整式的乘法单元练习题

合集下载

(完整版)整式的乘法练习题

(完整版)整式的乘法练习题

(完整版)整式的乘法练习题整式的乘法练习题(⼀) 填空1. a 8=(-a 5) ___ . 2. a 15=( )5.. 4. (x+a)(x+a)= _____ .5.a 3·(-a)5·(-3a)2·(-7ab 3)= ___ ____ . 7.(2x)2· x 4=( )2.的体积是 ____ .18.若 10m =a , 10n =b ,那么 10m+n= ____ . 19.3(a-b)2[9(a-b)n+2](b-a)5=__ (a-b)n+9.20.已知 3x · (x n +5)=3x n+1-8,那么 x=___________________________________________ . 21.若 a 2n-1· a 2n+1=a 12,则 n= ____ .22.(8a 3)m÷[(4a 2)n·2a]= ___ . 23.若 a <0,n 为奇数,8.24a 2b 3=6a 2· _____ .9. [(a m )n ]p= ___ . 10.(-mn)2(-m 2n)3= ____ .11.多项式的积 (3x 4-2x 3+x 2-8x+7)(2x 3+5x 2+6x-3)中 x 3项的系数是 _____ .12.m 是 x 的六次多项式, n 是 x 的四次多项式,则 2m-n是 x 的 _________________________________________________ 次多项式.14.(3x 2)3-7x 3[x 3-x(4x 2+1)]=____ . 15. { [(-1)4]m }n= ______ . 16. -{-[-(-a 2)3]4}2= ____ .17.⼀长⽅体的⾼是 (a+2)厘⽶,底⾯积是 (a 2+a-6)厘⽶ 2,则它则(a n )5____ 0.24.(x-x 2-1)(x 2-x+1)n(x-x 2-1)2n= __ .25.(4+2x-3y 2)·(5x+y 2-4xy)·(xy-3x 2+2y 4)的最⾼次项是 26.已知有理数 x ,y ,z 满⾜|x-z-2|+(3x-6y-7) 2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n 为⾃然数)等于.(⼆) 选择27.下列计算最后⼀步的依据是3. 3m 2· 2m 3= _____ 6.(-a 2b)3·(-ab 2)=5a2x4·(-4a3x)=[5×(-4)] ·a2·a3·x4·x (乘法交换律) =-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.A .乘法意义;B.乘⽅定义;C.同底数幂相乘法则;D.幂的乘⽅法则.28.下列计算正确的是[ ]A .9a3· 2a2=18a5;B .2x5· 3x4=5x9;C .3x3· 4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y 3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]B.(m-2)(m+3)=m 2+m-6 ;D.(x-3)(x-6)=x 2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是[ ] A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y) 2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y) m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A .(a3)n+1=a3n+1;B .(-a2)3a=a12;C .a8m· a8m=2a16m;D.(-m)(-m) 4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0 38.如果b2m0;B.b<0;C.0C .(-2a n)2·(3a2)3=-54a2n+6;A .(x+1)(x+4)=x2+5x+4 ;C.(y+4)(y-5)=y 2+9y-D .(3x n+1-2x n )·5x=15x n+2-10x n+1.B .(-x)(2x+x 2-1)=-x 3-2x 2+1;C .(-3x 2y)(-2xy+3yz-1)=6x 3y 2-9x 2y 2z 2-3x 2y47.把下列各题的计算结果写成 10的幂的形式,正确的是 [ ]C .1002n× 1000=104n+3; D .1005×10=10005=1015.44.下列计算正确的是 [ ]48.t 2-(t+1)(t-5) 的计算结果正确的是 [ ] A .-4t-5 ; B . 4t+5; C .t 2-4t+5; D .t 2+4t-5.49.使(x 2+px+8)(x 2-3x+q)的积中不含 x 2和 x 3的 p ,q 的值分别(1)b(x-y)=bx-by ,(4)2164=(64)3,正确;(2)b(xy)=bxby ,(5)x 2n-1y 2n-1=xy2n-2. (3)b x-y=b x-b y, A .只有 (1)与(2)B .只有 (1)与(3)正确;C .只有 (1)与(4)正确;D .只有 (2) 与(3)正确. 42.(-6x n y) 2· 3x n-1y 的计算结果是 [ ] A.18x 3n-1y 2;B .-36x 2n-1y 3;C .-108x 3n-1y ;D . 108x 3n-1y 3. 45.下列计算正确的是 [ ] A . (a+b)2=a 2+b 2; B .a m· a n=a mn; D .(a-b)3(b-a)2=(a-b)5.[ ]C . (-a 2)3=(-a 3)2;41.下列计算中, [ ]A .100×103=106;B .1000×10100=10;(6xy 2-4x 2y)3xy=18xy 2-12x 2yA. p=0, q=0;B. p=-3, q=-9;C. p=3, q=1;D. p=-3, q=1.50.设xy<0,要使X n y m? X n y m>0,那么[]A . m, n都应是偶数;B. m, n都应是奇数;C.不论m, n为奇数或偶数都可以;D.不论m, n为奇数或偶数都不⾏.51.若n为正整数,且x2n=7,贝J (3x3n)2-4(x2)2n的值为[]A. 833;B. 2891;C. 3283;D. 1225.(三)计算52.(6× 108)(7 ×109)(4× 104). 53. (-5x n+1 y) ?(-2x). 54.(-3ab) ?(-a2c) ?6atf. 55.(-4a) ?(2a2+3a-1).56. (3m-n)(m-2n).57. (x+2y)(5a+3b ).58. (-ab)3 ? (-a 2b) ? (-a 2b 4c)2. 59. [(-a)]3 ?a 3m+[(-a)5m ]2.60. x n+1(x n -x n ^1+x).6162. 5X (X 2+2X +1)-(2X +3)(X -5). ÷4)..(x+y)(x 2-xy+y 2).63. (2x-3)(X64(-2at^)365. -8(a-b)366. 2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3) xy)+(-3xy 2)2.(3a 2b-2ab-4t?) 67. (-4xy 3) ?(-68.计算 [(-a)2m ] 3· a 3m +[(-a) 3m ]3(m 为⾃然数 ).1.(a+b)(a - b)= __ ,公式的条件是 __ ,结论是 ___ .1 2.(x - 1)(x+1)= ____ ,(2a+b)(2a - b)= _____ ,( 1x3 y)( 13x+y)= _ .3.(x+4)( - x+4)= ____ ,(x+3y)( __ )=9y 2- x 2,( - m69.先化简 (x-2)(x-3)+2(x+6)(x-5)-3(x 2-7x+13),再求其值,其n)( ___ )=m 2-n 2中 x=4.98×102=( ___ )( ____ )=( )2- ( )2= ____ . 5.-(2x 2+3y)(3y -2x 2)= __ . 6.(a -b)(a+b)(a 2+b 2)= __ .7.( ____ - 4b)( _ +4b)=9a 2 - 16b 2,(____ - 2x)( ___ 2x)=4x 2-25y 28.(xy -z)(z+xy)= _ ,( 5x - 0.7y)( 5x+0.7y)= .66 119.(1 x+y 2)( __ )=y 4- 1x 270.已知 ab 2=-6,求 -ab(a 2b 5-ab 3-b)的值4 1610.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1《乘法公式》练习题(⼀) (x -1)(x 3+x+1)=x 4-1、填空题15.a4+(1-a)(1+a)(1+a2)的计算结果是( )(x-1)(x n+x n 1+?+x+1)= .⼆、选择题11.下列多项式乘法,能⽤平⽅差公式进⾏计算的是()A.(x+y)(-x-y)B.(2x+3y)(2x -3z)C.(-a-b)(a -b)D.(m-n)(n-m)12.下列计算正确的是()A.(2x+3)(2x-3)=2x2-9B.(x+4)(x-4)=x2-4C.(5+x)(x-6)=x2-30D.(-1+4b)(-1-4b)=1-16b213.下列多项式乘法,不能⽤平⽅差公式计算的是()A.(-a-b)(-b+a)B.(xy+z)(xy-z)C.(-2a-b)(2a+b)D.(0.5x-y)(-y-0.5x)14.(4x2-5y)需乘以下列哪个式⼦,才能使⽤平⽅差公式进⾏计算()A. -4x2-5yB.-4x2+5yC.(4x2-5y)2A.-1B.1C.2a4- 1D.1-2a416.下列各式运算结果是x2-25y2的是( )A.(x+5y)(-x+5y)B.(-x-5y)( -x+5y)D.(x-5y)(5y-x)三、解答题17.1.03× 0.97 18.(-2x2+5)( -2x2-5)(a+6)(a-6) 20.(2x-3y)(3y+2x)-(4y-3x)(3x+4y)y)( 91x2+y2)22.(x+y)(x-y)-x(x+y) 23.3(2x+1)(2x-1)-2(3x+2)(2-3x) 24.9982-4 25.2003× 2001-20022 《乘法公式》练习题(⼆) 1.(a b)2 a2 b2--( )2.(x y) 2 x2 2xy y2---( )根据前⾯各式的规律可得C.(x-y)(x+25y)19.a(a -5)-1 21.( 311x-3.(a b)2 a2 2ab b 2- -() 4.(2x 3y)2 2x2 12xy 9y2()D.(4x+5y)25. (2x 3 y)( 2x 3y) 4 x 2 9 y 2( ) 6(2x 3y)(3x y) ______________ ; A ) ( a b)(a b) (B ) (x 2)(2 x)11C ) (3x y)(y 3x) (D ) (x 2)(x 1)337. (2 5y)28. (2 x3y)(3 x 2y) _____________ _9. (4x 6 y)(2x 3y) ______________1 10(1x 2y)22 11.(x 3)(x 3)( x 29) _________12.(2x1)(2x1) 1 ________________ 13。

第15章整式的乘法单元测试题

第15章整式的乘法单元测试题

第15章整式的乘法单元测试题第14章整式的乘法单元测试题⼀、选择题:(每⼩题2分,共28分)1.下列计算正确的是( )A.2a 2·2a 2=4a 2B.2x 2·2x 3=2x 5C.x ·y=(xy)4D.(-3x)2=9x2 2.若3,5m n a a ==,则m n a +等于( )A.8B.15C.45D.753.(-x 2y 3)3·(-x 2y 2)的结果是( )A.-x 7y 13B.x 3y 3C.-x 8y 13D.-x 7y 54.(x+4y)(x-5y)的结果是( )A.x 2-9xy-20y 2B.x 2+xy-20y 2C.x 2-xy-20y 2D.x 2-20y 25.如果(ax-b)(x+2)=x 2-4,那么( )A.a=1,b=-2B.a=-1,b=-2;C.a=1,b=2D.a=-1,b=26.化简代数式(x-3)(x-4)-(x-1)(x-3)的结果是( )A.-11x+15B.-11x-15;C.-3x-9D.-3x+97.运⽤乘法公式计算正确的是( )A.(2x-1)2=4x 2-2x+1;B.(y-2x)2=4x 2-4xy+y 2;C.(a+3b)2=a 2+3ab+9b 2;D.(x+2y)2=x 2+4xy+2y 28.如果x+y=a,x-y=b,那么x 2-y 2等于( )A.a+bB.abC.a-bD. ab9.下列各式中不能⽤平⽅差公式计算的是( )A.(y-x)(x+y)B.(2x-y)(-y+2x);C.(x-3y)(x+3y)D.(4x-5y)(5y+4x)10.如果a 2-8a+m 是⼀个完全平⽅式,则m 的值为( )A.-4B.16C.4D.-1611.若13a a +=,则221a a +的值是( )A.9B.11C.7D.512.下列等式中,是因式分解的是( )A.(ax+by)(ax-by)=a 2x 2-b 2y 2B.m(x 2-y 2)=mx 2-my 2C.m(a 2+b 2)=m(a+b)(a-b)D.mx+nx-my-ny=(m+n)(x-y)13.下列各式中,因式分解正确的是( )A.x 4-81=(x 2+9)(x 2-9)B.x 2-y 2-1=(x+y)(x-y)-1C.x 2-0.01=(x+0.1)(x-0.1)D.xy-4xy 3=xy(1-4y)214.把(2x-y)(3x-2y)+(x-2y)(2y-3x)分解因式,其结果是( )A.(3x-2y)(x-y)B.(3x-2y)(x+y)C.3(x-y)(3x-2y)D.(3x-2y)(x-3y)⼆、填空题:(每⼩题3分,共18分)15. 4683649x y z =( )216. 分解因式:81x 4-49y 2=_____________________________________;17.多项式25m 5n-15m 3n 3x 2-35m 4n 2x 的公因式是__________.18.x 5-4x 3=x 3( )=( )( )( )19.若a+b=4,a 2-b 2=8,则a-b=______________.20.(4x-3y)2-20(4x-3y)+100=[ ]2.三、解答题:(共54分)21.分解因式:(8分)(1)4x 2-9; (2)-x 2+4x-4;(3)(a+b)2+2(a+b)+1; (4)(m-2n)2-6(2n-m)(m+n)+9(m+n)222.⽤简便⽅法计算:(12分)(1)20022-19982; (2)999×1001;(3)2012-200×202; (4)200120001999252625000-?+?+.23.若x 2-4x+y 2+2y+5=0,试求x,y 的值.(5分)24.已知a+b=74,ab=34,求12a 3b+12ab 3的值.(5分)25.你会利⽤平⽅差公式计算(3+2)(32+22)(34+24)(38+28)吗?(5分)26.仔细观察下列四个等式:32=2+22+3,42=3+32+4,52=4+42+5,62=5+52+6,(1)请你写出第5个等式;(2分)(2)并应⽤这5个等式的规律,归纳总结出⼀个表⽰公式;(2分)(3)将这个规律公式认真整理后你会发现什么?(2分)27.⽤幂的运算知识,你能⽐较出3555与4444和5333的⼤⼩吗? 请给出科学详细的证明过程.(5分)28.如图所⽰,边长为a的⼤正⽅形中有⼀个边长为b的⼩正⽅形.(1)(2)将阴影部分还能拼成⼀个长⽅形,如图⼄这个长⽅形的长和宽分别是多少? 表⽰出阴影部分的⾯积;(3分)(3)⽐较(1)和(2)的结果,可以验证平⽅差公式吗?请给予解答.(3分)第14章整式的乘法答案⼀、1.D 2.B 3.C 4.C 5.C 6.D 7.B 8.B 9.B 10.B 11.C 12. D 13.C 14.B ⼆、15.67x 2y 3z 4 16.(9x 2+7y)(9x 2-7y) 17.5m 3n 18.x 2-4 x 3 x+2 x-2 19. 220.(4x-3y)-10三、21.(1)(2x+3)(2x-3). (2)-(x-2)2. (3)[(a+b)+1]2. (4)[(m-2n)+3(m+n)]2 22:解.(1)20022-19982=(2000+2)2-(2000-2)2=[(2000+2+2000-2)(2000+2-2000+2)]=4000×4=16000.(2)999×1001=(1000-1)(1000+1)=10002-1=999999.(3)2012-200×202=(200+1)2-200(200+1+1)=(200+1)2-200(200+1)-200=(200+ 1)( 200+ 1-200)-200=200+1-200=1.(4)22001 -5×22000 +6×21999 +5000=21999(22 -5×2+6)+5000=5000.23.提⽰:将原多项式化为两个完全平⽅式,且两个完全平⽅式都是⾮负数,所以求出x,y 的值.原式=x 2-4x+4+y 2+2y+1=0,所以有x 2-4x+4=(x-2)2,y 2+2y+1=(y+1)2 ,即原式=(x-2)2 +(y+1)2 =0,⽽(x-1)2≥0,且(x+y)2≥0,∴x-2=0和y+1=0,∴x=2,y=-1.24.提⽰:所求的⼆项式12a 3b+12ab 3=12ab(a 2+b 2),观察化简结果中有ab 和a 2+b 2, 于是想到将已知条件a+b=74 两边平⽅,即(a+b)2=274?? ???,∴2249216a b ab ++=, ∴224949325221616416a b ab +=-=-?=, ∴原式=221132575()22416128ab a b +=??=. 25.提⽰:可以利⽤平⽅差公式计算,将此式乘以(3-2),整个公式转折性变化,因为平⽅差公式中有“差”项因式,⽽(3-2)即是“差”项因式,⽽结果为1, 不影响计算结果, 所以原式可化为(3-2)(3+2)(32+22)(34+24)(38+28)=(32-22)(32+22)(34+24)(38+28)=( 34-24)(34+24)(38+28)=(38-28)(38+28)=316-216.26.(1)72=6+62+7.(2)所归纳的表达式为(n+1)2=n+(n)2+(n+1).(3)认真整理后发现(n+1)2=n2+2n+1是我们所熟知的两数和的平⽅公式.27.提⽰:因为它们的指数为555,444,333,具有公因式111,所以5555111111444411111133331111113(3)243,4(4)256,5(5)125,======⽽111111111>>,256143125∴444555333>>.43528.提⽰:(1)图甲阴影部分的⾯积值为a2-b2.(2) 图⼄所重拼的长⽅形的⾯积为(a+b)(a-b).(3)⽐较(1)和(2)的结果,都表⽰同⼀阴影的⾯积,它们相等,即(a2-b2)=(a+b)(a-b),可以验证平⽅差公式,这也是平⽅差公式的⼏何意义.。

整式的乘法测试题

整式的乘法测试题

整式的乘法测试题1. 单项式乘以单项式:- 题目:计算 \(3a^2 \cdot 2b\) 的结果。

2. 多项式乘以单项式:- 题目:计算 \((4x^2 - 3x + 1) \cdot 2x\) 的结果。

3. 多项式乘以多项式:- 题目:计算 \((x^2 + 5x - 3) \cdot (x - 2)\) 的结果。

4. 幂的乘法法则:- 题目:计算 \(a^3 \cdot a^4\) 的结果。

5. 乘法分配律的应用:- 题目:计算 \((2x + 3)(x - 4)\) 的结果。

6. 多项式与单项式的乘法:- 题目:计算 \((5x^2 - 1) \cdot 3x\) 的结果。

7. 多项式的乘法和合并同类项:- 题目:计算 \((2x^2 + 3x - 1) \cdot (x - 1)\) 并合并同类项。

8. 多项式的乘法和因式分解:- 题目:给定 \((x + 2)(x - 3)\),求其展开形式。

9. 多项式乘法中的符号处理:- 题目:计算 \((-2x^2 + 5x + 1) \cdot (-3x)\) 的结果。

10. 多项式乘法中的系数处理:- 题目:计算 \((4x^3 - 2x^2 + 3x - 1) \cdot (-\frac{1}{2}x)\) 的结果。

11. 多项式乘法中的指数法则:- 题目:计算 \((x^2 - 4) \cdot (x + 2)\) 的结果,并说明是否为完全平方公式。

12. 多项式乘法中的分组:- 题目:计算 \((3x^2 - 1)(x^2 + 1)\) 的结果。

13. 多项式乘法中的分配律和结合律:- 题目:计算 \((2x - 1)(x^2 + 3x + 2)\) 的结果,并展示如何使用分配律和结合律简化计算。

14. 多项式乘法中的提取公因式:- 题目:计算 \((3x^2 + 6x) \cdot (2x - 1)\) 的结果,并提取公因式。

15. 多项式乘法中的混合运算:- 题目:计算 \((2x^3 - 3x^2 + x - 1) \cdot (x - 1) + (x^2 + 1)\) 的结果。

整式的乘法100题专项训练(精心整理)

整式的乘法100题专项训练(精心整理)

整式的乘法100题专项练习同底数幂的乘法:底数不变,指(次)数相加.公式:a m ·a n =a m+n1.填空:(1)=⋅53x x ; =⋅⋅32a a a ; =⋅2x x n ; (2)=-⋅-32)()(a a ;=⋅⋅b b b 32⋅2x =6x ; (3)=⋅-32)(x x ;=⋅10104;=⨯⨯32333; (4)34a a a ⋅⋅ = ;()()()53222--- = ;(5)()()()352a a a -⋅-⋅-- = ;(1)32a a ⋅=___________;(6)()=-⋅-⋅-62)()(a a a ;m m m m 2543•••= ;(7)=-⋅-43)()(a b a b ;=⋅2x x n ;(8)=⎪⎭⎫ ⎝⎛-⨯-6231)31( ;=⨯4610102.简略盘算:(1)=⋅64a a (2)=⋅5b b (3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c 3.盘算:(1)=-⋅23b b (2)=-⋅3)(a a (3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32 (10)=--⋅54)2()2( 4.下面的盘算对不合错误?假如不合错误,应如何纠正? (1)523632=⨯; (2)633a a a =+;(3)n n n y y y 22=⨯; (4)22m m m =⋅; (5)422)()(a a a =-⋅-; (6)1243a a a =⋅; 二.幂的乘方:幂的乘方,底数不变,指数相乘.即:(a m )n =a mn1.填空:(1) )2(24-=___________ (2))3(32-=___________(3))2(22-=___________ (4))2(22-=___________(5) )(77m = ___________ (6) )(335m m = ___________ 2.盘算 :(1)(22)2; (2)(y 2)5(3)(x 4)3(4))(3b m -(4)(y 3)2• (y 2)3(5))()(45a a a --•• (6)xx x 72)(23-• 三.积的乘方:等于把积的每一个因式分离乘方,再把所得的幂相乘.(ab)n=a n b n1.填空:(1)(2x )2=___________(ab ) 3=_________(ac)4.=__________ (2)(-2x )3=___________)2(22a -=_________)(42a =_________(3))2(23b a - =_______ )2(422b a -=_________1.2(3)x -·32x2.33a ·44a3.54m ·23m4.23(5)a b 2(3)a -5.2x ·x ·5x6.(3)x -·2xy7.24a ·23a8.2(5)a b -·(3)a -9、3x·53x 10.34b c ·12abc 11.32x ·2(3)x -12.4y ·2(2)xy -13、2(3)x y -·21()3xy 14.4(210)⨯·5(410)-⨯15.47x ·32x16.433a b ·232(4)a b c - 17.19.2x ·232()y xy -18.23(5)a b ·23()ab c - 19.3(2)a -·2(3)a - 20.5m -·42(10)m -21.3m n x +-·4m n x - 22.23(3)x y ·(4)x - 23.24ab ·21()8a c -24.(5)ax -·22(3)x y 25.242()m a b -·2()mab - 26.54x y ·232()x y z - 27.33(3)a bc -·22(2)ab - 28.4()3ab -·2(3)ab -29.3(2)x ·2(5)xy - 30.34322(2)()x y x yc -- 31.24xy ·233()8x yz - 32.32(2)ab c -·2(2)x 33.232(3)a b -·33(2)ab c - 34.323331()(2)73a b a b c - 35.2(4)x y -·22()x y -·31()2y36.24xy ·32(5)x y -·2(2)x y - 37.22(2)x y -·1()2xyz -·3335x z 38.1()2xyz -·2223x y ·33()5yz - 39.26m n -·3()x y -·2()y x -40.221()2ab c ·231()3abc -·31()2a 41..2xy ·221()2x y z -·33(3)x y -42.331()2ab -·1()4ab -·222(8)a b -43.26a b ·3()x y -·213ab ·2()y x - 44.2(4)x y -·22()x y -·312y二.单项式乘多项式:(应用乘法分派率,改变成单项式乘单项式,然后把成果相加减) 1.2(34)m x y + 2.11()22ab ab + 3.2(1)x x x --4.22(321)a a b +-5.23(21)x x x --6.4(3)x x y -7.()ab a b +8.6(21)x x +9.(1)x x + 10.3(52)a a b - 11.3(25)x x -- 12.212()2x x -13.2323(2)a a b a - 14.(3)(6)x y x -- 15.22()x x y xy - 16.2(4)(2)a b b --17、2(31)(2)x x -+- 18.(2)a -·31(1)4a - 19.2323()(21)2x x x -+- 20.22(2)3ab ab -·12ab 21.224(35)m m n mn -+22.2(3)(22)ab a b ab --+ 23.5ab·(20.2)a b -+ 24.224(2)39a a --·(9)a -25.23(251)x x x ---26.22(1)x x x --+ 27.2x ·21(1)2x - 28.2123()33x x + 29.24(231)a a a -+- 30.22(3)(21)x x x --+-31.25(1)xy x y +- 32.212(3)2x y xy y -+ 33.2223(34)xy x y xy --34.223()ab a b ab ab -+35.22(232)ab a ab a -+ 36.213a b -·22(639)a ab b -+37.321(248)()2x x x ----38、322(356)x x x --- 39.3223(36)4a b c ac -+·13ab40.(1)2(1)3(25)x x x x x x +++--41.()()()a b c b c a c a b ---+- 42.223121(3)()232x y y xy +-- 43.221(2)2x y xy y -+·(4)xy - 43.2325101(1)()335a b a b ab -+- 44..221(2)(4)2x y xy y xy -+-三、多项式乘多项式:(转化为单项式乘多项式,然后在转化为单项式乘单项式)1.(31)(2)x x ++2.(8)()x y x y --3.(1)(5)x x ++4.(21)(3)x x ++5.(2)(3)m n m n +-6.(3)(3)a b a b +-7.2(21)(4)x x --8.2(3)(25)x x +-9.(2)(3)x x ++ 10.(4)(1)x x -+ 11.(4)(2)y y +- 12.(5)(3)y y --13.()()x p x q ++ 14.(6)(3)x x -- 15.11()()23x x +- 16.(32)(2)x x ++17.(41)(5)y y -- 18.2(2)(4)x x -+ 19.(4)(8)x x -- 20.(4)(9)x x ++21.(2)(18)x x -- 22.(3)()x x p ++ 23.(6)()x x p -- 24.(7)(5)x x ++25.(1)(5)x x ++ 26.11()()32y y +- 27.(2)(3)a b a b -+ 28.(3)(23)t t +-29.2(45)(2)x xy x y +- 30.(3)(34)y y -+ 31.(3)(2)x x +-32.(2)(2)a b a b +-33.(23)(3)x x +- 34.(3)()x x a ++ 35.(1)(3)x x -+ 36.(2)(2)a b --37.(32)(23)x y x y ++ 38.(6)(1)x x +- 39.(3)(34)x y x y -+ 40.(2)(1)x x -+-41.(23)(32)x y x y +- 42.2(1)(1)x x x -++ 43.22()()a b a ab b +-+ 44.22(321)(231)x x x x +++- 45.22()()a b a ab b -++46.22()()x xy y x y ++- 47.22()()x a x ax a -++ 48.22()()x y x xy y -++49.4242(331)(2)x x x x -++- 50.22()()x y x xy y +-+四、平方差公式和完整平方公式1.(1)(1)x x +-2.(21)(21)x x +-3.(5)(5)x y x y +-4.(32)(32)x x +-5.(2)(2)b a a b +-6.(2)(2)x y x y -+--7.()()a b b a +-+8.()()a b a b ---9.(32)(32)a b a b +- 10.5252()()a b a b -+11.(25)(25)a a +-12.(1)(1)m m ---13.11()()22a b a b --- 14.(2)(2)ab ab --- 15.10298⨯ 16.97103⨯ 17.4753⨯ 18.22()()()a b a b a b +-+ 19.(32)(32)a b a b +-20.(711)(117)m n n m --- 21.(2)(2)y x x y --- 22.(4)(4)a a +-+ 23.(25)(25)a a -+ 24.(3)(3)a b a b +- 25.(2)(2)x y x y +-完整平方:1.2(1)p + 2.2(1)p - 3.2()a b - 4.2()a b +5.2(2)m +6.2(2)m -7.2(4)m n +8.21()2y - 9.2(3)x y - 10.2(2)a b --11.21()a a + 12.2(52)x y -- 13.2(2)a b - 14.21()2x y - 15.2(23)a b +16.2(32)x y - 17.2(2)m n -- 18.2(22)a c + 19.2(23)a -+ 20.21(3)3x y +21.2(32)a b + 22.222()a b -+ 23.22(23)x y -- 24.2(1)xy - 25.222(1)x y -五.同底数幂的除法:底数不变,指数相减.任何不等于 0 的数的 0 次幂都等于0.(1)26a a ÷ (2))()(8b b -÷- (3)24)()(ab ab ÷ (4)131533÷(5)473434)()(-÷- (6)214y y ÷ (7))()(5a a -÷-(8)25)()(xy xy -÷-(9)n n a a 210÷(10)57x x ÷(11)89y y ÷ (12)310a a ÷(13)35)()(xy xy ÷ (14)236t t t ÷÷ (15)453p p p ÷⋅16))()()(46x x x -÷-÷- (17) 112-+÷m m a a (m 是正整数)(18)[]3512)(x x x ⋅-÷ (19)x x x x x ⋅÷⋅÷431012 (20)32673)()(x x x ÷(21)279)3()3(252⋅÷-⋅- (22)232232432)()()(y x y x y x ⋅-÷六、整式的除法1.._______362=÷x x2..______)5.0()3(2353=-÷-n m n m 3.._______)102()104(39=⨯-÷⨯ 4.._______)(34)(836=-÷-b a b a 5.2222234)2(c b a c b a ÷-=________ 6..________])[()(239226=⋅÷÷÷a a a a a 7..________)]()(51[)()(523=+--÷+-y x x y y x y x8.m m 8)(16=÷.9.⎪⎭⎫ ⎝⎛-÷2333238ax x a ; 10.()2323342112⎪⎭⎫⎝⎛÷-y x yx ;11.()()3533263b a c b a -÷; 12.()()()32332643xy y x ÷⋅; 13.()()39102104⨯-÷⨯; 14.()()322324n n xy y x -÷15.32332)6()4()3(xy y x ÷-⋅; 16.233224652)3(12z y x z y x z y x ÷-÷; 17.)102(10)12(562⨯÷⨯--; 18222221)52()41()25(n n n n b a b a b a -⋅-÷+; 21.322543323)3()18(2)3(c a b a ac c b a ÷-÷⋅-; 22..])3(5[])3(5[223-+-÷+-m m b a b a 23.222221324125⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+n n n n y x y x y x24.()()()44232323649b a b a b a -÷-⨯-25.())2(10468234x x x x x -÷+-- 26.⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-c a bc a c b a 2223325232因式分化专题练习18、提公因式法(1)-15ax-20a; (2)-25x 8+125x 16; (3)-a 3b 2+a 2b 3;(4)6a3-8a2-4a;(5)-x3y3-x2y2-xy;(6)a8+a7-2a6-3a5;(7)6a3x4-8a2x5+16ax6;(8)9a3x2-18a5x2-36a4x4;4、x(a+b)+y(a+b);(10)(a+b)2+(a+b); (11)a2b(a-b)+3ab(a-b);39、x(a+b-3c)-(a+b-3c) (13)a(a-b)+b(b-a);(14)(x-3)3-(x-3)2;五、a2b(x-y)-ab(y-x);(16)a2(x-2a)2-a(2a-x)2;(17)(x-a)3+a(a-x);(18)(x-2y)(2x+3y)-2(2y-x)(5x-y);(19)3m(x-5)-5n(5-x); (20)y(x-y)2-(y-x)3;(21)a(x-y)-b(y-x)-c(x-y);(22)(x-2)2-(2-x)3;七、应用公式法分化因式1.下面各题,是因式分化的画“√”,不是的画“×”.(1)x(a-b)=xa-xb; ()(2)xa-xb=x(a-b); ()(3)(x+2)(x-2)=x2-4; ()(4)x2-4=(x+2)(x-2); ()(5)m(a+b+c)=ma+mb+mc; ()(6)ma+mb+mc=m(a+b+c); ()(7)ma+mb+mc=m(a+b)+mc. ()2.填空:(1)ab+ac=a( );(2)ac-bc=c( );(3)a2+ab=a( );(4)6n3+9n2=3n2( ).3.填空:(1)多项式ax+ay各项的公因式是;(2)多项式3mx-6my各项的公因式是;(3)多项式4a2+10ab各项的公因式是;(4)多项式15a2+5a各项的公因式是;(5)多项式x2y+xy2各项的公因式是;(6)多项式12xyz-9x2y2各项的公因式是.4.把下列各式分化因式:(1) 4x3-6x2 (2) 4a3b+2a2b2= == =(3) 6x2yz-9xz2 (4) 12m3n2-18m2n3 = == =1.填空:(1)把一个多项式化成几个因式的情势,叫做因式分化;(2)用提公因式法分化因式有两步,第一步:公因式,第二步:公因式.2.直接写出因式分化的成果:(1)mx+my=(2)3x3+6x2=(3)7a2-21a=(4)15a2+25ab2=(5)x2+x=(6)8a3-8a2=(7)4x2+10x=(8)9a4b2-6a3b3=(9)x2y+xy2-xy=(10)15a2b-5ab+10b=3.下列因式分化,分化完的画“√”,没分化完的画“×”.(1)4m2-2m=2(2m2-m); ()(2)4m2-2m=m(4m-2); ()(3)4m2-2m=2m(2m-1). ()4.直接写出因式分化的成果:(1)a(x+y)+b(x+y)=(2)6m(p-3)-5n(p-3)=(3)x(a+3)-y(3+a)=(4)m(x2-y2)+n(x2-y2)=(5)(a+b)2+c(a+b)=5.把下列式子分化因式:(1) m(a-b)+n(b-a) (2) x(a-3)-2(3-a) = == =6.断定正误:下列因式分化,对的画“√”,错的画“×”.(1)x(a+b)-y(b+a)=(a+b)(x+y); ()(2)x(a-b)+y(b-a)=(a-b)(x+y); ()(3)x(a-b)-y(b-a)=(x+y)(a-b); ()(4)m2(a+b)+m(a+b)=(a+b)(m2+m). ()1.直接写出因式分化的成果:(1)2a2b+4ab2=(2)12x2yz-8xz2=(3)2a(x+y)-3b(x+y)=(4)x(m-n)-y(n-m)=2.分化因式:(1) x2-25 (2) 9-y2= == =(3) 1-a2 (4) 4x2-y2= == =(5) 9a2-4b22-16n2= == =b2(8) 4x2y2-9z2(7) a2-125= == =3.分化因式:(1) (a+b)2-a2 (2) (x+y)2-(x-y)2= == =4.分化因式:(1) x4-1 (2) -a4+16= == == =(一)根本练习,巩固旧知1.填空:两个数的平方差,等于这两个数的与这两个数的的积,即a2-b2=,这个公式叫做因式分化的公式.2.填空:在x2+y2,x2-y2,-x2+y2,-x2-y2中,能用平方差公式来分化因式的是.3.直接写出因式分化的成果:(1)4a2-9y2=(2)16x2-1=(3)(a+b)2-c2=(4)x4-y2=4.应用完整平方公式分化因式:(1) a2+2a+1 (2) x2-6x+9= == =(3) 4x2-20xy+25y2 (4) x2+36+12x= == =5.应用完整平方公式分化因式:(1) -2xy-x2-y2 (2) (a+b)2-4(a+b)b+4b2 = == == =。

整式的乘法综合练习题(乘法公式三套)

整式的乘法综合练习题(乘法公式三套)

整式的乘法综合练习题(125题)(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择:27.下列计算最后一步的依据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交换律)=-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.( )A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是 [ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是 [ ]A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是 [ ]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[ ]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列计算正确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[ ]58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.x n+1(x n-x n-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).70.(-2a m b n)(-a2b n)(-3ab2).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(0.3a3b4)2·(-0.2a4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).86.[(-a2b)3]3·(-ab2).83.(3a m+2b n+2)(2a m+2a m-2b n-2+3b n).91.(-2x m y n)3·(-x2y n)·(-3xy2)2.87.(-2ab2)3·(3a2b-2ab-4b2).92.(0.2a-1.5b+1)(0.4a-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简(五)求值;104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=106.光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒.问地球与太阳的距离约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字互换,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.整式的运算练习(提高27题)1、=2、若2x + 5y-3 = 0 则=3、已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5) 8、计算9、计算,当a6 = 64时, 该式的值。

(完整版)整式的乘法习题(含详细解析答案)

(完整版)整式的乘法习题(含详细解析答案)

整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。

华师大版八年级数学上册《整式的乘除》单元试卷检测练习及答案解析

华师大版八年级数学上册《整式的乘除》单元试卷检测练习及答案解析一、选择题1、下列运算正确的是()A.(a3)2=a6B.2a+3a=5a2C.a8÷a4=a2D.a2·a3=a62、若、、是正整数,则=()A.B.C.D.3、若,,则等于()A.B.C.2 D.4、计算的结果是()A.B.C.D.5、若,,则代数式的值等于()A.B.C.D.26、若(x2+px+q)(x2+7)的计算结果中,不含x2项,则q的值是()A.0 B.7 C.-7 D.±77、已知x+y=-5,x-y=2,则x2-y2=()A.. B.C.D.8、如果是一个完全平方式,那么的值是().A.B.C.D.9、计算(36x6-16x2)÷4x2的结果为()A.9x3﹣4x2B.9x4+4 C.9x3+4x D.9x4﹣4 10、某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.8,1 B.16,2C.24,3 D.64,8二、填空题11、分解因式:3a3-3a=______.12、已知x a=3,x b=4,则x3a﹣2b的值是_____.13、计算:=_______.14、若的结果中不含x的一次项,则=________.15、已知x﹣y=4,则代数式x2﹣2xy+y2﹣25的值为_____.16、已知一个三角形的面积为8x3y2-4x2y3,一条边长为8x2y2,则这条边上的高为___________.17、计算:(﹣a)2÷(﹣a)= ,0.252007×(﹣4)2008= .18、已知,则=______.19、计算的结果是_______.20、若=7,则___________.三、计算题21、计算:(1)(2)(3)(4)22、因式分解:⑴⑵⑶⑷四、解答题23、一个三角形的底边长为,高为,该三角形面积为S,试用含的代数式表示S,并求当时,S的值.24、先化简,再求值:,其中x =-1,y =.25、计算:(1)已知a+b=-3,ab=5,求多项式4a2b+4ab2-4a-4b的值;(2)已知x2-3x-1=0,求代数式3-3 x2+9x的值?26、已知(x2+px+8)与(x2﹣3x+q)的乘积中不含x3和x2项,求p、q的值.27、阅读:将代数式转化为的形式,(期中为常数),则其中.(1)仿照此法将代数式化为的形式,并指出的值.(2)若代数式可化为的形式,求的值.参考答案1、A2、C3、A4、B5、B6、C7、D8、D9、D10、B11、3a(a+1)(a-1)12、13、214、-815、-916、2x-y17、﹣a,﹣4.18、-219、.20、±321、(1)1;(2);(3);(4)2.22、⑴==⑵==⑶===4⑷=== 23、.24、原式==025、(1)-48;(2)026、p=3,q=1.27、①;②答案详细解析【解析】1、分析:结合选项分别进行幂的乘方、合并同类项、同底数幂的乘除法等运算,然后选择计算正确选项即可.详解:A、(a3)2=a6,原式计算正确,故本选项正确;B、2a+3a=5a,原式计算错误,故本选项错误;C、a8÷a4=a4,原式计算错误,故本选项错误;D、a2·a3=a5,原式计算错误,故本选项错误.故选A.点睛:本题考查了幂的乘方乘方,合并同类项,同底数幂的乘除法. 熟练掌握它们的计算法则是计算正确的关键.2、分析:首先根据同底数幂的乘法将括号里面的进行计算,然后根据积的乘方计算法则得出答案.详解:原式=,故选C.点睛:本题主要考查的是同底数幂的乘法以及幂的乘方计算,属于基础题型.解决这个问题的关键就是明确幂的计算法则.3、分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.详解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2=27÷25=.故选A.点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m﹣2n化为(2m)3÷(2n)2.4、试题解析:故选B.5、∵,,∴(x-1)(y+1)=xy+x-y-1=.故选B.6、(x2+px+q)(x2+7)=x4+7x2+px3+7px+qx2+7q=x4+px3+(7+q)x2+7px+7q,因为计算结果中不含x2项,所以7+q=0,所以q=-7;故选C.7、本题考查平方差公式进行因式分解,因为x2-y2=(x+y)(x-y),将x+y=-5,x-y=2,代入得: -5×2=-10,因此,正确选项是D.8、∵形如的式子叫完全平方式,而,∴若是完全平方式,则,∴,故选D.9、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.所以(36x6-16x2)÷4x2= 9x4﹣4考点:整式的除法.10、由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x-2)=(x2+4)(x2-4)=x4-16,则■=16.故选B.【点睛】此题考查了学生用平方差公式分解因式的掌握情况,灵活性比较强.11、分析:提取公因式法和公式法相结合进行因式分解即可.详解:原式故答案为:点睛:考查因数分解,提取公因式法和公式法相结合进行因式分解.注意分解一定要彻底.12、分析:直接利用同底数幂的除法运算法则计算得出答案.详解:∵x a=3,x b=4,∴x3a﹣2b=(x a)3÷(x b)2=33÷42=.故答案为:.点睛:本题主要考查了同底数幂的乘除运算,正确将原式变形是解题的关键.13、分析:先把改写成2100=,然后逆用积的乘方公式(ab)m=a m·b m,即a m·b m=(ab)m解答.详解:====2.点睛:本题考查了偶次幂的性质和积的乘方运算,解答本题的关键是逆用乘方运算公式.14、试题解析:结果中不含的一次项.故答案为:15、解: x2﹣2xy+y2﹣25=(x﹣y)2﹣25 =42﹣25=﹣9,故答案为:﹣9.16、∵三角形的面积为8x3y2-4x2y3,一条边长为8x2y2,∴这条边上的高为2(8x3y2-4x2y3) ÷8x2y2=16x3y2÷8x2y2-8x2y3÷8x2y2=2x-y,故答案为:2x-y.17、试题分析:根据同底数幂的除法底数不变指数相减,可得答案;根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方,可得答案.解:(﹣a)2÷(﹣a)=﹣a,0.252007×(﹣4)2008=[0.25×(﹣4)]2007×(﹣4)=﹣4,故答案为:﹣a,﹣4.18、本题利用拆常数项凑完全平方的方法进行求解,,可变形为:,即,根据非负数的非负性可得:解得: :,所以19、原式===12017=-.故答案为-.点睛:积的乘方公式:(ab)n=a n b n(n为正整数)的逆运算:a n b n = (ab)n(n为正整数)也成立.20、(x+)2=x2+2+=7+2=9,x+=±3.故答案为±3.点睛:(1)(x+)2=x2+2+;(x-)2=x2-2+.21、试题分析:(1)原式=;(2)原式=;(3)原式=;(4)原式=.考点:整式的混合运算.22、试题解析:点睛:因式分解:把一个多项式分解成几个整式的积的形式.因式分解的主要方法:提公因式法,公式法,十字相乘法,分组分解法.23、分析:利用三角形的面积公式得到三角形的面积S=(4a+2)(2a-1),然后利用平方差公式计算可得用含a的代数式表示S;再将a=2代入计算即可求解.详解:,当时,.点睛:本题考查了多项式乘多项式,平方差公式的知识,解决此类问题的关键是牢记平方差公式.24、分析:首先根据乘法公式将括号去掉,然后进行合并同类项,最后根据多项式除以单项式的法则得出答案,将x和y的值代入化简后的式子进行计算得出答案.详解:原式===,将x =,y =代入上式,原式=0.点睛:本题主要考查的是多项式的乘法和除法的计算法则,属于基础题型.在解决这个问题的时候,公式的应用是非常关键的.25、分析:(1)、首先进行分组分解,然后提取公因式,最后利用整体代入的思想进行求解;(2)、首先提取公因式-3,然后整体代入进行求解.详解:(1)、解:原式 ="4" ab(a+b)-4(a+b)="(4" ab-4)(a+b)=4(ab-1)(a +b)当a+b=-3,ab=5时,原式=4×(5-1)×(-3)=4×4×(-3)=-48(2)、原式=-3(x2-3x-1),当x2-3x-1="0," 原式=-3×0=0.点睛:本题主要考查的是利用因式分解进行简便计算,属于基础题型.解决这个问题的关键就是将所求的代数式进行因式分解.26、试题分析:根据整式的乘法,化简完成后,根据不含项的系数为0求解即可.试题解析:∵(x2+px+8)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q=x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q.∵乘积中不含x2与x3项,∴p﹣3=0,q﹣3p+8=0,∴p=3,q=1.27、试题分析:根据完全平方公式的结构,按照要求即可得出答案.试题解析:①则②则.。

完整版)整式的乘法练习题

完整版)整式的乘法练习题1.a8 = (-a)82.a15 = (a5)33.3m2·2m3 = 6m54.(x+a)(x+a) = x2 + 2ax + a25.a3·(-a)5·(-3a)2·(-7ab3) = 21a8b36.(-a2b)3·(-ab2) = a4b57.(2x)2·x4 = 4x68.24a2b3 = 6a2·4b39.[(am)n]p = amnp10.(-mn)2(-m2n)3 = m10n711.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是 -412.m是x的六次多项式,n是x的四次多项式,则2m-n 是x的十次多项式14.(3x2)3-7x3[x3-x(4x2+1)] = -28x915.{[(-1)4]m}n = 116.-{-[-(-a2)3]4}2 = -a9617.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是 (a+2)(a-2)(a+3)厘米318.若10m=a,10n=b,那么10m+n=ab19.3(a-b)2[9(a-b)n+2](b-a)5 = -3(a-b)n+1120.已知3x·(xn+5)=3xn+1-8,那么x=-321.若a2n-1·a2n+1=a12,则n=222.(8a3)m÷[(4a2)n·2a]=2ma3-2n23.若a<1,n为奇数,则(an)5<a524.(x-x2-1)(x2-x+1)n(x-x2-1)2n = (x-x2-1)2n+1(x2-x+1)n25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是 -15x3y626.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于 127.选项C28.选项B9a3·2a2可以化简为18a5,2x5·3x4可以化简为5x9,3x3·4x3可以化简为12x3,3y3·5y3可以化简为15y9.ym)3·yn可以化简为y3m+n。

整式的乘法与因式分解习题带答案精选全文完整版

可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。

整式的乘法练习题

14.1整式的乘法单元练习题一、选择题1、计算下列各式结果等于54x 的是( )A 、225x x ⋅B 、225x x + C、x x +35 D、x x 354+2、下列计算错误的是( ).A .(-2x)3=-2x 3B .-a 2·a=-a3C .(-x)9+(-x)9=-2x9D .(-2a 3)2=4a 63、下面是某同学的作业题:○13a+2b=5ab ○24m 3n-5mn 3=-m 3n ○35236)2(3x x x -=-⋅ ○44a 3b ÷(-2a 2b)=-2a ○5(a 3)2=a 5 ○6(-a)3÷(-a)=-a 2 其中正确的个数是( ) A 、1 B 、2 C 、3 D 、4 4、若(2x -1)0=1,则( ).A .x≥12-B .x≠12-C .x≤12-D .x≠12 5、若(x x -2+m )(x -8)中不含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或-8 6、化简2)2()2(a a a --⋅-的结果是( )A .0B .22aC .26a -D .24a - 7、下列各式的积结果是-3x 4y 6的是( ). A .213x -·(-3xy 2)3 B .21()3x -·(-3xy 2)3 C .213x -·(-3x 2y 3)2 D .21()3x -·(-3xy 3)2 8、如果a 2m -1·am +2=a 7,则m 的值是( ).A .2B .3C .4D .59、210+(-2)10所得的结果是( ). A .211B .-211C .-2D .210、计算(32)2003×1.52002×(-1)2004的结果是( ) A 、32 B 、23 C 、-32D 、-23 11、(-5x)2·52xy 的运算结果是( ).A 、10y x 3B 、-10y x 3C 、-2x 2y D 、2x 2y12、(x -4)(x +8)=x 2+mx +n 则m ,n 的值分别是( ).A .4,32B .4,-32C .-4,32D .-4,-3213、当()mn mnb 6-=-成立,则( )A 、m 、n 必须同时为正奇数B 、m 、n 必须同时为正偶数C 、m 为奇数D 、m 为偶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法
一、选择题
1、计算下列各式结果等于45x 的是( )
A 、225x x ⋅
B 、225x x + C、x x +35 D、x x 354+
2、下列式子可用平方差公式计算的式子是( )
A 、()()a b b a --
B 、()()11-+-x x
C 、()()b a b a +---
D 、()()11+--x x
3、下列各式计算正确的是( ) A 、()
663
2
2b a b a =- B 、()
525
2b a b a -=-
C 、124341b a ab =⎪⎭⎫ ⎝⎛-
D 、462
239131b a b a =⎪⎭⎫
⎝⎛-
4、下列各式计算正确的是( )
A 、222
9161413121
b ab a b a +-=⎪⎭⎫ ⎝⎛- B 、()()842232-=++-x x x x
C 、()222
b a b a -=- D 、()()116141422-=++b a ab ab
5、已知41=+
a a 则=+221
a
a ( ) A 、12 B 、 14 C 、 8 D 、16
6、已知x 2+y 2=2, x +y =1、则xy 的值为 ( )
A 、2
1- B 21
1- C 、-1 D 、3
7、下列多项式中,没有公因式的是( )
A 、()y x a +和(x +y )
B 、()b a +32和()b x +-
C 、()y x b -3和 ()y x -2
D 、()b a 33-和()a b -6
8、下列四个多项式是完全平方式的是( )
A 、22y xy x ++
B 、222y xy x --
C 、22424n mn m ++
D 、224
1
b ab a ++
9、把4224y x y x -分解因式,其结果为( ) A 、(
)(
)
2222xy y x xy y x z
-+ B 、()
2222y x y x - C 、()()y x y x y x -+22 D 、()()
22xy y x y x xy -+
10、计算2120+(-2)120所得的正确结果是( )
A 、2120 B、-2120 C、-2 D、2
11、当()
mn m
n
b 6-=-成立,则( )
A 、m 、n 必须同时为正奇数。

B 、m 、n 必须同时为正偶数。

C 、m 为奇数。

D 、m 为偶数。

12、()()
1
333--⋅+-m m
的值是( )
A 、1
B 、-1
C 、0
D 、()1
3+-m
二、填空题 1、a m ·a n ·( )=a 2m+2 2、(2m+2)( )=4n 2-m 2
3、若代数式1322++a a 的值为6,则代数式5962++a a 的值为 .
4、3=x a ,则=x a 2
5、()
()=-⎪⎭

⎝⎛-⋅ac abc c 241223 。

6、()()
()=-++52552x x x 。

7、你没的扫描仪过来所以我没有录入
8、代数式()2
7b a +-的最大值是 。

9、若()(
)
,b a a a 412
=---则ab b a -+2
2
2的值是 。

10、代数式()()()()
111142+-++-y y y y 的值为 。

11、()()x y b a y x a ---233因式分解为 。

12、若()12492
==+,xy y x ,则=+22y x 。

13、=++229124b ab a ( )2
14、=⎪⎭⎫
⎝⎛-⎪⎭⎫ ⎝⎛+-+2
244111x x x x x x 。

三、解答题
1、化简下列各式
(1)()()y x y x 2332-+ (2)()()()()2
32
2
33574x xy xy xy y y x -⋅--⋅-+-
(3)()()
14314322+++-x x x x (4)()()()()
4216224+++-x x x x
(5)()()()()c b a c b a c b a c b a ++---+--+(6)()()()737355322
+---a a a
2、分解因式
(1) xy y x y x 264222+- (2)2269y xy x +-
(3)2222c b ab a -+- (4)x a a x 2222---
(5)342+-x x (6)24822--x x
(7)y xy y x 3652-+ (8)12822++ab b a
3、简便方法计算
(1)999.8×1000.2 (2)2
499
4、已知,8=+n m ,15=mn 求22n mn m +-的值
5、已知;,012=-+a a 求1999223++a a 的值
四、你能很快算出 21995吗?
为了解决这个问题,我们考察个位上的数字是5的自然数的平方,任意一个个位数为5的自然数可写成,510+n 即求()2
510+n 的值(n 为正整数),你分析n=1、
n=2,…这些简单情况,从中探索其规律,并归纳、猜想出结论(在下面的空格内填上你探索的结果)。

(1)通过计算,探索规律
152=225 可写成10×1×(1+1)+25 252=625 可写成10×2×(2+1)+25 352=1225 可写成10×3×(3+1)+25 452=2025 可写成10×4×(4+1)+25 …
5625752= 可写成 。

7225852= 可写成 。

(2)从第(1)题的结果归纳、猜想得:()=+2
510n 。

(3)根据上面的归纳、猜想,请算出:=21995 。

相关文档
最新文档