初一数学单元测试题一元一次方程II
人教版七年级上册数学一元二次方程单元检测(含答案解析)

【解析】
【分析】
设这堆糖果有x个,根据不同的分配方法,小朋友的人数是一定的,据此列方程.
【详解】设这堆糖果有x个,
若每人2颗,那么就多8颗,
则有小朋友 人,
若每人3颗,那么就少12颗,
则有小朋友 人,
据此可知 .
故选A.
【点睛】考查一元一次方程的应用,读懂题目,找到题目中的等量关系是解题的关键.
【详解】解:根据一元一次方程的定义,可知:
解得:
故选B
【点睛】考查一元一次方程的定义,含有一个未知数,未知数的最高次数是1的整式方程就是一元一次方程.
6.若x=﹣1是关于x的方程2x+3=a的解,则a的值为( )
A.﹣5B. 5C. 1D.﹣1
【答案】C
【解析】
【分析】
把x的值代入方程计算即可求出a的值.
A. (1﹣10%)x万元B. (1﹣10%x)万元
C. (x﹣10%)万元D. (1+10%)x万元
5.关于x的方程(m2﹣1)x2+(m﹣1)x+7m2=0是一元一次方程,则m的取值是()
A.m=0B.m=﹣1C.m=±1D.m≠﹣1
6.若x=﹣1是关于x 方程2x+3=a的解,则a的值为( )
A.(1﹣10%)x万元B.(1﹣10%x)万元
C.(x﹣10%)万元D.(1+10%)x万元
【答案】A
【解析】
【分析】
1、本题属于列代数式的题目,解答此类题目首先要弄清楚语句中各个量之间的关系;
2、细查题意,由2月份比1月份减少了10%先表示出2月份的产值为(1-10%)x万元.
【详解】由2月份比1月份减少了10%得2月份的产值是(1-10%)x万元.
苏教版初一数学上册第二章一元一次方程复习练习卷及答案

第二章 一元一次方程复习(时间:100分钟 满分:100分)一、选择题(每题2分,计20分)1.若式子7—2x 和5—x 的值互为相反数,则x 的值为( ). A .4 B .2 C .29 D .272.解方程26231=+--x x ,去分母正确的是( ). A.2212=+--x x B. 12212=+--x xC.6222=---x xD. 12222=---x x 3.当x=-2时代数式2x 2-3x+Kx-10的值是0,则K 值是( ). A .-2 B .2 C .-4 D .44.有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有( )个. A. 4 B. 5 C. 6 D. 无数 5.方程2x+1=-3和方程2-3a x-=0的解相同,则a 值是( ). A .8 B .4 C .3 D .56.小明今年13岁,他的妈妈40岁.几年后,小明的年龄是他妈妈年龄的21?如果设x 年后小明的年龄是他妈妈年龄的21,由此可以得到方程( ). A .)40(2113x x +=+ B .)40(2113x x -=-C .x x +=+40)13(21D .x x -=-40)13(217.右边给出的是某月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研 究,发现这三个数的和不可能是( ).A .69B .54C .27D .408.一个长方形周长是16cm ,长与宽的差是1cm ,那么长与宽分别为( ). A .3cm ,5cm B .3.5cm ,4.5cm C .4cm ,6cm D .10cm ,6cm9.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了( )道题.A .17B .18C .19D .20()().1 41634115 , -=⎪⎭⎫ ⎝⎛-=---x x a x x a a 的解是方程为何值时10.某小组分若干本图书,若每人分给一本,则余一本,若每人分给2本,则缺3本,那么共有图书( ).A .6本B .5本C .4本D .3本 二、填空题(每题3分,计24分)11.|a +2b-1|+|2-b|=0,则(a b )b=______. 12.若(a +2)x |a |-1+3=-6是关于x 的一元一次方程,则a =________.13.定义a *b=a b+a +b +3,若—2* x =8,则x 的值是________.14.若一个数的平方是25,则这个数的立方是________.15.一个三位数,个位数字是x ,百位数字比个位数字大2,十位数字比个位数字小2,则这个三位数是_________________.1610时,则输入的x=________.17.已知线段AB 的长为18cm ,点C 在直线AB 上,且AC=BC 35,则线段BC=___. 18.若P 为正整数,当P=_______时,方程2x+P=3的解是正整数. 三、解答题(共56分)19.(4分)解方程:x x x x 47)2132(342=⎥⎦⎤⎢⎣⎡--+.20.(4分)21.(6分)用棋子摆下面一组正方形图案…① ② ③ (1)(2)照这样的规律摆下去,当每边有n 颗棋子时,这个图形所需要棋子总颗数是_____________,第100个图形需要的棋子颗数是_____________.22.(6分)一个人问:“尊敬的毕达哥拉斯,请你告诉我,有多少学生在你的学校里听你讲课?”,毕达哥拉斯回答说:“一共有这么多学生在听课,其中的21在学习数学,41学习音乐,71沉默无言,还有3名妇女.”请你算出共有多少学生. 23.(6分)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?24.(6分)请联系你的学习和生活,编制一道实际问题,使列得的方程为51- x = 45 + x.25.(6分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?26.(6分)阅读以下例题:解方程:|3x|=1.解:①当3x≥0时,原方程可化为一元一次方程3x=1,它的解是:x=1 3;②当3x<0时,原方程可化为一元一次方程-3x=1,它的解是:x=-1 3.∴原方程的解是:x1=-13,x2=13仿照例题解方程:|2x+1|=527.(6分)近年来,某市旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假.下面两图分别反映了该市2001-2004年游客总人数和旅游业总收入情况.根据统计图提供的信息,解答下列问题:(1)2004年游客总人数为 ________万人次,旅游业总收入为________万元;(2)在2002年,2003年,2004年这三年中,旅游业总收入增长幅度最大的是_________ 年,这一年的旅游业总收入比上一年增长的百分率为_______(精确到0.1℅);(3)2004年的游客中,国内游客为1200万人次,其余为海外游客,据统计,国内游客的人均消费约为700元,问海外游客的人均消费约为多少元?(注:旅游收入=游客人数×游客的人均消费)28.(6分)小红沿公路前进,对面来了一辆汽车,他问司机:“后面有一辆自行车吗?”司机回答:“10分钟前我超过一辆自行车.”小红又问:“你的车速是多少?”司机回答:“75千米/时”.小红继续走了20分钟就遇到了这辆自行车,小红估计自己步行的速度是3千米/时,你能帮助小红计算一下这辆自行车的速度吗?第二章 一元一次方程复习一、选择题1.A 2.D 3.B 4.B 5.B 6.A 7.D 8.B 9.C 10.B 二、填空题11.36 12.2 13.—7 14.±125 15.100(x+2)+10(x —2)+x 16.±2 17.cm cm 27,42718.1 三、解答题 19.712-=x 20.32=a 21.(1)4,5,6,11,12,16,20,40;(2)4(n —1),400 22.设有x 名学生,则28,3714121==+++x x x x x 23.设甲成本为x 元,则()[]200300500,300,500157%90%)401)(500(%501=-=+=⨯+-++x x x24.略25.(1)设购买乒乓球x 盒时,付款一样,则10%,90)5305()5(5305=⨯+⨯=-+⨯x x x ; (2)乙店26.2,—3 27.(1)1225,94000;(2)2004,41.4%;(3)4000 28.设自行车的速度为xkm/h ,则6010756010)3(6020⨯=++x x ,x=23。
一元一次方程单元测试题.docx

一元一次方程单元测试题一、选择题(每题2分,共10分)1. 解下列方程,求x的值:\[ 3x - 5 = 14 \]A. -1B. 3C. 5D. 72. 已知方程 \( ax + b = 0 \) 的解是 \( x = 5 \),那么 \( a \) 和 \( b \) 的关系是:A. \( a = 0 \)B. \( b = 0 \)C. \( 5a + b = 0 \)D. \( 5a = -b \)3. 如果方程 \( 2x - 1 = 7x + 3 \) 的解是正数,那么 \( x \) 的范围是:A. \( x > -1 \)B. \( x > 0 \)C. \( x < 0 \)D. \( x < -1 \)4. 方程 \( 3x + 2 = 2x + 5 \) 的解是:A. \( x = 1 \)B. \( x = 2 \)C. \( x = 3 \)D. \( x = 4 \)5. 根据题目中的信息,下列哪个方程没有解:A. \( x + 2 = 3x \)B. \( x - 5 = 2x + 3 \)C. \( 3x - 4 = 2x + 6 \)D. \( 4x + 5 = 5x - 4 \)二、填空题(每题2分,共10分)6. 解方程 \( 4x + 6 = 2x + 10 \) 后,\( x \) 的值为 _______。
7. 如果 \( x \) 是方程 \( 5x - 3 = 2x + 7 \) 的解,那么 \( 3x \) 的值为 _______。
8. 方程 \( ax - b = 0 \) 的解是 \( x = \frac{b}{a} \),当\( a \) 不等于 _______ 时,方程有唯一解。
9. 已知 \( x \) 是方程 \( 3x + 1 = 2x + 4 \) 的解,那么 \( x- 1 \) 的值为 _______。
10. 如果方程 \( 2x = 6 \) 的解也是方程 \( 3x - 5 = 0 \) 的解,那么 \( x \) 的值为 _______。
数学七年级上册一元二次方程单元综合测试题附答案

(满分120分,考试用时120分钟)
一、选择题(本大题共10小题,每小题3分,共30分)
1.下列方程中,是一元一次方程的是( )
A.x2﹣4x=3B.x=0C.x+2y=1D.x﹣1=
2.下列变形中,属于移项变形的是()
A.由5x=3,得x= B.由2x+3y-4x=0,得2x-4x+3y=0
3.下列方程中解为x=3的方程是( )
A. 3x+1=5x-5B. 2(x+3)=-x+9
C. 3(1-2x)-2(x+3)=0D.
[答案]A
[解析]
[分析]
把x=3代入每个方程,看看左边和右边是否相等即可.
[详解]解:A.把x=3代入方程3x+1=5x−5得:左边=10,右边=10,
左边=右边,
所以x=3是方程的解,故本选项符合题意;
1.下列方程中,是一元一次方程的是( )
A.x2﹣4x=3B.x=0C.x+2y=1D.x﹣1=
[答案]B
[解析]
[分析]
一元一次方程的一般式为Ax+B=0(A≠0),根据该定义进行判断即可.
[详解]解:x2﹣4x=3,未知数x的最高次数为2,故A不是一元一次方程;
x=0,符合一元一次方程的定义,故B是一元一次方程;
C.由 =2,得x=2×3D.由4x-4=5-x,得4x+x=5+4
3.下列方程中解为x=3的方程是( )
A. 3x+1=5x-5B. 2(x+3)=-x+9
C. 3(1-2x)-2(x+3)=0D.
4.在解方程 时,方程两边同时乘以6,去分母后,正确的是:
【人教版】七年级上册数学一元二次方程单元检测题(带答案解析)

【解析】
【分析】
水费平均为每吨1.4元大于1.2元,说明本月用水超过了6吨,那么标准内的水费加上超出部分就是实际水费.根据这个等量关系列出方程求解.
【详解】设该用户5月份用水xt,根据题意,得
1.4x=6×1.2+2(x﹣6).
解这个方程,得x=8.
所以8×1.4=11.2(元).
C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+6
【答案】D
【解析】
试题分析:方程两边同乘以6得:3(2x+3)-6x=2(9x-5)+6.
故选D.
6.天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()
【详解】把x=2代入方程ax-5x-6=0
得:2a-பைடு நூலகம்0-6=0,
解得:a=8.
故答案为8.
【点睛】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于a的方程进行求解.
10.已知|x+1|+(y+3)2=0,则(x+y)2的值是_____.
【答案】16
【解析】
试题解析:由题意得,x+1=0,y+3=0,
14.m为何值时,代数式 的值与代数式 的值的和等于5?
【答案】m=-7
【解析】
【分析】
根据题,把数量关系用等式表示为 + =5,再解方程即可.
【详解】解:根据题意得: + =5,
2020-2021学年北京课改新版七年级上册数学第2章一元一次方程单元测试卷(有答案)

七年级上册数学第2章一元一次方程单元测试卷一.选择题(共10小题).1.在式子n﹣3、a2b、m+s≤2、x、﹣ah、s=ab中代数式的个数有()A.6个B.5个C.4个D.3个2.已知2x+y=3,则4x+2y﹣8的值为()A.﹣2B.﹣4C.4D.63.若3a2+m b3和(n﹣1)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣4B.﹣2C.2D.44.若单项式a m﹣1b2与a2b n的和仍是单项式,则n m的值是()A.3B.6C.8D.95.下列代数式符合书写要求的是()A.1a B.a÷b C.2πr2D.n•26.下列代数式中,符合书写规范的是()A.ax÷4B.a2b C.3xy D.7.下列各组整式中,是同类项的有()A.3m3n2与﹣n3m2B.yx与3xyC.53与a3D.2xy与3yz28.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦,1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过200元时,所购买的商品按原价打8折后,再减少20元”若某商品的原价为x元(x>200),则购买该商品实际付款的金额是()元.A.80%x﹣20B.80%(x﹣20)C.20%﹣20D.20%(x﹣20)9.一组数据排列如下:12 3 43 4 5 6 74 5 6 7 8 9 10…按此规律,某行最后一个数是148,则此行的所有数之和是()A.9801B.9603C.9025D.810010.如图是按照一定规律画出的“分形图”,请仔细观察,照此规律,图A5中的树枝根数是()A.28B.30C.31D.63二.填空题11.已知当x=2时,代数式ax3+bx﹣5的值为20,则当x=﹣2时,代数式ax3+bx﹣5的值是.12.若单项式3x m﹣1y2与单项式x3y n+1是同类项,则m﹣n=.13.计算:3m2n﹣2nm2=.14.对式子“3x”,可以这样解释:苹果每千克3元,某人买了x千克,共付3x元.请你再对“3x”给出另一个实际生活方面的合理解释:.15.一个圆的周长为2πr,则字母r表示的意义为.16.一根弹簧长10cm,每挂1kg的物体弹簧伸长0.5cm,则10+0.5x表示的实际意义.17.若a3n+1b与a2n+3b是同类项,则n=.18.“两个数的和与这两个数的差的乘积等于这两个数平方的差”,在学过用字母表示数后,请借助字母,用符号语言描述这句话是.19.已知下列各数:,,1,…,按此规律第6个数是.20.将2021个边长为1的正方形按如图所示的方式排列,点A,A1,A2,A3,…,A2021和点M,M1,M2,…,M2020是正方形的顶点,连接AM1,AM2,AM3,…,AM2020,分别交正方形的边A1M,A2M1,A3M2,…,A2020M2019于点N1,N2,N3,…,N2020,则N2020A2020长为.三.解答题21.请按代数式10x+30y编写一道与实际生活相关的应用题.22.如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形的总点数记为S.(Ⅰ)当n=4时,S的值为;当n=6时,S的值为;(Ⅱ)每条“边”有n个点时的总点数S是(用含n的式子表示);(Ⅲ)当n=2021时,总点数S是多少?23.关于x的代数式ax2+bx+c,若b2﹣4ac>0,则称代数式为完美代数式.已知关于x的代数式:①x2﹣4x+m﹣1;②x2+(m+1)x﹣m﹣3.(1)若代数式①是完美代数式,求m的取值范围;(2)判断代数式②是否为完美代数式.24.我们规定:若有理数a,b满足a+b=ab,则称a,b互为“等和积数”,其中a叫做b 的“等和积数”,b也叫a的“等和积数”.例如:因为+(﹣1)=﹣,×(﹣1)=﹣,所以+(﹣1)=×(﹣1),则与﹣1互为“等和积数”.请根据上述规定解答下列问题:(1)有理数2的“等和积数”是;(2)有理数1(填“有”或“没有”)“等和积数”;(3)若m的“等和积数”是,n的“等和积数”是,求3m+4n的值.25.探索规律,观察下面算式,解答问题.1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…(1)请猜想:1+3+5+7+9+…+19=;(2)请猜想:1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=;(3)试计算:101+103+…+197+199.26.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足|a+2|+(c﹣8)2=0,b=1,(1)a=,c=;(2)若将数轴折叠,使得A点与B点重合,则点C与数表示的点重合.(3)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒4个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t 的代数式表示)(4)请问:3AB﹣(2BC+AC)的值是否随着时间t的变化而改变?若变化,请说明理由:若不变,请求其值.27.请你结合生活实际,设计具体情境,解释下列代数式的意义:(1);(2)(1+20%)x.参考答案与试题解析一.选择题1.解:由代数式的定义可得n﹣3、a2b、x、﹣ah是代数式,而m+s≤2、s=ab是等式或不等式.故选:C.2.解:∵2x+y=3,∴4x+2y﹣8=2(2x+y)﹣8=2×3﹣8=6﹣8=﹣2.故选:A.3.解:由题意得,2+m=4,n﹣1=﹣3,解得,m=2,n=﹣2,则mn=﹣4,故选:A.4.解:因为单项式a m﹣1b2与a2b n的和仍是单项式,所以单项式a m﹣1b2与a2b n是同类项,所以m﹣1=2,n=2,解得m=3,n=2,所以n m=23=8.故选:C.5.解:A、带分数要写成假分数,原书写错误,故此选项不符合题意;B、应写成分数的形式,原书写错误,故此选项不符合题意;C、符合书写要求,故此选项符合题意;D、2应写在字母的前面,乘号省略,原书写错误,故此选项不符合题意.故选:C.6.解:A、ax÷4,正确的写法应为:,原书写错误,故此项不符合题意;B、a2b,正确的写法应为:2ab,原书写错误,故此项不符合题意;C、3xy为正确的写法,原书写正确,故此项符合题意;D、1ab,正确写法应为ab,原书写错误,故此项不符合题意.故选:C.7.解:A、相同字母的指数不同,不是同类项,故此选项不符合题意;B、符合同类项的定义,是同类项,故此选项符合题意;C、所含字母不同,不是同类项,故此选项不符合题意;D、所含字母不同,不是同类项,故此选项不符合题意.故选:B.8.解:由题意可得,若某商品的原价为x元(x>200),则购买该商品实际付款的金额是:80%x﹣20(元),故选:A.9.解:∵每一行的最后一个数分别是1,4,7,10…,∴第n行的最后一个数字为1+3(n﹣1)=3n﹣2,∴3n﹣2=148,解得:n=50,因此第50行最后一个数是148,∴此行的数之和为50+51+52+…+147+148==9801,故选:A.10.解:图A1有:1枝,图A2有:(1+21)枝,图A3有:(1+21+22)枝,图A4有:(1+21+22+23)枝,…图A n有:(1+21+22+23+…+2n﹣1)枝,则图A5有:(1+21+22+23+24)=31(枝),故选:C.二.填空题11.解:因为当x=2时,代数式ax3+bx﹣5的值为20,所以8a+2b﹣5=20,即8a+2b=25,当x=﹣2时,代数式ax3+bx﹣5就是﹣8a﹣2b﹣5,所以﹣8a﹣2b﹣5=﹣(8a+2b)﹣5=﹣25﹣5=﹣30,故答案为:﹣30.12.解:∵单项式3x m﹣1y2与单项式x3y n+1是同类项,∴m﹣1=3,n+1=2,解得m=4,n=1,∴m﹣n=4﹣1=3.故答案为:3.13.解:3m2n﹣2nm2=m2n.故答案为:m2n.14.解:答案不唯一.香蕉每千克3元,某人买了x千克,共付款3x元.故答案为:香蕉每千克3元,某人买了x千克,共付款3x元.15.解:一个圆的周长为2πr,则字母r表示的意义为圆的半径.故答案为:圆的半径.16.解:一根弹簧长10cm,每挂1kg的物体弹簧伸长0.5cm,则10+0.5x表示的实际意义是挂x千克的物体时弹簧的长度.故答案为:挂x千克的物体时弹簧的长度.17.解:∵a3n+1b与a2n+3b是同类项,∴3n+1=2n+3,解得n=2,故答案为:2.18.解:“两个数的和与这两个数的差的乘积等于这两个数平方的差”,用符号语言描述这句话是:(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2.19.解:第三个数1可以写成,观察,可以发现,后一项与前一项比,分母增加1,分子乘以2,∴如果用n表示项数,则第n个数可以表示为.因此第五个数为,第六个数为,故答案为.20.解:由题意可得△AA1N1∽△AA2M1,∴=,∵正方形的边长都为1,∴N1A1=.同理可得△AA2020N2020∽△AA2021M2020,∴==,∴N2020A2020=.故答案为.三.解答题21.解:答案不唯一.如一个苹果的质量是x,一个桔子的质量是y,那么10个苹果和30个桔子的质量和是10x+30y.22.解:(Ⅰ)观察图形的变化可知:当n=2时,S的值为3=3×1;当n=3时,S的值为6=3×2;当n=4时,S的值为9=3×3;当n=5时,S的值为12=3×4;当n=6时,S的值为15=3×5;故答案为:9;15;(Ⅱ)由(Ⅰ)知:每条“边”有n个点时的总点数S是3(n﹣1);故答案为:3(n﹣1);(Ⅲ)当n=2021时,总点数S=3(2021﹣1)=6060.23.解:(1)∵代数式①是完美代数式,∴(﹣4)2﹣4(m﹣1)>0,解得m<5.故m的取值范围是m<5;(2)∵(m+1)2﹣4(﹣m﹣3)=(m+3)2+4,∵(m+3)2≥0,∴(m+3)2+4>0∴代数式②是完美代数式.24.解:(1)设2与x互为“等和积数”,∴2+x=2x,∴x=2,∴有理数2的“等和积数”是2;故答案为:2;(2)设1与x互为“等和积数”,∴1+x=x,此方程无解,∴有理数1没有“等和积数”;故答案为:没有;(3)∵m的“等和积数”是,n的“等和积数”是,∴m+=m,n+=n,∴m=﹣,n=﹣,∴3m+4n=3×(﹣)+4×(﹣)=﹣2﹣3=﹣5.25.解:(1)1+3+5+7+9+…+19=()2=102=100,故答案为:100;(2)1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=()2=(n+2)2,故答案为:(n+2)2;(3)101+103+…+197+199=(1+3+5+…+197+199)﹣(1+3+…+97+99)=()2﹣()2=1002﹣502=7500.26.解:(1)∵|a+2|+(c﹣8)2=0|a+2|≥0,(c﹣8)2≥0∴a+2=0,c﹣8=0∴a=﹣2,c=8;故答案为:﹣2,8;(2)∵a=﹣2,b=1∴若将数轴折叠,使得A点与B点重合∴对折点表示的数为:﹣0.5∵c=8∴点C与数﹣9表示的点重合故答案为:﹣9;(3)根据数轴上的点向左运动用减法,向右运动用加法可得:AB=1+4t﹣(﹣2﹣2t)=6t+3;AC=8+8t﹣(﹣2﹣2t)=10t+10;BC=8+8t﹣(1+4t)=4t+7故答案为:6t+3;10t+10;4t+7;(4)结论:3AB﹣(2BC+AC)的值不随着时间t的变化而改变理由:3AB﹣(2BC+AC)=3(6t+3)﹣[2(4t+7)+(10t+10)]=﹣15所以3AB﹣(2BC+AC)的值不随着时间t的变化而改变.27.解:(1)汽车每小时行驶a千米,行驶30千米所用时间为小时.(2)小明家去年产粮食x千克,今年增产20%,则今年的产量为(1+20%)x千克.。
数学七年级上册一元二次方程单元综合测试题(带答案)
[答案]A
[解析]
[分析]
根据题中的等量关系列式计算比较大小即可.
[详解]直接存一个3年期的收益是:3×30000×2.70%=2430元;
先存一个1年期的,1年后将利息和自动转存一个2年期的收益是:30000×2.25%+2×(30000+30000×2.25%)×2.43%=2165.805元;
27.迪雅服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).
(1)若该客户按方案①购买,夹克需付款元,T恤需付款元(用含x的式子表示);若该客户按方案②购买,夹克需付款元,T恤需付款元(用含x的式子表示);
20.元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了_____元.
三.解答题
21.解方程:(1)x﹣7=10﹣4(x+0.5)(2) =1.
22.已知某轮船顺水航行3小时,逆水航行2小时,
(1)设轮船在静水中前进的速度是m千米/时,水流的速度是A千米/时,则轮船共航行多少千米?
A. 1B.﹣1C. 2D.﹣2
[答案]D
[解析]
[分析]
已知等式利用题中的新定义化简,求出解即可.
[详解]根据题意得:3(2x+3)-(3x﹣1)=4,
去括号得:6x+9-3x+1=4,
移项合并得:3x=-6,
解得:x=-2.
故答案选:D.
[点睛]本题考查了解一元一次方程,解题的关键是熟练的掌握一元一次方程的运算法则.
完整)七年级数学一元一次方程单元测试题
完整)七年级数学一元一次方程单元测试题人教版七年级数学一元一次方程单元测试题一、选择题(每题3分,共24分)1、下列四个方程中,是一元一次方程的是()AA、1/x=1.B、x=1C、x-1=1/2.D、x+y=62、已知某数x,若比它的3/4大1的数的相反数是5,求x.则可列出方程()A、-x+1=5.B、-(x+1)=5C、x-1=5.D、-(x+1)=5/43、如果方程(m-1)x+2=0是表示关于x的一元一次方程,那么m的取值范围是A、m≠0.B、m≠1C、m=-1.D、m=04、XXX想找一个解为x=-6的方程,那么他可以选择下面哪一个方程()A、2x-1=x+7.B、x-1=1/2C、2(x+5)=-4-x。
D、x=x-25、当x=3时,代数式3x-5ax+10的值为7,则a等于()A、2.B、-2C、1.D、-16、某工厂去年三月份辣条x袋,四月份比三月份增加了2倍,五月份增加到四月份的2倍,且这三个月共生产辣条3000袋,求每月生产的辣条袋数,则有题意列出的方程为()A、x+3x+2x=3000.B、x+2x+4x=3000C、2(x+5)+(-4-x)+6(x-1)=3000.D、x+2x+3x=30007、某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩()A、不赔不赚。
B、赚9元C、赔18元。
D、赚18元二、填空题(每题3分,共24分)9、已知x5m-4/3+1/x=2是关于x的一元一次方程,那么m=__________.10、已知|3x-6|+(y+3)=4,则3x+2y的值是__________.11、当x=-4时,2x+8的值等于-__________.12、方程xmx-6/4+x-4=-6的解一样,则m=__________.13、某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打____折出售此商品.14、某班学生共捐款131元,比每人平均捐款2元多35元。
七年级数学上册第三单元《一元一次方程》-解答题专项经典测试(含解析)(2)
一、解答题1.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?解析:180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元. 解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x 的值,得出答案.试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元). 答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.3.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.44.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.5.某同学在解方程21132y y a-+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a的值及此方程的解.解析:y=-3.【分析】根据题意得到去分母结果,把y=2代入求出a的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.利用等式的性质解下列方程:(1)x-2=5;(2)-23x=6;(3)3x=x+6.解析:(1)x=7;(2)x=-9;(3)x=3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解;(3)两边同时减x,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x-2+2=5+2,即x=7.(2)等式两边乘-32,得x=6×(-32),即x=-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.解下列方程:(1)2(x-1)=6;(2)4-x=3(2-x);(3)5(x+1)=3(3x+1)解析:(1)x=4;(2)x=1;(3)x=1 2【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解;(2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号,得2x-2=6.移项,得2x=8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.8.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x+1)人,根据题意,得9(x-1)=6(x+1).去括号,得9x-9=6x+6.移项,得9x-6x=6+9.合并同类项,得3x=15.系数化为1,得x=5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题的关键.10.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】 ①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13,解得:x=138. 【点睛】 此题考查解一元一次方程,解题关键在于掌握方程的解法.11.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”解析:x =60【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;∴有60个客人.【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.12.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a (如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.13.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A种记录本120本,B种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱.【分析】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可.【详解】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,则30×5+5(x−5)=(30×5+5x)×90%5x+125=135+4.5x5x+125−4.5x=135+4.5x−4.5x0.5x+125=1350.5x+125−125=135−1250.5x=100.5x×2=10×2x=20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要:30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要:(30×5+5×15)×90%=225×90%=202.5(元)因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. 答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. ②在甲商店购买球拍5副、30盒乒乓球需要:30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要:(30×5+5×30)×90%=300×90%=270(元)因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 考点:1.一元一次方程的应用;2.方案型.15.一种商品每件成本a 元,按成本增加22%标价.(1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元? 解析:(1)1.22a ;(2)盈利0.098a【分析】(1)根据:标价=成本()122%⨯+,列出代数式,再进行整理即可;(2)根据:售价=标价0.9⨯,利润=售价-成本,列出代数式,即可得出答案.【详解】(1)∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为()122% 1.22a a +=(元);(2)现在售价:1.220.9 1.098a a ⨯=(元);每件还能盈利:1.0980.098a a a -=(元);∴实际按标价的九折出售,盈利0.098a (元)【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到等量关系,注意把列出的式子进行整理.16.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?解析:(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【详解】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:500{243313800 x yx y+=+=,解得:300 {200 xy==,答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.17.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?解析:(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b)元装卸费.【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b,∴这7天要付(58a+115b)元装卸费.【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.18.已知关于x 的方程3(2)x x a -=- 的解比223x a x a +-= 的解小52 ,求a 的值. 解析:a=1【分析】 分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可.【详解】解:∵3(2)x x a -=-, 解得:62a x -=; ∵223x a x a +-=, 解得:5x a =, ∴65522a a -=-, 解得:1a =;∴a 的值为1.【点睛】 本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a 的值.19.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★.例如:(1,2)(3,4)23142=⨯-⨯=★.根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 解析:(1)-5;(2)2;(3)k=0,-1,-2,-3.【分析】(1)原式利用规定的运算方法计算即可求出值;(2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可.【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5;故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9,整理得:5x =10,解得:x =2,故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数,∴(2x−1)k−(−3)(x +k )=3+2k ,∴(2k +3)x =3, ∴323x k =+, ∵k 是整数, ∴2k +3=±1或±3,∴k =0,−1,−2,−3.【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键.20.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解. 解析:2a =-,8x =【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.21.一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工?解析:5【分析】设两队合作x 个月完成,甲队原来的工作效率为112,将工作效率提高40%以后为112(1+40%),乙队原来的工作效率为115,将工作效率提高25%以后为115(1+25%),根据工作效率×工作时间=工作总量1,列出方程,解方程即可【详解】 解:设两队合作x 个月完成,由题意,得[112(1+40%)+115(1+25%)]x =1, 解得x =5.答:两队合作,5个月可以完工.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程. 22.依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
一元一次方程单元测试题
一元一次方程单元测试题篇1:一元一次方程单元测试题一元一次方程单元测试题一.填空题:(每小题3分,共30分)1.方程的解为____________________;2.相邻5个自然数的和为45,则这5个自然数分别为______________________;3.如果x=1是方程m(x-1)=3(x+m)的解,则m=_________________;4.一根长18米的铁丝围成一个长是宽的2倍的长方形的面积为________________;5.若代数式2x-6的值与0.5互为倒数,则x=____.6.一件衬衫进货价60元,提高50%标价为_______,八折优惠价为________,利润为______;7.小明跑步每秒钟跑4米,则他15秒钟跑_____米,2分钟跑_____米,1小时跑____公里;.8.笼子里鸡和兔总共有56个头,160只脚,设鸡有x只,则兔有___________只,列方程__________________可求出鸡兔的.只数;9.小明今年6岁,他的祖父72岁,__________年后,小明的年龄是他祖父年龄的;10.关于x的一元一次方程2x+a=x+1的解是-4,则方程-ay+1=3的解为:y=________________;二.选择题(每小题3分,共24分)11.方程3(x+1)=2x-1的解是A、x=-4B.x=1C.x=2D.x=-212.某商品提价100%后要恢复原价,则应降价()A30%,B50%,C75%,D100%;13.方程去分母后可得()A3x-3=1+2x,B3x-9=1+2x,C3x-3=2+2x,D3x-12=2+4x;14、小山上大学向某商人贷款1万元,月利率为6‰,1年后需还给商人多少钱?()A17200元,B16000元,C10720元,D10600元;15.小明每秒钟跑6米,小彬每秒钟跑5米,小彬站在小明前10米处,两人同时起跑,小明多少秒钟追上小彬()A5秒,B6秒,C8秒,D10秒;16.甲商品进价为1000元,按标价1200元9折出售,乙商品进价为400元,按标价600元7.5折出售,则甲、乙两商品的利润率()A、甲高B、乙高C、一样高D、无法比较17.某种产,商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学单元测试题(时间:40分钟 满分100分)
(第五章 一元一次方程)
班别: 姓名
一、选择题:(每空3分共15分)
1、方程)0(3≠=-a ax 的解是( )
A、3=x B 、a x = C 、3a x -= D 、a
x 3
-=
2、下列各等式中,只有( )是一元一次方程
A 、02=+y x
B 、105=+x
C 、x x
=+1
1 D 、92=t
3、根据“a 的绝对值的3倍与-4的差等于9”的数量关系可得方程( )
A 、|)4(3|--a
B 、9|43|=-a
C 、9)4(||3=--a
D 、9|4|3=--a
4、在y x rr c ah S x x 23,2,2
1
,122+==
++π中等式的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个
5、在公式h b a S )(2
1
+=,已知16,4,3===S h a ,那么b =( )
A 、1
B 、3
C 、5
D 、7 二、填空题:(每题2分共32分) 1、某数x 与3的和的一半比某数x 与2的差的2倍少1写成方程是( )。
2、当15
32=-x 时,273-=-y x ,则=y ( ).
3、已知5=x 是方程a ax +=-208的解,则a =( )。
4、等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是( )。
5、如果225b a n +与2835b a n +是同类项,则=n ( );若0)42(|2|2=-++y x ,则=x ( ),=y ( )。
6、若关于x 的方程054)12(2=-+-k kx x k 是一元一次方程,则=k ( ),方程的解=x ( )。
7、方程5||=x 的解是( );若05323=+-n x 是一元一次方程,则=n ( )。
8、方程2|5|=-x 的解是( );若
23
2
2=+x ,且8=y x ,则=y ( )。
9、三个连续整数的和为72,这三个整数分别是( )。
10、若0)1(||2=++-y y x ,则=+22y x ( )。
11、某商品按定价的8折销售,售价是14.8元,则原定价是( )。
三、判断题:(每题1分共5分) 1、054,0232=+=-x x 都是一元一次方程( )。
2、方程不一定是等式( )。
3、方程14
=+
y
y 是一元一次方程 ( )。
4、日历上一个横列上相邻三个数的和可能是75( )。
5、未知数的次数是1的方程是一元一次方程( )。
四、计算题:(每题4分共24分)
1、314125=-x x
2、x x 21
3832-=- 3、)2(12-≠-=-n x nx m (m 、n 为常数)
4、x x 3.15.67.05.0-=-
5、15)4(5)7(3=-+-x x
6、5
2
221+-
=-y y
五、列方程解应用题:(每题6分共24分)
1、爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7%),3年后能取5405元,他开始存入多少元?(5分)
2、某商品的标价为132元,若降价以9折出售,仍可获利10%(相对于进货价),则该商品的进货价是多少元?(5分)
3、甲和已骑车去郊外游玩,事先决定早晨8时从家里出发,预计每时骑7.5千米,上午10时可到达目的地,出发前他们又决定上午9时到达目的地,那么每时要骑多少千米?(5分)
4、某商店出售两件进价不同的衣服,一件售80元,赚25%,另一件售60元,亏25%,则商店在这次买卖中的盈亏情况如何,为什么?(5分)。