自控 交流伺服控制系统

合集下载

伺服控制系统(设计)

伺服控制系统(设计)

第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。

在伺服系统中,输出量能够自动、快速、准确地尾随输入量的变化,因此又称之为随动系统或者自动跟踪系统。

机械参数主要包括位移、角度、力、转矩、速度和加速度。

近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及机电创造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步机电、感应电机为伺服机电的新一代交流伺服系统。

目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路创造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性创造系统以及自动化生产线等领域中的应用也迅速发展。

1.1 伺服系统的基本概念1.1.1 伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行住手。

伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵便方便的控制。

1.1.2 伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。

它由检测部份、误差放大部份、部份及被控对象组成。

1.1.3 伺服系统性能的基本要求1 )精度高。

伺服系统的精度是指输出量能复现出输入量的精确程度。

2 )稳定性好。

稳定是指系统在给定输入或者外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。

3 )快速响应。

响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。

4)调速范围宽。

调速范围是指生产机械要求机电能提供的最高转速和最低转速之比。

5 )低速大转矩。

在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。

伺服控制系统课程论文

伺服控制系统课程论文

伺服控制系统课程作业现代伺服系统综述指导教师:学生:学号:专业:班级:完成日期:摘要在自动控制系统中,把输出量能够以一定准确度跟随输入量的变化而变化的系统称为伺服系统。

伺服系统也叫位置随动系统,以精确运动控制和力能输出为目的,综合运用机电能量变换与驱动控制技术、检测技术、自动控制技术、计算机控制技术等,实现精确驱动与系统控制。

伺服系统主要包括电机和驱动器两部分,广泛用于航空、航天、国防及工业自动化等自动控制领域。

伺服系统按其驱动元件划分有步进式伺服系统、直流电动机伺服系统和交流电动机伺服系统。

随着微处理器技术、大功率高性能半导体功率器件技术、电机永磁材料制造工艺的发展及电力电子、控制理论的应用,交流电动机伺服系统近年来获得了迅速发展,广泛用于工业生产的各个领域,如数控机床的进给驱动和工业机器人的伺服驱动等。

因此,在相当大的范围内,交流电动机伺服系统取代了步进电动机与直流电动机伺服系统,时至目前,具备了宽调速范围、高稳速精度、快速动态响应及四象限运行等良好的技术性能,其动、静态特性已完全可与直流伺服系统相媲美,已成为伺服系统的主流。

关键词:伺服系统自动控制驱动元件1 伺服系统的发展阶段伺服系统的发展与它的驱动元件——伺服电动机的不同发展阶段相联系,并结合老师在第一章所讲的伺服系统分类的知识,伺服电动机至今经历了三个主要的发展阶段。

(1)第一个发展阶段(20世纪60年代以前):步进电动机开环伺服系统;伺服系统的驱动电机为步进电动机或功率步进电动机,位置控制为开环系统。

步进电机是一种将电脉冲转化为角位移的执行机构,两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°;步进电机存在一些缺点:在低速时易出现低频振动现象;一般不具有过载能力;步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转现象,停止时转速过高易出现过冲现象。

交流伺服系统自调整技术研究

交流伺服系统自调整技术研究

自调整技术的发展,需要不断加强学术研究和工业应用之间的合作,积极探索 新的关键技术和应用领域,以实现更加高效、精确的控制效果。
参考内容
引言
伺服系统是一种用于精确控制执行机构的位置、速度和加速度的控制系统。在 许多工业应用领域,如机械加工、机器人控制和电力系统等领域,伺服系统的 性能直接影响到整个系统的稳定性和精度。为了提高伺服系统的性能,通常需 要调整其控制参数
4、无线通信和远程控制:随着无线通信技术的发展,未来的交流伺服系统自 调整技术将更加注重无线通信和远程控制的研究,以实现更加灵活、高效的控 制系统架构。
结论
交流伺服系统自调整技术是实现高精度、高效率控制的重要手段。本次演示对 交流伺服系统自调整技术的现状、关键技术及未来发展进行了详细探讨。通过 分析可知,该技术在未来将拥有更加广泛的应用前景和发展空间。为了更好地 推动交流伺服系统
交流伺服系统自调整技术研究
01 引言
03 关键技术
目录
02
交流伺服系统自调整 技术概述
04 研究现状
05 未来展望
07 参考内容
目录
06 结论
引言
Hale Waihona Puke 随着工业技术的飞速发展,交流伺服系统在各种领域中的应用越来越广泛。为 了满足不断提高的生产效率和精度要求,交流伺服系统的自调整技术应运而生。 本次演示将详细介绍交流伺服系统自调整技术的现状、关键技术及未来发展展 望。
关键技术
1、神经网络:神经网络是一种模仿生物神经网络工作机制的算法,可以通过 学习自动调整参数。在交流伺服系统中,神经网络可用于非线性系统的建模和 控制,提高系统的动态性能和鲁棒性。然而,神经网络的学习和训练过程较为 复杂,对计算资源的要求较高。

实际交流伺服运动控制系统数学模型及仿真分析

实际交流伺服运动控制系统数学模型及仿真分析

实际交流伺服运动控制系统数学模型及仿真分析1.引言实际交流伺服运动控制系统广泛应用于工业自动化领域,具有快速响应、高控制精度等优点。

为了设计和优化控制系统,需要建立准确的数学模型,通过仿真分析来评估系统性能。

本文将介绍实际交流伺服运动控制系统的数学模型建立方法,并进行仿真分析。

2.实际交流伺服运动控制系统数学模型建立2.1电机模型电机模型是实际交流伺服运动控制系统的核心部分。

常用的电机模型有电压方程模型和电流方程模型。

2.1.1电压方程模型根据电机的电压方程可以得到如下控制方程:\[u(t) = Ri(t) + L\frac{{di(t)}}{{dt}} + e(t)\]其中,\(u(t)\)为电机输入电压,\(R\)为电机电阻,\(L\)为电机电感,\(i(t)\)为电机电流,\(e(t)\)为电动势。

2.1.2电流方程模型根据电机的电流方程可以得到如下控制方程:\[L\frac{{di(t)}}{{dt}} = u(t) - Ri(t) - e(t)\]2.2传动系统模型传动系统模型描述了电机输出转矩和负载转矩之间的关系。

常见的传动系统模型有惯性模型和摩擦模型。

2.2.1惯性模型惯性模型用转动惯量和角加速度来描述传动系统的动态特性。

通常可以使用如下方程来建立惯性模型:\[J\frac{{d\omega(t)}}{{dt}} = T_{in}(t) - T_{out}(t)\]其中,\(J\)为传动系统的转动惯量,\(\omega(t)\)为转速,\(T_{in}(t)\)为电机输出转矩,\(T_{out}(t)\)为负载转矩。

2.2.2摩擦模型摩擦模型描述了传动系统中的摩擦现象,常常包括静摩擦和动摩擦。

常用的摩擦模型有线性摩擦模型和非线性摩擦模型。

2.3控制器模型控制器模型是实际交流伺服运动控制系统的闭环控制模型。

常用的控制器模型有比例积分微分(PID)控制器和模糊控制器。

3.仿真分析建立完实际交流伺服运动控制系统的数学模型后,可以使用仿真软件(如MATLAB/Simulink)进行仿真分析。

伺服控制系统的4种控制方式

伺服控制系统的4种控制方式

伺服控制系统的4种控制方式导语:伺服控制系统的3种控制方式,速度控制和转矩控制,位置控制。

伺服控制系统的3种控制方式,速度控制和转矩控制,位置控制基础知识一、伺服系统组成(自上而下)控制器:plc,变频器,运动控制卡等其他控制设备,也称为上位机;伺服驱动器:沟通上位机和伺服电机,作用类似于变频器作用于普通交流马达。

伺服电机:执行设备,接受来自驱动器的控制信号;机械设备:将伺服电机的圆周运动(或直线电机的直线运动)转换成所需要的运动形式;各类传感器和继电器:检测工业控制环境下的各种信号送给上位机或驱动器做为某些动作的判断标准。

二、伺服控制方式三种控制方式:速度控制方式,转矩控制方式,位置控制方式。

速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。

▶如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。

▶如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用速度或位置模式比较好。

▶如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。

▶如果本身要求不是很高,或者基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。

就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。

对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。

如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。

如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率;如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么做。

一般说驱动器控制的好坏,有个比较直观的比较方式,叫响应带宽。

当转矩控制或速度控制时,通过脉冲发生器给它一个方波信号,使电机不断的正转、反转,不断的调高频率,示波器上显示的是个扫频信号,当包络线的顶点到达最高值的70.7%时,表示已经失步,此时频率的高低,就能说明控制的好坏了,一般电流环能做到1000HZ 以上,而速度环只能做到几十赫兹。

交流伺服控制器工作原理

交流伺服控制器工作原理

交流伺服控制器工作原理交流伺服控制器是现代工业自动化中常用的一种关键设备,它在机械装备和自动化生产线中起着控制、调节和运动控制等重要作用。

其工作原理涉及到电子技术、控制理论、传感器技术等多个方面,下面将从几个方面介绍交流伺服控制器的工作原理。

一、控制原理交流伺服控制器的工作原理基于控制系统理论,其主要目的是根据输入的控制信号,通过反馈回路控制输出的位置、速度或力矩等运动参数。

控制信号一般由PLC(可编程逻辑控制器)、DSP(数字信号处理器)等设备提供,而反馈回路则通过传感器获取被控对象的运动状态,并将反馈信号送回控制器进行比较,从而形成闭环控制。

这种控制原理可以保证被控对象在运动过程中能够快速、精准地达到设定的位置或角度。

二、电机驱动交流伺服控制器通常搭配交流伺服电机一起使用,电机驱动是其工作原理的关键环节之一。

交流伺服电机通常由转子、定子和编码器等部件组成,通过与控制器配套的驱动器将控制信号转换为电流信号,从而驱动电机旋转。

控制器根据编码器的反馈信号来调整输出电流的大小和方向,实现精确、平滑的运动控制。

一些高性能的伺服控制器还利用磁场定位原理来实现更为精密的位置控制,提高系统的动态响应性能。

三、信号处理交流伺服控制器中的信号处理模块起着至关重要的作用,它通过对输入信号进行采样、滤波、放大和数字化处理等操作,将输出信号传递给电机驱动器,并处理来自传感器的反馈信号,以确保系统的稳定性和精度。

信号处理模块还能实现通信接口功能,通过现代通信技术与上位机或其它控制设备进行数据交换和远程监控。

四、软件控制随着科技的不断发展,交流伺服控制器中的软件控制技术日益成熟。

控制器内置了各种运动控制算法和实时操作系统,能够实现复杂的运动路径规划、动态参数调整和运动轨迹的优化控制。

在软件控制方面的不断创新,为交流伺服控制器带来了更高的控制精度和响应速度,使其在精密加工、医疗器械、机器人等领域得到了广泛的应用。

交流伺服控制器的工作原理涉及到电子技术、控制理论和传感器技术等多个领域。

欧德思自控_EP系列伺服手册简易版本-20200617(精简)

欧德思自控_EP系列伺服手册简易版本-20200617(精简)

II
版本变更记录
变更日期 2019.12.01 2020.02.21
2020.0616
变更后版本 V100B00D00 V100B00D01 V100B00D02
V100B00D03
变更内容概要
首次发行
Er.004、Er.012、Er-002 报警,更改报警描述; Pn300、Pn323、报警列表更新; 增加#15 监控参数; Pn609,Pn000~Pn006 功能变更; 1、删除参数 Pn-103、104.3/4、105.2、106、516-518、613、642-644、 675-683、691-693、903-904; 2、更改参数 Pn-314、334、335、411、510、620-622、652-657、688 的描述,更改 Pn-607 分辨率为 0.1、范围为 0~1000,新增参数 Pn-645 的描述(反电动势补偿增益 0~1024 分辨率 0.1%默认 0); 3、删除占两个参数范围的后一个参数名 4、修改 RPM、R、S 等为小写 5、根据分辨率修改数值的表示方式 6、对缺少范围描述的参数补充范围描述 7、备注参数 Pn-700:全闭环功能请联系厂家确认 8、对 F 组参数进行重新核对和编辑 9、修改 EP 伺服驱动器相关说明,更新伺服驱动器相关图片 10、修改电机相关说明,更新电机相关图片
ASM - 13 H 12 30 – 1 3 C 00 B
产品系列号
机座外框 13 130 mm 18 180 mm
额定电压
H
高压
M
中压
L
低压
堵转转矩
08
8N m
12
8N m
额定转速
30
3000 rpm
40

伺服控制系统设计

伺服控制系统设计

Wop (s)
s(Ts s
K 1)(T2 s
1)
3.2 单闭环位置伺服系统
伺服系统旳闭环传递函数
W cl
(s)
TsT2 s 3
(Ts
K T2 )s2
s
K
闭环传递函数旳特性方程式
TsT2s3 (Ts T2 )s2 s K 0
3.2 单闭环位置伺服系统
用Routh稳定判据,为保证系统稳定,
须使
K
Ts T2 TsT2
单位置环伺服系统开环传递函数对数幅频特性
3.3 双闭环伺服系统
在电流闭环控制旳基础上,设计位置 调整器,构成位置伺服系统,位置调整 器旳输出限幅是电流旳最大值。 以直流伺服系统为例,对于交流伺服 系统也合用,只须对伺服电动机和驱动 装置应作对应旳改动。
3.3 双闭环伺服系统
Tm
R J CT Ce
Tl
La R
3.2 单闭环位置伺服系统
驱动器
电机
直流伺服系统控制对象构造图
采用PD调整器,其传递函数为
减速器
WAPR (s) WPD (s) K p (1 d s)
3.2 单闭环位置伺服系统
伺服系统开环传递函数
Wop (s)
s(Ts s
K ( d s 1)
1)(TmTl s2 Tms
3.5 复合控制旳伺服系统
前馈控制器旳传递函数选为
G(s) 1 W2 (s)
得到
m (s) 1
* m
(
s)
3.5 复合控制旳伺服系统
理想旳复合控制随动系统旳输出量可以完 全复现给定输入量,其稳态和动态旳给定误 差都为零。 系统对给定输入实现了“完全不变性” 。 需要引入输入信号旳各阶导数作为前馈控 制信号,但同步会引入高频干扰信号,严重 时将破坏系统旳稳定性,这时不得不再加上 滤波环节。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流伺服控制速度反馈系统1 交流伺服控制速度反馈系统控制原理伺服系统(servo system)亦称随动系统,属于自动控制系统中的一种,它用来控制被控对象的转角(或位移),使其能自动地、连续地、精确地复规输入指令的变化规律。

它通常是具有负反馈的闭环控制系统,全数字伺服系统一般采用位置控制、速度控制和力矩控制的三环结构。

系统硬件大致由以下几部分组成:电源单元;功率逆变和保护单元;检测器单元;数字控制器单元;接口单元。

相对应伺服系统由外到内的"位置"、"速度"、"转矩"三个闭环,伺服系统一般分为三种控制方式。

在使用速度控制方式时,伺服完成速度和扭矩(电流)的控制。

伺服电机是一个典型闭环反馈系统,减速齿轮组由电机驱动,其终端(输出端)带动一个线性的比例电位器作位置检测,该电位器把转角坐标转换为一比例电压反馈给控制线路板,控制线路板将其与输入的控制脉冲信号比较,产生纠正脉冲,并驱动电机正向或反向地转动,使齿轮组的输出位置与期望值相符。

1.1系统控制框图如图1所示。

1.2交流伺服控制速度反馈系统结构框图图2 系统结构框图2.传递函数确定与分析2.1 传递函数确定PMSM 电机相关方程组如下所示。

其中,M 为PWM 调制深度;J 为系统机械惯量(kg •m2);fm 为黏性摩擦系数(N •M/(rad/s);R 为电机绕组电阻(Ω);L 为电机绕组电感(H);U 为电机绕组电压(V);i 为电机绕组电流(A);θ为电机角位移(rad);K1、K 为系数;TC 为电机负载阻力矩(N •M)。

在恒转矩负载(即TC =常数)时,由以上方程组 可以得到如下关系:取拉普拉斯变换得:系统简化结构图如图1所示M wR C图1K 1K 1m JS f + DU L S R +即: ()G s =()()1Dm K K U JS f LS R ⋅⋅+⋅+2.2二阶系统频域指标与时域指标的关系谐振峰值谐振频率带宽频率截止频率相角裕度超调量 调节时间3.传递函数性能指标:研究的系统中,相关参数如下:J: 30.18710-⨯2kg m⋅; m f :410-N m ⋅/(rad/s): R :25Ω;DU ; 300; :0.347L H 1K :0.7 ; K : 44.010-⨯ 。

将参数代入试中:()20.09450.0003250.00470.0025H s S S =++根据式子可得n w =2.6(rad/s ) ;d t =10.7nw θ+=0.23;)707.0(1212≤-=ζζζrM )707.0(212≤-=ζζωωn r 42244221ζζζωω+-+-=n b 24241ζζωω--=n c 24241ζζζγ--=arctg %100%21/⨯=--ζπζσeγωζωtg t t s c ns 75.3==r t =3.14dw β-=0.45;pt =0.664.系统仿真分析系统仿真框图如下图2所示。

其中,限幅环节主要是防止系统电流变化过大,造成系统内器件损坏;传输延时环节主要是模拟了速度反馈环的响应滞后时间。

如果传输环节滞后时间不同,即速度环响应速度设定的不同,从仿真结果可以明显看出系统特性的区别。

仿真时速度给定值为3 000 r/min 的阶跃信号。

从图3~图6中可以看出,速度环的时间参数选择对系统特性有非常重要的影响,如果选取参数不恰当,可能会造成系统特性变坏,甚至直接造成系统的崩溃。

而且,系统机械惯量越小,速度环时间滞后效应带来的影响就越明显。

5.交流伺服控制速度反馈特点速度的数字测量通常有两种形式:一种是测单位位移的时间;另一种是测单位时间的位移。

前者适合于低速段测量;后者测到的位移值与速度成正比例关系,计算简便,便于CPU进行速度计算,而且不涉及乘除运算,但缺点是当调速精度要求高或者性。

因此适合于高速段测量。

如果系统调速范围要求较宽速度调节范围大的情况下,单位时间值(速度环响应时间)就会增加,降低了系统对速度的敏感,宜切换使用两种方法,扬长避短,达到满意的效果。

文中主要讨论由于速度环控制时间参数选择的不同而对系统特性造成的影响。

6.系统校正通常,控制系统由控制器和受控对象组成,如图6-1所示。

为了满足给定的各项性能指标,可以调整控制器的参数(如放大器增益等)。

如通过调整控制器的参数仍无法满足系统的性能指标要求,就必须在系统中加入一些机构和装置,使整个系统的特性发生变化,从而满足给定的各项性能指标。

所谓校正,就是在系统中加入一些机构和装置,使整个系统的特性发生变化,从而满足给定的各项性能指标-图6-16.1校正的作用性能指标通常由使用单位或被控对象的设计制造单位提出,不同的控制系统对性能指标的要求应有不同的侧重。

例如,调速系统对平稳性和稳态精度要求较高,而随动系统则侧重于快速性要求。

性能指标的提出,应符合实际系统的需要与可能。

一般地说,性能指标不应当比完成给定任务所需要的指标更高。

在控制系统的设计中,采用的设计方法一般依据性能指标的形式而定。

如果性能指标以单位阶跃响应的峰值时间、调节时间、超调量、阻尼比、稳态误差等时域特征量给出时,一般采用根轨迹法校正。

如果性能指标以系统的相角裕度、幅值裕度、谐振峰值、闭环带宽、静态误差系数等频域特征量给出时,一般采用频率法校正。

目前,工程技术界多习惯采用频率法,故通常通过近似公式进行两种指标的互换。

在系统设计的初步阶段,总是先选择一些元部件(如执行元件、测量元件、放大元件)构成系统的基本组成部分,它往往不能满足系统的各项性能指标要求。

为此,须引入校正置,使最后的系统满足要求。

6.2校正方式按照校正装置在系统中的连接方式,控制系统校正方式可分为串联校正、反馈校正、前馈校正和复合校正四种。

如果校正装置串联于系统的前向通道之中,称为串联校正。

若校正装置位于系统的局部反馈通道之中,则称为反馈校正。

前馈校正又称顺馈校正,是在系统主反馈回路之外采用的校正方式。

前馈校正装置位于系统给定值之后,主反馈作用点之前的前向通道上,这种校正方式的作用相当于对给定值进行整形或滤波后,再送入反馈系统。

另一种前馈校正装置接在系统可测扰动作用点与误差测量点之间,对扰动信号进行直接或间接测量,并经变换后接入系统,形成一条附加的对扰动影响进行补偿的通道。

前馈校正可以单独作用于开环控制系统,也可以作为反馈控制系统的附加校正而组成复合控制系统。

复合校正方式是在反馈控制回路中,加入前馈校正通路,组成一个有机整体,其中(a)为按扰动补偿的复合控制形式,(b)为按输入补偿的复合控制形式。

在控制系统的设计中,常用的校正方式为串联校正和反馈校正两种。

而串联校正又比反馈校正设计简单,也比较容易对信号进行各种必要形式的变换。

控制器 42244221ζζζωω+-+-=n b 受控对象6.3系统的校正当未校正系统不稳定,要求校正后系统响应速度快,相角裕度和稳态精度较高时,以采用串联滞后-超前校正装置为宜。

其基本原理是利用超前部分增大相角裕度,通过分析可利用串联滞后部分来改善此系统的稳态精度。

如图5-3所示.校正后系统满足如下条件:1:在θr =180°t 时,无速度误差,位置迟后不超过1°; 2:γ=45°±3°,20lgh ≥10db 3:t s ≤3秒。

R图6-3解:根据稳态误差要求,K=1K K ⋅=180。

系统的开环传递函数为:180()11(1)(1)62G s s s =++作出未校正系统的bode 图如图6-4所示,得:db h c 30lg 20556.12-=-==γω20 0 40 60 db -200.01 0.1 1 100 3.5 6 2 10 0.78 图6-4 1800.015620lg α ωb ωc ωa bcωωlg 20)('cL ω1116K S + 1112S + K采用串联迟后-超前校正,先设计超前部分,选择超前部分的交接频率ωb =2。

校正后系统的截止频率由γ、t s 来确定,现取为3.5。

得:α=50。

于是校正装置的传递函数设为:现根据相角裕度的要求确定迟后部分的参数。

γ=180°+/G(j ωc ) G c (j ωc )得ωa =0.78,校正装置的传递函数为: 最后经验算,6.4串联滞后-超前校正的设计步骤如下:1:根据稳态性能要求确定开环增益K ;2:绘制未校正系统的对数幅频特性曲线,求出其开环截止频率、相角裕度、幅值裕度;3:在未校正系统对数幅频特性曲线上,选择频率从-20db/dec 变为-40db/dec 的交接频率作为校正网络超前部分的交接频率ωb ;4:根据系统的性能指标,选择系统新的开环截止频率ωc ;5:计算校正网络的衰减因子1/α,要保证系统开环截止频率为ωc ,应有:6:根据系统相角裕度的要求,确定校正网络迟后部分的交接频率ωa ; 7:验算已校正系统的各项性能指标。

db L bc c 34lg 20)('lg 20=+=ωωωα)1()1()1()1()(bb a ac j j j j s G αωωωωωωαωω++++=)01.01()5.01()641()28.11()(s s s s G c ++++=dbh c 27lg 205.455.3===γωbcc L ωωωαlg 20)('lg 20+=结论通过以上对系统的理解,对传递函数性能指标的分析及仿真结果可以看出,在全数字交流伺服系统的设计过程中,当负载具有恒转矩特性时,不能一味地追求宽速度调节特性而忽略了系统整体特性,应该两者兼顾;速度的调节范围与速度环时间参数的选择是互相制约的,如果希望增加系统速度调节的范围而保持速度环的快速响应特性,需要提高CPU 的运算能力,或者采用不同的速度计算方法在不同范围的速度区间内进行有条件的选择使用,及时调整速度反馈环的参数,适当选择系统的校正方法,避免速度环过大的时间滞后量对系统造成不利影响,从而保证系统的速度响应和整体的稳定性。

设计体会这是一个充分体现理论与实际相联系的设计性课程,在老师的指导下,经过我们的努力,终于预期完成。

在设计中所涉及的内容,如电路原理图等比较复杂,但在对自动控制原理的知识学习基上,经过收集资料,都基本得到了解决,进一步了解了自动控制原理知识,对反馈系统传递函数有了深刻体会。

虽然在设计中存在不少问题,但在指导教师的帮助下,我们经过多次分析尝试,完成设计。

同时,我也学到了一些与自控原理相关方面知识,促使我今后更加学习这方面内容的动机,以满足需要。

通过交流伺服控制速度反馈系统设计分析与制作,充分培养了想象能力和创新能力,增强动手操作能力,为已后的学习和设计打下良好的基础。

相关文档
最新文档