信源熵 第二章—3讲课教案
信源及信源熵介绍

2.2.1 自信息量
2. 不确定度 定义:随机事件的不确定度在数量上等于它的 自信息量.
说明:
a. 两者的单位相同,但含义却不相同。 b. 具有某种概率分布的随机事件不管发生与否,都存在
不确定度,不确定度表征了该事件的特性,而自信息 量是在该事件发生后给予观察者的信息量。
15
2.2.1 自信息量
22
2) 因为X中各符号xi的不确定度I(xi)为非负值,p(xi)也 是非负值,且0 p(xi)1,故信源的平均不确定度H(X) 也是非负量。
3) 平均不确定度H(X)的定义公式与热力学中熵的表示形 式相同,所以又把H(X)称为信源X的熵。熵是在平均意 义上来表征信源的总体特性的,可以表征信源的平均不确 定度。
2
p(xi ) log 2 p(xi ) i 1
= 0.72比特/次 说明:
1) 自信息量I(x1)和I(x2)只是表征信源中各个 符号的不确定度,一个信源总是包含着多个符 号消息,各个符号消息又按概率空间的先验概 率分布,因而各个符号的自信息量就不同。所 以自信息量不能作为信源总体的信息量。
=3 × 105 × 3.32 比特/画面
25
有一篇千字文章,假定每字可从万字表中任选, 则共有不同的千字文 N=100001000=104000 篇 仍按等概率1/100001000计算,平均每篇千字文 可提供的信息量为 H(X)=log2N =4 × 103 × 3.32
1.3 × 104 比特/千字文
离散消息的信源,如文字、数字、数据等符号都是
离散消息。
{ 离散信源
离散无记忆信源 离散有记忆信源
{ {
5
发出单个符号的无记忆信源 发出符号序列的无记忆信源 发出符号序列的有记忆信源 发出符号序列的马尔可夫信源
2-第二讲 信源的信息熵

平稳信源的条件概率: 平稳信源的条件概率:
P(xi+1 | xi ) = P(x j+1 | x j ); P(xi+2 | xi xi+1) = P(x j+2 | x j x j+1); ⋯,⋯ P(xl+N | xi xi+1 ⋯xi+N−1) = P(x j+N | x j x j+1 ⋯x j+N−1).
1 4 1 P(aia j ) = 18 0
1 18 1 3 1 18
0 1 18 7 36
平均符号熵: 平均符号熵: 长字母序列,平均每个字母的熵为: 信源输出的 N 长字母序列,平均每个字母的熵为:
1 1 N HN (X) = H( X ) = H( X1X2 ⋯XN ) N N
二维平稳: 二维平稳: 与起点无关的含义! 与起点无关的含义 概率分布不随时间变化。 概率分布不随时间变化。
P(xi ) = P(xj );
P(xi xi+1) = P(x j x j+1), i ≠ j
取同一符号的情况) (含义是 i,j 取同一符号的情况)
完全平稳--平稳信源: 完全平稳--平稳信源:与时间起点无关 --平稳信源 统计特性不随时间变化。 统计特性不随时间变化。 P(x ) = P(x );
i, j
p(xj ) p(xj | xi )
≤ log∑ p(xi xj )
i, j
p(xj ) p(xj | xi )
= log ∑ p(xi ) p(xj ) = 0
i, j
例题: 例题:
二维平稳信源
0 X P( x ) = 11 36
2.2 多符号离散信源的熵

16
17
(2)某时刻信源所处的状态由该时刻输出的符号 和前一时刻的状态唯一确定。
发akm1 发akm2 发......
ak1 ak2 akm ak2 akm akm1 ak3 akm1 akm2
Si Si+1 Si+2
问:m阶马尔可夫信源最多有多少种状态? nm
所有的状态构成状态空间S,每种状态 以一定的概率发生,则得到的数学模型就是 Байду номын сангаас阶马尔可夫信源的数学模型。
10
解:
3
H ( X ) p(ai ) log p(ai ) 1.542bit / 符号
i 1
H ( X 2 | X 1 ) p(ai ) p(a j | ai ) log p(a j | ai ) 0.870bit / 符号
i 1 j 1
3
3
H ( X 2 ) H ( X 1 X 2 ) H ( X ) H ( X 2 / X 1 ) 2.412bit / 双符号 1 平均符号熵H N ( X ) H ( X N ) N 1 H 2 ( X ) H ( X 2 ) 1.206bit / 符号 2
20
则:
H H m 1 H ( S j | Si )
nm i , j 1 nm
令所有的状态组成一个状态集合Si 或Sj
p( si s j ) log p( s j | si ) p( si ) p( s j | si ) log p( s j | si )
所谓平稳是指序列的统计性质与时间的推移无关。
非平稳随机序列:信源每发一个符号的概率与时间起 点有关。 离散无记忆信源:信源序列的前后符号之间是统计独 立的。
第二章信源及信源的熵

Pij的性质: Pij ( m, n ) 0,i, j S
Pij (m, n ) 1,
jS
i S
17
齐次马尔可夫信源的状态转移概率: 齐次:状态转移概率与时间无关
{
无记忆信源 有记忆信源
(1)单符号信源和符号序列信源 前述各离散或连续信源都是单符号信源----信源(试验) 每次发出一个符号(消息的长度为1)。 更多信源输出的消息需要用多个符号(即符号序列)来表示 ,如:随机取球试验,一次取两个球。多少种消息?
8
3种消息:“红红”、“白白”、“红白或白红”;用符号序 列表示 个消息。这种信源称为符号序列信源。 (2)符号序列信源用多维随机变量(随机矢量或随机序列)及 其概率空间来描述。如上面的离散符号序列信源:
7
X [0,1.5] pX (x) pX (x)
任意连续信源 的数学模型为
1.5
,
pX (x)d x 1
0
X [a,b] p X (x) p X (x)
b
,
a
pX (x)d x 1
2、按照信源发出的符号之间的关系分类: 信源
香农第二章信源及信源熵第一节信源的描述和分类第二节离散信源熵和互信息第二节离散信源熵和互信息3第三节连续信源的熵和互信息第四节离散序列信源的熵第五节冗余度第一节信源的描述和分类一消息的统计特征香农信息论运用概率论和随机过程的理论来研究信息
复
1、信息的定义:
习
信息是指各个事物运动的状态及状态变化的形式。 是事物运动状态或存在方式的不确定性的描述。 2、信息论的定义 关于信息的本质和传输规律的科学理论,是研究信息的度 量、发送、传递、交换、接收和储存的一门新兴学科。它为 各种具体的信息技术提供理论依据,而信息技术则以此为根 据去研究如何实现、怎样实现的问题。 3、信息、消息和信号的关系:
4第二章3-熵的计算

q
q
(3)根据概率关系,可以得到联合熵与条件熵的关系: 根据概率关系,可以得到联合熵与条件熵的关系: 联合熵与条件熵的关系
H ( X1 X 2 ) = −∑∑ P(ai a j ) logP(ai a j )
i =1 j =1
q q
q
qபைடு நூலகம்
= −∑∑ P (ai a j ) log( P (ai )P (a j | ai ))
得:
H ( X ) = −∑ P(ai ) logP(ai ) = 1.542( Bit / Symbol)
i =1 3
H ( X 2 / X 1 ) = −∑∑ P(ai a j ) logP(a j / ai ) = 0.87(Bit / Symbol)
i =1 j =1 3
3
3
H ( X 1 X 2 ) = −∑∑ P(ai a j ) logP(ai a j ) = 2.41( Bit / Symbols)
0.71比特/符号
•
从另一角度(来研究信源X的信息熵的近似值) 从另一角度(来研究信源X的信息熵的近似值):
( 1 ) 由于信源 X 发出的符号序列中前后两个符号之间有依 由于信源X 赖性,可以先求出在已知前面一个符号X 已知前面一个符号 赖性, 可以先求出在已知前面一个符号Xl=ai时,信源输出 下一个符号的平均不确定性 的平均不确定性: 下一个符号的平均不确定性:
0.71比特/符号
二维平稳信源X:
条件熵H(X2|X1) 平均符号熵H2(X) 简单信源X符号熵H(X)
H(X2|X1) ≤H2(X) ≤H(X) H(X1X2)=H(X1)+H(X2|X1)=2H2(X)
有记忆平稳信源的联合熵、条件熵、 有记忆平稳信源的联合熵、条件熵、平均符号熵 与无记忆信源熵之间的定量关系。 与无记忆信源熵之间的定量关系。
信息论与编码-第2章信源熵辅助课件一

一般情况,X和Y既非互相独立,也不是一一对应,那么 从Y获得的X信息必在零与H(X)之间,即常小于X的熵。
2.1单符号离散信源
4。凸函数性 结论: (1)固定信道,调整信源,I(X;Y)是p(x)的上凸 函数 证明:当n=2时的具体情形
用什么公式?为什么?如何用? 已知:P(x)及P(y|x) (2)固定信源,调整信道,I(X;Y)是p(y|x)的下凸函数
分布的连续消息的信源; 2. 离散信源:发出在时间上和幅度上都是离散
分布的信源。 离散信源又可以细分为:
2.1单符号离散信源
(1)离散无记忆信源:所发出的各个符号之间 是相互独立的,各个符号的出现概率是它自身 的先验概率。
(2)离散有记忆信源:发出的各个符号之间不 是相互独立的,各个符号出现的概率是有关联 的。
2.1单符号离散信源
总之:
H(X)代表接收到Y前关于X的平均不确定性, H(X/Y)代表接收到Y后尚存关于X的平均不确 定性。可见,通过信道传输消除了一些不确定 性,获得了一定的信息。所以定义平均互信息 量(2.1.5)
I(X;Y) = H(X ) − H(X /Y)
2.1单符号离散信源
2.1.5平均互信息量(交互熵)
2.1单符号离散信源
也可以根据信源发出一个消息所用符号的多 少,将离散信源分为:
1. 发出单个符号的离散信源:信源每次只发出 一个符号代表一个消息;
2. 发出多符号的离散信源:信源每次发出一组 含二个以上符号的符号序列代表一个消息。
将以上两种分类结合,就有四种离散信源:
2.1单符号离散信源
(1)发出单符号的无记忆离散信源; (2)发出多符号的无记忆离散信源; (3)发出单符号的有记忆离散信源; (4)发出多符号的有记忆离散信源。
第2章信源熵-概念及单符号离散信源熵

表示
x2 xn X x1 P(X) P(x ) P( x ) P( x ) 1 2 n
其中,0 P( x i ) 1, i 1,2,, n且 P( x i ) 1
i 1
n
例1
6 X 1 2 P(X) 1/ 6 1 / 6 1/ 6
I(x 4 ) log P(x 4 ) log( 1/ 8) log 8 3(bit )
信源熵
3、熵
定义
信源各消息自信息量的数学期望为该信源的熵, 也叫无条件熵,用H(X)表示。
表示
H(X) E[I( x i )] P( x i )I( x i ) P( x i ) log P( x i )
i 1 i 1
n
n
同理, (1 )P2 ( x i ) log[ P1 ( x i ) (1 )P2 ( x i )]
i 1
n
(1 )P2 ( x i ) log P2 ( x i )
i 1
n
信源熵
[P1 ( x i ) (1 )P2 ( x i )] log[ P1 ( x i ) (1 )P2 ( x i )]
信源熵
2、自信息量
假设单符号离散信源发出消息xi、xj 的概率 P(xi) < P(xj),那条消息具有更大的信 息量, xi 还是xj ?
信源熵
根据香农信息的概念,消息中具有不确定 性的成分才是信息,不确定性的成分越大, 或者说概率越小,信息量就越大,从这个 意义判断,消息xi 具有更大的信息量。
信源熵
离散信源又可以细分为: (1)离散无记忆信源:所发出的各 个符号之间是相互独立的,发出 的符号序列中的各个符号之间没 有统计关联性,各个符号的出现 概率是它自身的先验概率。 (2)离散有记忆信源:发出的各个 符号之间不是相互独立的,各个 符号出现的概率是有关联的。
平稳信源熵求解课程设计

郑州工业应用技术学院课程设计(论文)题目:离散平稳信源熵求解指导教师:魏平俊职称:教授学生姓名:魏秀涛学号: 1401140108专业:电子信息工程院(系):信息工程学院答辩日期: 2016年12月18日2016年12月18日信息是从人类出现以来就存在于这个世界上,人类社会的生存和发展都离不开信息的获取、传递、处理、再生、控制和处理。
而信息论正是一门把信息作为研究对象,以揭示信息的本质特性和规律为基础,应用概率论、随即过程和数理统计等方法来研究信息的存储、传输、处理、控制、和利用等一般规律的学科。
主要研究如何提高信息系统的可靠性、有效性、保密性和认证性,以使信息系统最优化。
在信息论的指导下,信息技术得到飞速发展,这使得信息论渗透到自然科学和社会科学的所有领域,并且应用与众多领域:编码学、密码学与密码分析、数据压缩、数据传输、检测理论、估计理论等。
信息论的主要基本理论包括:信息的定义和度量;各类离散信源和连续信源的信源熵;有记忆,无记忆离散和连续信道的信道容量,平均互信息;无失真信源编码相关理论。
求离散性信源熵也是信息论课程实践学习中必须要经历,在了解常规的求解方式的同时,利用计算机语言进行实践编程。
用预先规定的方法将文字、数字或其他对象编成数码,或将信息、数据转换成规定的电脉冲信号。
编码在电子计算机、电视、遥控和通讯等方面广泛使用。
其中哈夫曼编码有广泛的应用,通过本次实验,了解编码的具体过程,通过编程实现编码。
本次实验所使用的机器语言均为C语言。
关键字:信息论离散和连续信源熵 C语言编程设计绪论 (1)1. 课程设计概述及意义 (2)2. 设计任务 (3)2.1设计目的 (3)2.2设计内容 (3)2.3设计条件 (3)3. 理论分析 (4)3.1离散信号概念 (4)3.2信源熵 (5)3.2.1定义 (5)3.2.2本质 (5)3.2.3物理含义 (6)3.3离散平稳信源的数学定义 (6)3.4离散平稳信源熵求解说明 (7)4.软件介绍 (8)4.1 Visual C++ 6.0简介 (8)4. 2主要部分 (9)5.程序设计 (11)5.1设计程序流程图 (11)5.2设计程序编码 (12)5.3程序运行结果 (15)6.课程设计心得体会 (16)致谢 (17)参考文献 (18)绪论在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 如果摸出的是红球,则获得的信息量是 I (x1)=-log2p (x1) = -log20.8 bit
• 如果摸出的是白球,则获得的信息量是 I (x2)=-log2p (x2) = -log20.2 bit
• 如果每次摸出一个球后又放回袋中,再进行下 一次摸取。则如此摸取n次,红球出现的次数为 np(x1)次,白球出现的次数为 np (x2)次。随机摸 取n次后总共所获得的信息量为 np(x1) I (x1)+ np(x2) I (x2)
– 1、自信息量;2、联合自信息量;3、条件自信息量
• II、互信息量和条件互信息量
– 1、互信息量;2、互信息的性质;3、条件互信息量
• III、信源熵
– 1、信源熵;2、条件熵;3、联合熵
2.2.3 信源熵的基本性质和定理 2.2.4 平均互信息量 2.2.5 各种熵之间的关系
6
III、信源熵
• 这种情况下,信源的不确定性最大,信息熵最大。
• 甲地比乙地提供更多的信息量。因为甲地可能 出现的消息数多于乙地可能出现的消息数。
18
III-2.条件熵
• 定义:
– 在给定yj条件下,xi的条件自信息量为I(xi| yj), X 集合的条件熵H(X|yj)为
H (X |yj) p (x i|yj)I(x i|yj)
YPp(yy11)
y2 p(y2)
yn p(yn)
• 互信息定义:xi的后验概率与先验概率比值的 对数
I(xi;yj)lo2gp(px(ix|iy)j)
含义
接收到某消息yj
后获得的关于事
件xi的信息量
4
2.2 单符号离散信源
2.2.1 单符号离散信源的数学模型 2.2.2 自信息和信源熵
• I、信息量
7
III-1.信源熵
例2-6:
一个布袋内放100个球,其中80个球是红色的,20 个球是白色的,若随机摸取一个球,猜测其颜色, 求平均摸取一次所能获得的自信息量? 解: 依据题意,这一随机事件的概率空间为
X P
x1 0.8
x2 0.2
其中:x1表示摸出的球为红球事件, x2表示摸出的 球是白球事件。
9
• 平均随机摸取一次所获得的信息量为
H(X)
Hale Waihona Puke 1[n np(x1)I(x1)n
p(x2)I(x2)]
[p(x1)logp(x1) p(x2)logp(x2)]
2
p(xi)log2 p(xi) 0.72bit/符号 i1
H(X):平均信息量,称为信源X的熵。 信源熵、香农熵
10
III-1.信源熵
X p(x)
x1, 0.99
x2 0.01
Y p(y)
y1, 0.5
y2 0.5
H (X ) 0 .9 lo 9 0 .9 g 0 9 .0 lo 1 0 .0 g 0 1 .0 比 8 /符 特
H (Y ) 0 .5 lo 0 .5 g 0 .5 lo 0 .5 g 1 比 /符 特 号
– 信息熵H(X)反映了变量X的随机性。
区别:信源熵表征信源的平均不确定度; 平均自信息量是消除信源不确定度所需要的信息的量度。
15
例2-7:
(1) 甲地天气预报
X 晴 阴雨雪 p(x)1/2 1/4 1/8 1/8
乙地天气预报
pY(y)7晴/8
雨 1/8
求:两地天气预报各自提供的平均信息量?
H (X ) 1 lo 1 g 1 lo 1 1 g lo 1 1 g lo 1 1 g .7比 5/符 特 2 24 48 88 8
• 离散信源熵H(X)
(平均不确定度/平均信息量/平均自信息量)
– 定义:
信源的平均不确定度H(X)为信源中各个符号 不确定度的数学期望,即:
H (X )p (x i)I(x i) p (x i)lo p (x ig )
i
i
单位为比特/符号或比特/符号序列
11
例如:有两个信源
其概率空间分别为:
H (Y) 1lo1 g 0lo0 g0 比/符 特号
limεlogε=0
• 信源是一确定信源,所以不存在不确定性, 信息熵等于零。
17
(3) 甲、乙地天气预报为两极端情况:
pX(x)1晴 /4 1阴 /4 1雨 /4 1雪 /4
pY(y)1晴 /2,
雨 1/2
H(X)lo1g2比特 /符号 4
H(Y)lo1g1比特 /符号 2
得出:H(Y) >H(X) 信源Y比信源X的平均不确定性要大。
12
III-1.信源熵
• 信息熵:
–从平均意义上来表征信源的总体信息测度 的一个量。
• 自信息:
– 指某一信源发出某一消息所含有的信息量。 – 所发出的消息不同,它们所含有的信息量也
就不同。 – 自信息I (xi)是一个随机变量,不能用它来作
为整个信源的信息测度。
13
熵
有限值
信息量
可为无穷大
确定值 与信源是否输出无关
一般为随机量 接收后才得到信息
信源的平均不确定度 消除不定度得到信息
信源熵与信息量的比较
14
III-1.信源熵
• 信源熵具有以下三种物理含意:
– 信息熵H(X)表示信源输出后,每个离散消 息所提供的平均信息量。
– 信息熵H(X)表示信源输出前,信源的平均 不确定性。
i
– 在给定Y(即各个yj )条件下,X集合的条件熵H(X|Y)
H (Y)7lo7 g1lo1 g0.5比 44/符 特号 8 88 8
• 甲地提供的平均信息量大于乙地
16
(2) 甲、乙地天气预报为两极端情况:
X 晴阴雨雪 p(x)1 0 0 0
Y 晴 雨 p(y)1 0
H (X ) 1 lo 1 0 lg o 0 0 lg o 0 0 lg o 0 0 比 g/符 特 号
第二章—3
信源熵
2.2 单符号离散信源
2.2.1 单符号离散信源的数学模型 2.2.2 自信息和信源熵
• I、信息量
– 1、自信息量;2、联合自信息量;3、条件自信息量
• II、互信息量和条件互信息量
– 1、互信息量;2、互信息的性质;3、条件互信息量
• III、信源熵
– 1、信源熵;2、条件熵;3、联合熵
2.2.3 信源熵的基本性质和定理 2.2.4 平均互信息量 2.2.5 各种熵之间的关系
2
回顾——单符号离散信源的互 信息量和条件互信息量
3
互信息
• 设有两个随机事件X和Y,X取值于信源发出的离 散消息集合,Y取值于信宿收到的离散符号集合
X Pp(xx11)
x2 p(x2)
xn p(xn)