高层混凝土连体结构设计分析
关于高层建筑物间连廊结构设计实例分析

本工程两单体间连廊结构采用一端铰接一端滑动的弱 连接的方式,连廊结构型式为钢结构,主要构件为变截面 H
型钢梁,楼板采用钢 筋 桁 架 楼 承 板。 承 受 的 荷 载 为 永 久 荷 载,可变荷载,包括楼面活荷载、风荷载、水平及竖向地震作 用,温度作用等。
ordertoimprovethefunction,itisnecessarytoopenholesintheroofofthefirstfloorhallandthecorrespondingsecondfloorfloor.
ThePKPM softwareisusedtomodel,andtheSATWEanalysisshowsthat:thestabilityofthestructuremeetsthedesignrequire
ments,theaxialcompressionratioofthecolumnexceedsthelimit,andseismicreinforcementisneeded,structuralreinforcement
isrequiredattheopeningfloor.
Keywords:RCframework,seismicperformance,functionaltransformation,reinforcementmeasures
·46·
第 47卷 第 2021年
12期月
山 西 建 筑
SHANXI ARCHITECTURE
JVaonl.. 472N02o1.2
文章编号:10096825(2021)02004603
高层建筑混凝土连体结构设计的分析

过伸缩缝相连 ;A、B塔 楼为 1 8层 ,两 栋 塔楼 顶 部两 层 ( 三层 楼
板 )相连 ,总高度 6 . m,A、B塔 楼 与两 层裙 房间 通过钢 结构 连 44 廊相连 ,连廊与塔楼间设置伸缩缝 。由于建筑 功能 的要求 ,本工 程 A 、B塔楼采用框架 一 力墙连 体结 构 ,底 部局部 大空 间转 换剪 力 剪 墙结构 ,转换 层在第 3层顶 面。 由于 同时采用 了两种 复杂结构 ,且 结构体 形较复杂 , 本工程按超限高层 结构进行 了送 审。该地 区地 故
8~2
2 结构整体设计及计算 结果
2 1 结构计 算单元的确定 . 由于本工程 主体 分为 A 、B 、c三栋 高 层塔楼及一栋两层 的裙楼 ,所有塔 楼之间 由地下室 顶板相连 ,考虑 地下室墙体较多 ,地下 室顶 板 ( 5 30 m) 厚度 较 厚 ,整体 刚 2 0~ 0 r a 度较大 ,故将上部结构 的计算嵌 固点 设在 ± .0 0 0 0处 ,计算 单元 分 成三个部分 ,即 C栋和两层 的裙楼 各为一个计算单元 ,A楼 和 B楼
措施 :
( )框支 柱 、框支梁 、剪力墙底 部加强部 位的抗震 等级提 高一 1
4 5 灯笼广场具有 中华 民俗特 色 的灯 笼 ,烘托 出喜 庆气 氛 ,是 市 .
民欢庆节 日的首选场所。 4 6 赣文 化民俗景观区 ,江西 各大名胜古 迹 的微缩 景观尽收眼底 , .
大量的安放在道路交 汇处及 人 口。
7 户 外 家具 概 念
根据户外家具 、公用设施 、 具系统 的实用性 与舒适性 , 达 灯 为 到风格 的统一性 ,本设计是特 别针 对红谷滩新 区临 江岸线景观作 出 的系列 性设计。突出设 汁的设 施包括座 椅 、废 品箱 、庭院灯 、 坪 草
高层建筑连体结构设计论文

高层建筑连体结构设计论文摘要:高层建筑连体结构设计时非常复杂的结构体系,在进行结构设计时要科学合理的设计连体结构,确保高层建筑连体结构在面对地震灾害时具有可靠的安全,保障人民生命财产安全。
一.引言高层建筑连体结构是指除开裙楼外,高层建筑在两个或两个以上的塔楼之间存在带有连接体的建筑结构。
在高层建筑结构中,连体结构部分是较为薄弱的,因此对高层建筑连体结构设计增加了难度。
由于高层建筑在遭受地震灾害时,容易对地震区的连体高层造成严重破坏,因此需要加强高层建筑连体结构设计,最大限度提升建筑的安全性。
二.工程概况某建筑工程建筑面积为52000㎡,项目占地面积约25000㎡,建筑抗震设防烈度为7度。
A楼和B楼由同一主楼组成,主楼的高度为16层,主楼10层以下为相互独立的建筑结构,在11层和15层之间设置一连体结构,连通A楼和B楼。
在连体部分中,将11层作为可用建筑空间,其余楼层均为架构部分。
在A楼和B楼之间设置连通的地下室。
三.高层建筑的连体结构设计1. 高层建筑连体结构设计基本原则(1)计算数据分析按照JGJ3-2002《高层建筑混凝土结构技术规程》的规定,对高层建筑的复杂体型进行分析,需要符合下列基本要求:1)至少需要采用两个具有不同力学模型的三维空间软件对整体内力位移进行数据计算;由于高层建筑连体结构的体型具有特殊性,连体部位的承受力非常复杂,因此需要采用有限元模型对结构整体进行建模分析,并采用弹性盖楼对连体部分进行分析计算。
2)在计算结构抗震系数时,需要考虑平扭耦联计算结构的扭转效应,设置振型数高于15,计算振型数要使振型参与质量不得小于总质量的90%。
3)需要采用弹性时,要采用程分析法补充进行计算。
4)需要采用弹塑性动力或静力分析方法对薄弱层弹塑性变形进行验算。
2. 结构选型高层建筑的连体结构由于各独立部分存在相同或相近的体型、刚度或平面,抗震设计为7度或8度时,刚度和层数差别较大的建筑,不适合简单采用强连接方式。
高层建筑连体结构抗震分析与设计

、
尖 。桩基持力层为第⑥层强风化花岗岩( 软岩 ) , 由于岩面起伏较大 , 施 工 之 比均小 于0 . 9 0 , 最大扭转位移 比均小于1 _ 3 。说 明通过在建筑平面 的四个 时 以控制嵌岩深度为 主, 要求嵌岩深度大于或等于l m。 单桩竖 向抗压承载 角设置的四个 角筒增强 了整体抗扭刚度 , 有效地 控制了结构 的扭转效应 。 力特征值为2 1 0 0 k N, 单桩竖向抗拔承载力特征值为6 0 0 k N 。为了防止第⑤ 不论是地震作用下或风荷载作用下 , 最大层间位移角均远小 于规 范限值 ,
2基础、 地 下 室设计
从表 1 可 以看 出, 两个软件的主要计算结果基本相近 。结构总质量及 主楼 区域采用桩基 + 筏板基础 , 裙房采用桩 基+ 承台、 基础梁 、 防水 板 基底地震力接 近 ,说 明两个模型具有可比性 。从前三个振型 可以看 出第 形式 。本工程采用 预应力混凝 土管 桩 , 型号为P H C 5 0 0 A B 1 2 5 , 采用 a 型桩 第二振型均为平动 , 且不 含扭转 因子 , 第一扭动周期 与第一平动 周期
+ { I / 0 )
Z : l 6 1 I 0’ £ mj
框架结构体系。主楼和裙 房均设置有通天的中庭 , 主楼东西两侧每隔三层
设 置一个露 台和会议室 ,主楼南北两部分通过露台和会议室 的底板与顶 板及 每层 的电梯厅部位形成 了多层刚性连体 的结构形式 。 为了增强连接体部位 的强度和延性 ,同时便 于型钢混凝 土梁与柱的 连接 , 故与连接体部分相连 的框架柱采用型钢混凝土柱。型钢混凝土柱与
型 钢 混凝 土 梁形 成 局部 型钢 混 凝 土 框 架 ,也 增 强 了 整 体 结构 的 强 度 和 延
南京金鹰天地广场超高层三塔连体结构分析与设计共3篇

南京金鹰天地广场超高层三塔连体结构分析与设计共3篇南京金鹰天地广场超高层三塔连体结构分析与设计1南京金鹰天地广场超高层三塔连体结构分析与设计南京金鹰天地广场位于南京市区核心商业区,店铺、商场、娱乐场所、餐饮店等一应俱全,是南京市著名的购物中心之一。
其中的超高层三塔连体结构更是备受瞩目。
超高层三塔连体结构是指三座高层建筑结构连接在一起,形成一个整体的建筑物。
在这个结构中,三座塔的间隔和角度都经过了仔细的设计和计算,以确保整体建筑物的稳固和安全。
在该结构中,三座塔的高度分别为238米、218米和198米,呈不规则形状,因此需要仔细的设计和计算。
经过多次模拟和试验,设计师们最终决定采用下列结构:首先,三座塔的构造均由混凝土墙和钢筋混凝土柱组成。
这样的结构可以有效地分散塔的重量和抵御风力对建筑物的冲击。
其次,具有连接作用的桁架结构被安装在三个建筑物的顶部。
这些桁架被设计为强大的承重结构,稳固地将整个建筑物连接在一起。
最后,建筑物中心的空心部分被设计为一个大型的钢结构管柱,可以有效地支撑整个结构。
此外,管柱的外形还可以增加建筑物的美感和视觉效果。
在实际建造过程中,设计师和建筑师密切合作,精确地量化每个方面,以确保结构的完整性和稳定性。
这包括选择合适的建筑材料、精确的构造方法、考虑天气因素和对建筑物进行必要的测试和评估。
总体来说,南京金鹰天地广场超高层三塔连体结构是一项由各个方面组成的复杂工程,但最终,通过建筑师和设计师团队的努力,他们成功地建造了一座美观、稳定、安全的高层建筑。
这对于南京城市的现代化建设无疑是一件巨大的财富,同时也表明了中国设计和建筑创新的潜力和实力南京金鹰天地广场超高层三塔连体结构是一项具备极高复杂性的工程,但经过建筑师和设计师的精心设计和严格施工,成功地建成一座高度稳定、安全、美观的高层建筑。
该项目体现了中国在设计和建筑方面的创新潜力和实力,为南京现代化建设注入了新的动力和活力。
此次成功实践不仅对于本项目具有指导意义,也为未来高层建筑的开发提供了有益的借鉴南京金鹰天地广场超高层三塔连体结构分析与设计2南京金鹰天地广场超高层三塔连体结构分析与设计南京金鹰天地广场位于南京市江宁区,是一个集购物、餐饮、娱乐、文化等多功能于一体的城市综合体。
高层建筑钢筋混凝土结构设计问题及实例分析论文

高层建筑钢筋混凝土结构设计问题及实例分析摘要:文章主要结合笔者多年的工作经验,就钢筋混凝土结构设计中的常见问题进行了详细地探讨与研究,并结合某工程实例进行论述,旨在有效地提升高层建筑钢筋混凝土结构设计及保证工程的质量与安全。
关键词:高层建筑钢筋混凝土结构设计问题中图分类号:[tu208.3] 文献标识码:a 文章编号:一、概念设计结构概念设计是保证结构具有优良抗震性能的一种方法。
结构概念设计是要求建筑师和结构师在建筑设计中应特别重视规范、规程中有关结构概念设计的各条规定,设计中不能陷入只凭计算的误区。
以下问题应值得注意:(1)在结构体系上,应重视结构的选型和平、立面布置的规则性,择优选用抗震和抗风性能好且经济合理的结构体系。
结构应具有明确的计算简图和合理的传递地震力途径,结构在两个主轴方向的动力特性宜相近。
(2)水平地震作用是双向的,结构布置应使结构能抵抗任意方向的地震作用,应使结构沿平面上两个主轴方向具有足够的刚度和抗震能力;结构刚度选择时,虽可考虑场地特征,选择结构刚度以减少地震作用效应,但是也要注意控制结构变形的增大,过大的变形将会因p-δ效应过大而导致结构破坏;结构除需要满足水平方向刚度和抗震能力外,还应具有足够的抗扭刚度和抵抗扭转震动的能力。
(3)对于独立的结构单元,应避免应力集中的凹角和狭长的缩颈部位;避免在凹角和端部设置楼、电梯间;减少地震作用下的扭转效应。
竖向体型尽量避免外挑,内收也不宜过多、过急,结构刚度、承载力沿房屋高度方向不宜均匀、连续分布、避免造成结构的软弱或薄弱的部位。
应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载力。
根据具体情况,结构单元之间应遵守牢固连接或有效分离的方法。
高层建筑的结构单元应采取加强连接的方法。
二、地基与基础设计(1)对于柱下扩展基础宽度较宽(大于4米)或地基不均匀及地基较软时宜采用柱下条基,并应考虑节点处基础底面积双向重复使用的不利因素,适当加宽基础。
高层连体结构的动力计算模型讲解

连接方式
• 强连接方式:当连体结构包含多层楼盖, 且连接体结构刚度足够,能将主体结构连 接为整体协调受力变形。两端刚接、两端 铰接的连体结构属于强连接结构。 • 通常连接体与塔楼的连接处的受力最大, 构造处理相当复杂,必须谨慎处理。连接 体结构可伸至主题内筒内部,与其可靠连 接,无法做到时,也可在主体结构内设置 型钢混凝土与主体结构可靠锚固。
• 连体结构总体为一开口薄壁构件,扭转性 能较差,扭转振型丰富,当第一扭转频率 与场地卓越周期接近时,容易引起较大的 扭转反应,易使结构发生脆性破坏。 • 连体结构各独立部分宜有相同或相近的体 型、平面布置和刚度,宜采用双轴对称的 平面形式。7度和8度抗震设计时,层数和 刚度相差悬殊的建筑不应采用连体结构。
• 4、与连接体相连的框架柱在连接体高 度范围及其上、下层,箍筋应全柱段加 密配置,轴压比限值应按其他楼层框架 柱的数值减少0.05采用。 • 5、与连接体相连的剪力墙在连接体高 度范围及其上下层,应设置约束边缘构 件。
强连接方式
• 弱连接方式:如果连接体结构较弱时,无 法协调连体两侧结构共同工作,此时可称 为弱连接结构,即连体一端与结构铰接, 另一端滑动支座,或两端都做成滑动支座, 此时应重点考虑滑动支座的做法、限复位 装置的构造,并提供滑动支座的预计滑移 量。
弱连接方式
串并联质点系模型
• 对于双轴对称的连体结构,由于结构每个楼层 的质心与刚心是重合的,因此无论在单向还是 在双向地震力作用下,只能激起结构水平振动, 且两方向的振动相互独立,互不藕联。当楼盖 采用无限刚假定时(楼盖平面内刚度无限大, 平面外刚度为零),则连体结构的每个楼盖只 有两个侧移未知量,因而对于双轴对称的连体 结构,无论在单向还是双向地震作用下,结构 的振动模型均可采用“串并联质点系模型”。
高层混凝土连体结构设计

探讨高层混凝土连体结构设计摘要:高层建筑连体结构作为一种新兴的建筑结构形式,技术还不是特别成熟,因此加强对高层混凝土连体结构设计的探讨是非常必要的。
本文笔者结合自身工作实践经验,以某办公楼为例,对高层混凝土连体结构设计进行了探讨,希望对相关从业人员具有借鉴意义。
关键词:高层建筑混凝土连体结构设计引言因为连体结构需要保证各个建筑物所承受的作用力相协调,有很明显的扭转效应,受力也较为复杂,在结构设计之时非常有难度。
本文以某综合办公楼为例对高层连体结构进行了分析研究。
经研究发现,连体结构通常会有很明显的地震扭转效应,需要在设计时就通过多种软件的计算,分析出最适合的结构设计方案。
2工程简介某栋办公大楼设计时建筑抗震设防为丙类,二级安全结构,建筑物应为不可分割的平面不规则结构,建筑物两侧竖向连体部分是竖向不规则结构。
大楼在建成之后平面形状呈“u”形,地上有16层,地下1层,建筑物长88m,宽约62m,整个地上部分的建筑面积有32000m2。
东西两侧竖向楼体的第11层至15层相连,整体呈现为凯旋门式的结构。
本建筑屋面的上部是6m高的钢结构飘架。
这是一个非常复杂的高层建筑,完工后,结构抗震的等级为一级,超出了预想的范围。
3建筑主体结构确定本工程将主体确认为“高层框架—剪力墙”结构。
剪力墙的筒体位置定为楼层的四角。
在楼、电梯间布置了4个右下至上厚度为350~200mm的钢筋混凝土质的剪力墙。
周圈部分的框架柱利用了建筑物的外立面,保持4m的柱距,而中间部分的框架柱的柱距为8m×8.8m,因为缩小柱距可以让整个建筑结构的抗扭增加。
建筑物楼板以及楼层梁处使用了等级为c30的混凝土,而剪力墙和柱右下至上的混凝土强度为c50~c30。
连体部分共有6层楼,由于结构关系刚度较大,所以选用了强连接的方式将连接体与塔楼相连。
连体部分平面见图1.4建筑物连体部分的设计实施方案高层连体结构在设计的过程中最复杂的就是连体处受力结构的分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高层混凝土连体结构设计分析
摘要:连体高层建筑这一结构,在近年才开始出现并广受欢迎,但在我国并未
大量涌现,因为对连体结构来讲,需要很好协调各建筑物承受的作用力,扭转效
应非常明显,受力复杂度较高,设计时难度很大。
连体结构的地震扭转效应特别
明显,设计过程中就要借助不同软件的分析计算获得高适合度的设计方案。
关键词:高层混凝土;连体结构设计
引言
因为连体结构需保证各建筑物所承受的作用力相协调,有很明显的扭转效应,受力也较复杂,在结构设计时非常有难度。
本文以某综合办公楼为例对高层连体
结构进行研究。
经研究发现,连体结构通常会有很明显的地震扭转效应,需要在
设计时就通过多种软件的计算,分析最适合的结构设计方案。
一、工程简介
某栋办公大楼设计时建筑抗震设防为丙类,二级安全结构,建筑物应为不可
分割的平面不规则结构,建筑物两侧竖向连体部分是竖向不规则结构。
大楼在建
成后平面形状呈“U”形,地上有16层,地下1层,建筑物长88m,宽约62m,整
个地上部分的建筑面积有32000m2。
东西两侧竖向楼体的第11层至15层相连,
整体呈现为凯旋门式的结构,建筑屋面的上部是6m高的钢结构飘架。
这是一个
复杂的高层建筑,完工后,结构抗震的等级为一级,超出预想范围。
二、建筑主体结构
确定工程将主体确认为“高层框架—剪力墙”结构。
剪力墙的筒体位置定为楼
层的四角。
在楼、电梯间布置4个右下至上厚度为350~200mm的钢筋混凝土质
的剪力墙。
周圈部分的框架柱利用建筑物的外立面,保持4m的柱距,而中间部
分的框架柱的柱距为8m×8.8m,因为缩小柱距可让整个建筑结构的抗扭增加。
建
筑物楼板及楼层梁处使用等级为C30的混凝土,而剪力墙和柱右下至上的混凝土
强度为C50~C30。
连体部分共有6层楼,由于结构关系刚度较大,所以选用强连接的方式将连接体与塔楼相连。
三、建筑物连体部分的设计实施方案
高层连体结构在设计过程中最复杂的就是连体处受力结构的分析。
建筑物从
竖向来说,连体部分的层数较多且自身跨度较大,由于荷载作用所承受的内力很大。
而水平方向上连体部分结构需要协调两侧建筑体的变形,承受较大水平内力。
当建筑物受到水平地震或风的作用时,各塔楼除了会产生一定的同向平动,
还随着相向运动。
而结构方面不但会产生平动变形,也会出现扭转变形现象。
在
工程中每个塔楼的刚度各不相同,差距较大。
当发生各种平动、扭转振型相耦合时,对整体结构产生的扭转效果将非常明显,振动形态也变得更复杂。
经过严密计算,最终定下的设计方案是经过多重比较后的方案。
连接体的刚
度也调至刚好能协调好几个塔楼间的刚度,调控好整个建筑结构的扭转效应。
严
格按照标准规范,控制连接体自身构件受到水平、竖向的荷载作用后所产生的变形、应力等。
工程中连体部分的受力主体选用钢结构,并配合钢筋混凝土材质的楼板。
主
受力结构的钢材用的是Q345-B,而设置于底部的两层钢桁架,包括钢柱、横梁及斜撑使用的都是焊接H型钢。
在设置时钢柱应旋转90°,上3层用钢框架,钢柱
的设置同样旋转90°,并将其支撑在之下钢桁架的节点处。
钢柱、钢梁、钢桁架
之间需要用固接方式相连。
而连体结构上的钢桁架的横梁与斜撑需要固接在两边
的混凝土剪力墙筒体上。
将H型钢埋设在钢桁架的横梁及斜撑与剪力墙相连处的
混凝土柱端之内。
由10层至16层均用强焊接的形式将钢构件与剖口相连,并在11层、13层、15层钢梁内的区格布置焊接的圆钢管作为钢支撑,以保证连体结
构处楼板的平面内刚度。
四、连体结构的选材
混凝土方案是在连体结构的部分使用3道巨型混凝土桁架。
钢结构方案,需
在连体结构的部分布置3道钢制的桁架。
这两种方案选材不同,在受力方面均能
符合要求。
结合建筑物实际情况,分别分析两方案的优缺点。
若选用的是混凝土方案,结构梁、斜撑、柱等构件会产生较大断面,而建筑
师需要底部两层的结构构件裸露于外,或多或少会对立面的美观性产生影响。
本
建筑具有跨度大、连接层数多的特点,使选用混凝土方案后结构自重预计将比选
用钢结构方案多出近3347t,自重增加的同时,连接体两侧柱及剪力墙的基础造
价也一起增加。
此建筑的连体部位相对较高,需要巨型桁架结构,要有能承受住
所有连体处荷载的模板,且只有当所有桁架构件都达到强度要求后才能将模板拆除。
但混凝土的支模技术有一定难度,支模总费用支出达到200万元,会增加整
体造价。
在模板拆除时还要充分计算各方向的桁架受力作用,避免桁架在模板拆
除时瞬时加载产生不利影响。
若选用的是钢结构方案,能适当缩小结构整体重量及桁架截面尺寸。
具有能
使建筑物轻盈、有造型感、空透的特点,有效增加建筑物的实际使用面积,还有
施工速度快、造价低的优势。
所以在工程中,最终选用钢结构的施工方案。
五、对整体计算的简要说明
地震力的作用需要在结构设计时充分考虑扭转耦连振动影响的振型分解反应
谱法。
运用3种不同力学模型的三维空间分析软件,分别进行位移及整体内力的
分析。
将7度设防烈度、0.05的阻尼比及Ⅱ类的场地类别等因素均考虑进去。
工
程的模型及荷载输入运用的是PWPM结构分析软件系列中的PMCAD。
SATWE主
要负责工程结构的重点分析计算。
最终结构对比校核的工作由TAT和PMSAP担当,并进行一定补充计算分析。
(1)计算参数。
①建筑结构确定为钢筋混凝土结合的高层结构;②连体结
构部分的楼板为弹性楼板;③楼层刚度计算选用层间剪力比层间位移的方法;
④以总刚模型的结构振动分析方法进行地震作用的分析;⑤地震按照不规则结
构计算;⑥将计算振型数确定为15。
(2)荷载工况。
荷载工况主要以风荷载、重力荷载及水平地震力为主要考
量因素,按照相关规定选用工况组合。
六、总结
(1)在分析复杂高层建筑之时不能单一使用一个程序,需要多种程序从不
同角度分析,最终人工判断各方法得出的计算结果。
本文就是以SATWE为主,结合TAT、PMSAP进行分析校核,最终得出较满意的结果。
(2)复杂的高层建筑通常会有显著的扭转效应,应设法减小其扭转周期。
本工程中运用的是增设连廊水平支撑,同时增加连体结构部分桁架的刚度来解决。
(3)连体结构设计的关键问题之一是连接体本身跟两侧建筑物的支座连接。
在本工程中选用的是强连接的方式,取得很好的效果,完美地将受力协调掌控。
(4)在设计竖向、水平都不规则的复杂高层建筑时,设置剪力墙及竖向构
件的时候要格外注意。
尽量使整个结构质量中心跟刚度中心是接近的,可以有效削弱建筑结构的扭转效应。
结束语
对复杂的结构体系,结构的合理布置更重要。
对连体结构,尽量使连体结构各独立部分的体型、平面和刚度相近,能有效避免连体结构复杂的耦联振动,同时对此类结构的转换层及连体部位要采取相应的抗震措施。
参考文献
[1]徐培福主编.复杂高层建筑结构设计[M].北京:中国建筑工业出版
社.2010.。