第二章信源熵-习题答案(精品文档)

合集下载

信息编码习题答案或提示

信息编码习题答案或提示

第二章部分习题2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?答:2倍,3倍。

2.2 一副充分洗乱了的牌(含52张牌),试问 (1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同, 能得到多少信息量?解:(1) !52log 2 (2) 任取13张,各点数不同的概率为1352!13C ,信息量:9.4793(比特/符号)2.3 居住某地区的女孩子有%25是大学生,在女大学生中有75%是身高160厘米上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量? 答案:1.415比特/符号。

提示:设事件A 表示女大学生,事件C 表示160CM 以上的女孩,则问题就是求p(A|C),83214341)()|()()()()|(=⨯===C p A C p A p C p AC p C A p2.4 设离散无忆信源()123401233/81/41/41/8X a a a a P X ====⎛⎫⎧⎫=⎨⎬ ⎪⎩⎭⎝⎭,其发出的消息为(202120130213001203210110321010021032011223210),求(1) 此消息的自信息量是多少?(2) 在此消息中平均每个符号携带的信息量是多少?解:(1)87.81比特,(2)1.951比特。

提示:先计算此消息出现的概率,再用自信息量除以此消息包含的符号总数(共45个)。

2.5 从大量统计资料知道,男性中红绿色盲的发病率为7% ,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含有多少信息量?平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?(1) 男性回答是的信息量为2log 0.07 3.8369-=比特,回答否的信息量是0.1047比特,平均每个回答含的信息量(即熵)是0.36596比特。

信息论与编码第二章答案

信息论与编码第二章答案

第二章 信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。

2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。

2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:k k k xi q xi q X H ilog 1log 1)(log )()(=-=-=∑2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。

答:)|;();();(Y Z X I Y X I YZ X I +=2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告)()|(log );(xi q yj xi Q y x I =知的是xi 出现的可能性更小了。

从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。

2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。

答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201======s x p s x p s x p s x p s x p s x p 即:得:114)(113)(114)(210===s p s p s p 0.25(bit/符号)=+-+-+-=)]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 2.8一个马尔可夫信源,已知:试画出它的0)2|2(,1)2|1(,31)1|2(,32)1|1(====x x p x x p x x p x x p 香农线图,并求出信源熵。

信息论与编码第二章答案

信息论与编码第二章答案

2—1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。

画出状态图并求出各符号稳态概率。

解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P (0|00)=0.8,P(0|11)=0.2,P (1|00)=0.2,P(1|11)=0.8,P (0|01)=0.5,p(0|10)=0。

5,p(1|01)=0。

5,p (1|10)=0。

5画出状态图,并计算各符号稳态概率。

解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2—1-17)可得方程组。

1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2—3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量;(2)、“两个1同时出现"事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵; (5)、两个点数中至少有一个是1的自信息量。

信源熵 第二章(1)

信源熵 第二章(1)
a 21
2.3.2 离散有记忆信源的序列熵
• 若信源输出一个L长序列,则信源的序列熵为
H(X)H(X1X2XL) H(X1)H(X2|X1)H(XL|XL1X1)
L
H(Xl |Xl1)H(XL)
l
• 平均每个符号的熵为:
HL(X)L1H(XL)
• 若当信源退化为无记忆时: 若进一步又满足平稳性时
发出符号序列的马尔可夫信源
• 发出单个符号的信源
– 指信源每次只发出一个符号代表一个消息;
• 发出符号序列的信源
– 指信源每次发出一组含二个以上符号的符号 序列代表一个消息。 a
13
2.3.1 离散无记忆信源的序列熵
• 发出单个符号的信源
X 1 2 3 4 5 6 P1/61/61/61/61/61/6
• 信源的序列熵
H (X )H (XL)LH (X)
• 平均每个符号(消息)熵为
HL(X)L1H(X)aH(X) 17
例2-10:
有一个无记忆信源随机变量X∈(0,1),等概率分布, 若以单个符号出现为一事件,则此时的信源熵:
H (X)lo22 g1bi/符 t 号
– 即用 1比特就可表示该事件。 • 如果以两个符号出现(L=2的序列)为一事件,则
第二章—5
信源熵
内容
2.1 信源的描述和分类 2.2 单符号离散信源 2.3 多符号离散平稳信源 2.4 连续信源 2.5 冗余度
a 2
回顾——1.信源熵的基本性 质和定理
a 3
熵函数的性质
1. 非负性
H(X)=H(p1,p2,…,pn)≥0 – 式中等号只有在pi =1时成立。
2. 对称性
H(p1,p2,…,pn) = H(p2,p1,…,pn)

信息论与编码理论习题答案

信息论与编码理论习题答案

第二章 信息量和熵2.2八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率.解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s2。

3 掷一对无偏骰子,告诉你得到的总的点数为:(a ) 7; (b) 12。

问各得到多少信息量.解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log =2。

585 bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log =5。

17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a ) )(a p =!521信息量=)(1loga p =!52log =225.58 bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C =13。

208 bit2.9随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6 =3。

复习课资料与习题

复习课资料与习题

n
n
n
n
n
n
= ∑ H (Xl )
l =1
L
30
2.3 离散序列信源的熵
z z
离散无记忆信源的序列熵 平均每个符号熵(消息熵)
1 H L ( X) = H ( X) L
7
2.2 离散信源熵与互信息
z

单符号离散信源熵 定义:对于给定离散概率空间表示的信 源所定义的随机变量I的数学期望为信源 的信息熵,单位为比特/符号
i
H ( X ) = E [ I ( x )] = − ∑ p ( x i ) log p ( x i )
8
2.2 离散信源熵与互信息
z

离散信源条件熵 定义:对于给定离散概率空间表示的信源所定 义的随机变量I(x/y)在集合X上的数学期望为 给定y条件下信源的条件熵,单位为比特/序列
离散无记忆序列信源 离散有记忆序列信源 马尔可夫信源 离散无记忆信源的序列熵 离散有记忆信源的序列熵
22
2.3 离散序列信源的熵
z

离散无记忆序列信源 布袋摸球实验,若每次取出两个球,由 两个球的颜色组成的消息就是符号序 列。若先取出一个球,记下颜色放回布 袋,再取另一个球。
p ( X 1 , X 2 ,L , X l ,L X L ) = p ( X 1 ) p ( X 2 ) L p ( X L )
1 I ( x i = a i ) = − log p( x i ) = log p( x i )
以2为底,单位为比特(bit) 以e为底,单位为奈特(nat) 1nat=1.433bit 以10为底,单位为笛特(det) 1det=3.322bit
5
2.2 离散信源熵与互信息

第二章 信源熵-习题答案

第二章 信源熵-习题答案

· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0=== 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生) P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm ) P(Y) 0.5 0.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(11111111=⨯-=-=-=2.3 一副充分洗乱了的牌(含52张牌),试问(1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x p bit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:· 2 ·bit C x p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p此消息的信息量是:bit p I 811.87log =-= (2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?解: 男士:sym bolbit x p x p X H bitx p x I x p bit x p x I x p i i i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X ,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。

信源熵例题

信源熵例题

物理与信息工程学院 郭里婷
10
2019/2/7
例2:随机变量X表示人的性别,X=0表示男性,X=1表示女性;随即变量Y表 示是否抽烟,Y=0表示抽烟,Y=1表示不抽烟。(X,Y)的联合分布分别如下3 种情况时,求抽到的是男性给抽烟这个事件提供多大的信息量。
物理与信息工程学院 郭里婷
11
2019/2/7
物理与信息工程学院 郭里婷
12
2019/2/7
例3:设信源发出8种消息(符号),各消息等概发送,各符号分别用3位二进 码元表示,并输出消息(事件),设8个消息按自然二进制进行编码,见 p23表2-3。通过对输出码元序列的观察来推测信源的输出。假设信源发出 的消息x4,用二进码011表示, 求依次接收0,01,011后,得到的关于x4 的信息量。
X x1 (红), x2 (白) P 0.8, 0.2
物理与信息工程学院 郭里婷
2
2019/2/7

单符号无记忆连续信源 例2:一节5V的干电池,测电压。电压可以看成单符号无记 忆连续信源。消息数无限多.
物理与信息工程学院 郭里婷
3
2019/2/7
信息论与编码
第二章 信源熵 例题
福州大学物理与信息工程学院 郭里婷
物理与信息工程学院 郭里婷
1
2019/2/7
第二章 第一节例题

单符号无记忆离散信源 例1:一个布袋中有100个球,其中80个红色,20个白色。随 机摸取一个球,看颜色。球的颜色可以看成单符号无记忆离 散信源。消息数量为2,红白消息的概率分别为0.8和0.2。
X x1 x1 , x1 x2 , x2 x1 , x2 x2 P 0.64, 0.16, 0.16, 0.04
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量H(X 1) = log 2n = log 24 = 2 bit/symbol 八进制脉冲的平均信息量H(X 2) = log 2n = log 28 = 3 bit/symbol 二进制脉冲的平均信息量H(X 0) = log 2n = log 22 = 1 bit/symbol 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生) P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm ) P(Y) 0.5 0.5已知:在女大学生中有75%是身高160厘米以上的 即:p(y 1/ x 1) = 0.75求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(2111121111=⎪⎭⎫⎝⎛⨯-=⎥⎦⎤⎢⎣⎡-=-=2.3 一副充分洗乱了的牌(含52张牌),试问(1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:bit x p x I i i 581.225!52log )(log )(2==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:bit C x p x I C x p i i i 208.134log )(log )(4)(13521322135213=-=-==· 2 ·2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p此消息的信息量是:bit p I 811.87log 2=-=(2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?解: 男士:symbolbit x p x p X H bitx p x I x p bit x p x I x p i i i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(22222222=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2222=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X ,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。

解:585.26log )(/ 657.2)17.0log 17.016.0log 16.017.0log 17.018.0log 18.019.0log 19.02.0log 2.0()(log )()(222222262=>=+++++-=-=∑X H symbol bit x p x p X H ii i 不满足极值性的原因是107.1)(6>=∑iix p 。

· 3 ·2.7 证明:H(X 3/X 1X 2) ≤ H(X 3/X 1),并说明当X 1, X 2, X 3是马氏链时等式成立。

证明:log 1)/()(log )()/()(log 1)/()/()()/()/(log)()/(log )()/(log )()/(log )()/(log )()/()/(2123132121233211231321123221313321123213133211231332112321332113133112321332113213=⎪⎪⎭⎫⎝⎛-⎥⎦⎤⎢⎣⎡=⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-≤=+-=+-=-∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑e x x p x x p ex x x p x x p x x p e x x x p x x p x x x p x x x p x x p x x x p x x p x x x p x x x p x x x p x x p x x p x x x p x x x p X X H X X X H i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i氏链是马等式成立的条件是时等式成立当_,,)/()/()/()()/()/()()()/()/()()/()/(01)/()/()/()/(321132131232113121212131321213132131313213X X X x x x p x x p x x p x x x p x x p x x p x p x x p x x x p x x p x x p x x x p x x p x x x p x x p X X H X X X H i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ∴=⇒=⇒=⇒=⇒=-≤∴2.8证明:H(X 1X 2 。

X n ) ≤ H(X 1) + H(X 2) + … + H(X n )。

证明:)(...)()()()...().../()(0)...;(...)/()(0);()/()(0);().../(...)/()/()()...(3212112112121332131221212121312121N N N N N N N N N N X H X H X H X H X X X H X X X X H X H X X X X I X X X H X H X X X I X X H X H X X I X X X X H X X X H X X H X H X X X H ++++≤∴≥⇒≥≥⇒≥≥⇒≥++++=---2.9 设有一个信源,它产生0,1序列的信息。

它在任意时间而且不论以前发生过什么符号,均按P(0) = 0.4,P(1) = 0.6的概率发出符号。

(1) 试问这个信源是否是平稳的? (2) 试计算H(X 2), H(X 3/X 1X 2)及H ∞;(3) 试计算H(X 4)并写出X 4信源中可能有的所有符号。

解: (1)这个信源是平稳无记忆信源。

因为有这些词语:“它在任意时间....而且不论以前发生过什么符号...........……”· 4 ·(2)symbolbit X H H symbol bit x p x p X H X X X H symbolbit X H X H ii i / 971.0)(/ 971.0)6.0log 6.04.0log 4.0()(log )()()/(/ 942.1)6.0log 6.04.0log 4.0(2)(2)(2223213222===+-=-===+⨯-==∞∑(3)1011111111101101110010101001100001110110010101000011001000010000的所有符号:/ 884.3)6.0log 6.04.0log 4.0(4)(4)(4224X symbol bit X H X H =+⨯-==2.10 一阶马尔可夫信源的状态图如下图所示。

信源X 的符号集为{0, 1, 2}。

(1) 求平稳后信源的概率分布; (2) 求信源的熵H ∞。

PP解: (1)⎪⎩⎪⎨⎧===⎩⎨⎧=++==⎪⎪⎩⎪⎪⎨⎧⋅+⋅=⋅+⋅=⋅+⋅=⎪⎩⎪⎨⎧+=+=+=3/1)(3/1)(3/1)(1)()()()()()()()()()()()()()()()/()()/()()()/()()/()()()/()()/()()(321321321133322211131333332322222121111e p e p e p e p e p e p e p e p e p e p p e p p e p e p p e p p e p e p p e p p e p e e p e p e e p e p e p e e p e p e e p e p e p e e p e p e e p e p e p· 5 ·⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡⎪⎪⎩⎪⎪⎨⎧=+=⋅+⋅=+==+=⋅+⋅=+==+=⋅+⋅=+=3/123/113/10)(3/13/)()()()/()()/()()(3/13/)()()()/()()/()()(3/13/)()()()/()()/()()(131313333323232222212121111X P X p p e p p e p p e x p e p e x p e p x p p p e p p e p p e x p e p e x p e p x p p p e p p e p p e x p e p e x p e p x p (2)()symbolbit p p p p p p p p p p p p p p p p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e e p e p H iji j i j i / log log log 31log 31log 31log 31log 31log 31)/(log )/(31)/(log )/(31)/(log )/(31)/(log )/(31)/(log )/(31)/(log )/(31)/(log )/(31)/(log )/(31)/(log )/(31)/(log )/()(2222222233233322323123123223222222122113213122121121133⋅+⋅-=⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅+⋅⋅-=⎥⎦⎤++++++⎢⎣⎡++-=-=∑∑∞2.11黑白气象传真图的消息只有黑色和白色两种,即信源X ={黑,白}。

相关文档
最新文档