x 2 ) p ( e 2 ) p ( x 2 / e 2 ) p ( e 3 ) p ( x 2 / e 3 ) p p ( e 2 ) p p ( e3 ) ( p p ) / 3 1 / 3 p ( x3 ) p (e3 ) p ( x3 / e3 ) p (e1 ) p ( x3 / e1 ) p p (e3 ) p p(e1 ) ( p p ) / 3 1 / 3 1 2 X 0 P( X ) 1 / 3 1 / 3 1 / 3