纳米电子技术的发展与展望

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米电子技术的发展与展望

学院:物理与电子工程学院班级:2016级2班

学号:160302001 姓名:于江

随着对纳米电子技术的研发与应用,纳米电子技术在多项领域中都展现出了其强大潜力,随着对纳米电子技术的深入研发,纳米技术势必将广泛应用于各个领域,并成为人们日常生活中不可替代的必需品。

1.纳米电子技术的发展现状

随着纳米电子技术的发展,各种性能优越、功能独特的纳米电子产品已经逐渐应用于各个领域中,纳米电子技术的具体应用主要体现在三个方面:纳米电子材料、新型电子元器件、现代医学应用。

1.1新型电子元器件

对纳米电子技术的当前模式分析后,可以断定在未来十年内必然会经过飞速发展的历程。

特别是当前市场对于新型电子元器件的需求逐渐增多的背景下,还需要根据实际需求来对新型电子元器件进行扩展与完善。

对此,可以从单电子器件、共振隧穿电子器件、纳米场效应晶体管、纳米尺度MOS 器件、分子电子器件、自旋量子器件、单原子开关等新型信息器件的方向入手,在保证了纳米电子技术朝着良好的方向发展的同时,还可以延续摩尔定律(Moore's Law,ML)

以及CMOS的研究成果。

1.2纳米电子材料

纳米电子技术在材料运用上的成果主要包括:纳米半导体材料、纳米硅薄膜、纳米硅材料等。其中尤以纳米硅材料最具技术优势,想比起传统材料,纳米硅材料更符合未来发展需求,其所具有的优势有:

1.硅分子间距较短,在传递电子信号时速度更快,不仅提高了运行效率,而且降低了信号传递过程中的能耗。

2.能耗低、准确可靠、运行时间较短、不易受外界的环境影响。

3.得益于科技的保证和不断地开发研究应用,使得其成本价钱有所降低。

从上述的优势不难看出,纳米硅电子材料的问世是材料的一个新突破,它的领先技术使得其相较于同等材料具有绝对的优势。相信随着纳米材料的不断研究,纳米材

料在生活中的应用普及之后,会给人类带来意想不到的方便。

1.3光学光刻技术

光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件结构图形“刻”在涂有光刻胶硅片上的技术。它是现在产业半导体加工的主流技术。在这种技术中,通常甲基丙烯酸酯聚合物被用作抗蚀涂层,甲基异丁酮和异丙醇合剂被用作显像剂。

目前国际微电子领域最引人关注的热点是新一代光刻技术。限制光刻所能获得的最小线宽与光刻系统的分辨率直接相关,而减小光源的波长是提高光刻分辨率的最有效途径。现在,商品化光刻机的光源波长已经从过去的汞灯光源紫外光波段进入到深紫外波段,除此之外,利用光的干涉特性以及电磁理论(Electromagnetic theory)结合光刻实际对曝光成像的深入分析,采用各种波前技术优化工艺参数也是提高光刻分辨率的重要手段。

1.4纳米电子技术应用于现代医学

随着纳米技术的不断研究和应用,更多的纳米电子技术被应用到医学领域之中。

纳米电子技术的发展有助于细微部位的研究,而这些细微之处通过普通显微镜是无法做到的,纳米电子技术的应用还能有助于纳米传感器的发明,通过纳米传感器可以观察到生化反应的各种不同的化学信息以及电化学信息。此外,还有很多类似伽马刀、螺旋CT以及MRI等高科技医学产品的问世,它们的出现为人类医学注入了新鲜血液。

纳米电子技术作为生物医学与电子学相交的新新技术,它将具有巨大的开发利用价值,它的研究潜力是无穷的。生物医学电子学作为生物医学和电子学两大学科的结合,在生物医学电子设备集成化和微型化方向的研究有着很大的发展空间,这种研究主要基于微电子器件的发展,当器件的尺寸发展到分子或原子的大小水平时,人们对于微小生物体的研究将进入前所未有的新阶段。

2.对未来纳米电子技术的展望

纳米技术的研究和应用已经得到世界上很多国家的认可,各国也加大了对纳米技术研究工作的投入力度。其中,美国提出了名为国家纳米技术(National Nanotechnology Initiativr,NNI)的计划项目,将重点研究纳米电子学。欧盟等多个国家将在支持纳米技术研究的工作上,重点投入到纳米电子材料以及纳米电子器件关于存储系统和信息处理的研究,成立相关委员会,并提出欧盟每年60亿欧元到纳

米电子研究工作中的投资报告,以推进和鼓动研究者参与到纳米电子技术研究的兴趣当中。而在亚洲,中国台湾地区和日韩两国也加入到纳米电子技术研究的计划和策略当中来,也采取了不少积极措施,比如建立纳米电子研究所,加大研究经费的投入等,旨在对纳米电子技术的研究工作中抢占先机,掌握主动。而我国则将纳米研究技术作为重要的科学研究规划,主要进行纳米电子学的研究,而纳米电子学也被中科院肯定为2020年左右最易实现,也对纳米科技研究有重大影响的研究。

2.1碳纳米管

1991年日本科学家第一次发现碳纳米管(carbon nanotubes,CN)。碳纳米管自身是拓扑结构,又有很好的机械强度和导电性等,可以说集光学和机械性能以及电子特性三者的优异性于一身,所以,碳纳米管也被世界上的科学家们作为研究的重点。

利用碳纳米管的电子性,使得它可以往单电子器件和晶体管材料方向展开研究。2010年2月,芬兰和日本的科学家研究出了新型碳纳米管,它是最优的介于半导体和金属性两者平衡点之间的材料,基于对新型碳纳米管的研究,科学家们发现它可以制作成集成电路,且该电路具有逻辑顺序,可为纳米计算机的研发带来一些启发和灵感。同年6月份,瑞典的歌德堡大学研发出了一种对纳米管形成的过程可控的方法,利用碳纳米管可以使晶体管的尺寸变得更小,运行速度也更快,制造出的半导体材料比硅晶体管高出70%的碳纳米管,从而使得电子流动性要高于现有普通半导体材料的25%,可以说半导体材料已经在往新型碳纳米管上转型,新型碳纳米管将会在今后得到更多的应用。

2.2纳米电子元件

纳米电子元件问世之前,电子元件经过了集成元件、超大规模集成元件两个发展历程,因此,纳米电子元件是在“两位前辈”的发展基础上开发出来的。

2010年,美国人发明了纳米处理器。同年,澳大利亚和美国联合研发出了原子晶体管。2011年,美国匹兹堡大学研发出了超小型单电子晶体管,实现了超大规模集成电路朝微型化、低能耗方向发展。在未来的几十年,纳米电子元件将得到不断发展,更多性能优越的电子元件将不断被研发出,这为人类探索更深层次领域提供了可能。

随着集成规模的不断扩大,电子元件的尺寸却要越做越小,要达到纳米尺寸的范围(0.1-100nm),例如刚刚面试的单电子晶体管,它的一个电子信号就代表了一位信息的数据,意思就是晶体管的尺寸要小到极致,从而颠覆了现代电子技术的高集成、高速度下,一定要高能耗的格局。

2.3石墨烯

相关文档
最新文档