有关定积分问题的常见题型解析(全题型)

合集下载

定积分的例题分析及解法

定积分的例题分析及解法

定积分的例题分析及解法本章的基本内容是定积分的概念、计算和应用 一、定积分的概念1.定积分是下列和式的极限xi i f dx x f i nba∆∑==→⎰)(lim )(10ξλ其中{}xi ni ∆=≤≤1max λ因此,定积分是一个数,它依赖于被积函数)(x f 和积分区间〔a,b 〕 定积分与积分变量用什么字母无关:⎰⎰=babadt t f dx x f )()(定积分的几何意义是曲边梯形的面积(当被积函数0)(≥x f 时)。

2.定积分的性质 (1)线性性质[]⎰⎰⎰+=+bab abadx x g k dx x f k dx x g k x f k)()()()(2121(2) ⎰⎰⎰=-=aaabba dx x f dx x f dx x f 0)(,)()( (3) ⎰⎰⎰+=bccaba dx x f dx x f dx x f )()()((4)若),()(x g x f ≥则⎰⎰≥babadx x g dx x f )()((5)积分中值定理:设)(x f 在〔a,b 〕上连续,则在〔a,b 〕上至少存在一点ξ,使下式成立),()()(a b f dx x ba-=⎰ξ其中].[b a ∈ξ。

(6)估值定理:若)(x f 在〔a,b 〕上可积,且M x f m ≤≤)(,则有不等式⎰-≤≤-baa b M dx x f a b m )()()((7)若函数)(x f 在〔a,b 〕上连续,则有⎰=xa x f dt t f dxd )()( 3.广义积分。

二、定积分的计算 1.牛顿—莱布尼茨公式:⎰-=baa Fb F dx x f )()()(2.换元法:注意,在换元的同时不要忘记换积分限 3.分部积分法:⎰⎰-=babab a x du x x x u x d x u )()()()()()(υυυ4.定积分的近似计算:梯形,抛物线法。

三、定积分的应用基本方法是:(1)代公式;(2)微元法1.平面图形的面积(1)直角坐标系。

定积分试题讲解

定积分试题讲解

定积分试题讲解一、定积分是什么呢?定积分就像是一个超级神奇的数学工具。

你可以把它想象成是在计算一块不规则图形的面积。

比如说,有个奇奇怪怪形状的小花园,它不是那种规规矩矩的长方形或者正方形,定积分就能算出这个小花园到底有多大面积呢。

从数学的角度来说,定积分就是求函数f(x)在区间[a,b]上的积分和的极限。

这就好比是把这个区间分成好多好多小小的部分,然后把这些小部分的面积加起来,当这些小部分变得无穷小的时候,得到的就是定积分啦。

二、定积分试题常见类型1. 计算定积分的值这就像是一场数字的冒险。

比如说,给你一个函数f(x)=x²,让你计算在区间[0,1]上的定积分。

那我们就可以根据定积分的计算公式来做。

首先要找到这个函数的原函数,对于f(x)=x²,它的原函数就是F(x)=(1/3)x³。

然后把区间的上下限代入原函数相减,也就是F(1)-F(0)=(1/3)1³-(1/3)0³ = 1/3。

是不是感觉很有趣呢?就像是找到了隐藏在函数里的小秘密。

2. 利用定积分求面积这时候定积分就真的像一个测量面积的小能手啦。

比如有两个函数y = x和y = x²,要求它们在区间[0,1]之间围成的面积。

那我们就可以用定积分来计算。

先找到这两个函数的差,也就是f(x)=x - x²,然后再计算这个函数在[0,1]上的定积分。

按照前面说的步骤,先找原函数,再代入上下限计算。

这样就能得到它们围成的面积啦。

三、做定积分试题的小技巧1. 熟练掌握基本函数的原函数这就像是你要去打仗,得先把武器都准备好一样。

像sinx的原函数是 - cosx,cosx的原函数是sinx等等。

这些基本的原函数一定要记熟,这样在做定积分计算的时候才能快速准确地找到原函数。

2. 巧用换元法换元法就像是给函数换了一身衣服。

比如说,有个定积分∫(0到1) 2x√(1 + x²)dx。

有关定积分问题的常见题型解析(全题型)培训讲学

有关定积分问题的常见题型解析(全题型)培训讲学

有关定积分问题的常见题型解析(全题型)有关定积分问题的常见题型解析题型一 利用微积分基本定理求积分例1、求下列定积分:(1)()13031x x dx -+⎰ (2)41dx +⎰ (3)⎰--2224x分析:根据求导数与求原函数互为逆运算,找到被积函数得一个原函数,利用微积分基本公式代入求值。

解:(1)因为3221312x x x x x '⎛⎫-+=-+ ⎪⎝⎭, 所以()13031x x dx -+⎰=321102x x x ⎛⎫-+ ⎪⎝⎭=32。

(2121x x =+,312222132x x x x '⎛⎫+=+ ⎪⎝⎭,所以 41dx +⎰=3229211454326x x ⎛⎫+= ⎪⎝⎭。

练习:(1)⎰--a a x a 22 (2)⎰--2124x评注:利用微积分基本定理求定积分dx x f ab )(⎰的关键是找出)()(/x f x F =的函数)(x F 。

如果原函数不好找,则可以尝试找出画出函数的图像, 图像为圆或者三角形则直接求其面积。

题型二 利用定积分求平面图形的面积例2 如图 ,求直线y=2x+3与抛物线y=x 2所围成的图形面积。

分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积。

为了确定出被积函数和积分和上、下限,我们需要求出两条曲线的交点的横坐标。

解:由方程组⎩⎨⎧=+=232xy x y ,可得3,121=-=x x 。

故所求图形面积为: S =()dx x ⎰-+3132-dx x ⎰-312=(x 2+3x )3323113313=---x 。

评注:求平面图形的面积的一般步骤:⑴画图,并将图形分割成若干曲边梯形;⑵对每个曲边梯形确定其存在的范围,从而确定积分上、下限;⑶确定被积函数;⑷求出各曲边梯形的面积和,即各积分的绝对值之和。

关键环节:①认定曲边梯形,选定积分变量;②确定被积函数和积分上下限。

积分与定积分练习题及解析

积分与定积分练习题及解析

积分与定积分练习题及解析1. 求定积分∫(2x+5)dx的值。

解析:根据定积分的定义,我们可以将被积函数展开进行计算:∫(2x+5)dx = ∫2xdx + ∫5dx对于∫2xdx,我们可以将2提取出来,得到:∫2xdx = 2∫xdx根据积分的基本公式,∫xdx = (1/2)x^2 + C,其中C为常数。

将上述结果代入原积分中,得到:∫2xdx = 2((1/2)x^2 + C) = x^2 + 2C对于∫5dx,由于5是一个常数,我们可以将其视为∫5xdx,其中x为一个常数。

根据积分的基本公式,∫5xdx = 5x + C,其中C为常数。

将上述结果代入原积分中,得到:∫5dx = 5x + C综上所述,原定积分∫(2x+5)dx的值为:x^2 + 2C + 5x + C = x^2 + 5x + 3C2. 求定积分∫(3x^2-2x+4)dx的值。

解析:根据定积分的定义,我们可以将被积函数展开进行计算:∫(3x^2-2x+4)dx = ∫3x^2dx - ∫2xdx + ∫4dx对于∫3x^2dx,根据积分的基本公式,∫x^2dx = (1/3)x^3 + C,其中C 为常数。

将上述结果代入原积分中,得到:∫3x^2dx = 3((1/3)x^3 + C) = x^3 + 3C对于∫2xdx,根据积分的基本公式,∫xdx = (1/2)x^2 + C,其中C为常数。

将上述结果代入原积分中,得到:∫2xdx = 2((1/2)x^2 + C) = x^2 + 2C对于∫4dx,由于4是一个常数,我们可以将其视为∫4xdx,其中x为一个常数。

根据积分的基本公式,∫4xdx = 4x + C,其中C为常数。

将上述结果代入原积分中,得到:∫4dx = 4x + C综上所述,原定积分∫(3x^2-2x+4)dx的值为:x^3 + 3C + x^2 + 2C + 4x + C = x^3 + x^2 + 4x + 6C在解题过程中,我们应用了积分的基本公式,将多项式拆分成各个单项式的积分,并根据常数的性质进行运算。

定积分典型例题20例解答

定积分典型例题20例解答

定积分典型例题20例答案例1求33322321lim(2)n n n n n®¥+++.分析将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解将区间[0,1]n 等分,则每个小区间长为1i x n D =,然后把2111n n n =×的一个因子1n乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim (2)n n n n n®¥+++=333112lim ()n n n n n n ®¥+++=13034xdx =ò.例2222x x dx -ò=_________.解法1由定积分的几何意义知,222x x dx -ò等于上半圆周22(1)1x y -+= (0y ³)与x 轴所围成的图形的面积.故222x x dx -ò=2p .解法2本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则222x x dx -ò=2221sin cos t tdt pp --ò=2221sin cos t tdt p -ò=222cos tdt p ò=2p例3(1)若22()xtxf x e dt -=ò,则()f x ¢=___;(2)若0()()xf x xf t dt=ò,求()f x ¢=___.分析这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ¢¢=-ò.解(1)()f x ¢=422x x xee---;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得()f x ¢=()()xf t dt xf x +ò.例4 设()f x 连续,且310()x f t dt x -=ò,则(26)f =_________.解对等式31()x f t dt x -=ò两边关于x 求导得32(1)31f x x -×=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5 函数11()(3)(0)x F x dt x t =->ò的单调递减开区间为_________. 解 1()3F x x¢=-,令()0F x ¢<得13x >,解之得109x <<,即1(0,)9为所求.为所求.例6 求0()(1)arctan xf x ttdt =-ò的极值点.的极值点. 解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下:故1x =为()f x 的极大值点,0x =为极小值点.为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中 2arcsin0()x tg x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim()n nf n®¥. 分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0t f g e dt-===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x ef g x-=¢¢===-.故所求切线方程为y x =.而.而3()(0)3lim ()lim33(0)330n n f f n nf f nn®¥®¥-¢=×==-. 例8 求 22sin lim (sin )xx xtdtt t t dt®-òò;分析 该极限属于00型未定式,可用洛必达法则.型未定式,可用洛必达法则.解 2200sin lim (sin )xx x tdtt t t dt®-òò=2202(sin )lim (1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x xx ®-×- x(,0)-¥0 (0,1)1 (1,)+¥()f x ¢- 0 + 0 -=2012(2)lim sin x x x®-×=0. 注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式221lim 1sin x x tdt x b x a t®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 221lim sin x x tdt x b xa t®-+ò=22lim 1cos x xa xb x ®+-=221lim lim 1cos x x xb xa x ®®×-+201lim 11cos x x b xa ®==-, 由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由 2012lim 11cosx xx a a ®==-, 得4a =.即4a =,1b =为所求.为所求.例10 设sin 20()sin x f x t dt=ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的( ). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小. D .低阶无穷小.解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x x g x x x ®®×=+ 2200cos sin(sin )lim lim 34x x x x xx ®®=×+ 22011lim 33x xx ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342xf x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x xx®®®®-+-+===++.例11 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx--+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例12 设()f x 是连续函数,且1()3()f x x f t dt=+ò,则()________f x =.分析 本题只需要注意到定积分()baf x dx ò是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且110(3)()x a dx f t dt a+==òò.所以所以211[3]2x ax a +=,即132a a +=,从而14a =-,所以,所以 3()4f x x =-.例13 计算2112211x xdx x-++-ò.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解 2112211x x dx x -++-ò=211112221111xx dx dx x x --++-+-òò.由于22211x x +-是偶函数,而211xx+-是奇函数,有112011xdx x-=+-ò, 于是于是2112211x xdx x -++-ò=2102411x dx x +-ò=22120(11)4x x dx x --ò=11200441dx x dx --òò 由定积分的几何意义可知12014x dx p -=ò, 故2111022444411x x dx dx xp p -+=-×=-+-òò. 例14 计算220()xdtf x t dt dx -ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以22()xtf x t dt -ò=201()()2x f u du -ò=201()2xf u du ò,故22()xd tf x t dt dx -ò=21[()]2x d f u du dx ò=21()22f x x ×=2()xf x .错误解答 220()xd tf x t dt dx -ò22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dtf x dx ¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元.例15 计算3sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解3s i n x x d xpò3(c o s )x d x p=-ò3300[(c o s )](co s )x x x d x p p=×---ò3cos 6xdx pp=-+ò326p=-. 例16 计算12ln(1)(3)x dx x +-ò.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò 11ln 2ln324=-. 例17 计算2sin xe xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx pò2sin x xde p=ò22[sin ]cos xxe x e xdx p p=-ò220cos xe e xdx pp=-ò, ((1)而2cos xe xdx pò2cos xxdep=ò22[cos ](sin )xx e x e x dx pp=-×-ò2sin 1x e xdx p =-ò, ((2)将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]xe e xdx pp=--ò,故2sin xe xdx pò21(1)2e p=+.例18 计算1arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法. 解 10arcsin x xdxò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421xdx xp=--ò. (1) 令sin x t =,则,则2121xdx x-ò2202sin sin 1sin t d ttp =-ò220sin cos cos t tdt t p=×ò220sin tdt p=ò201cos 22tdt p -==ò20sin 2[]24t t p-4p =. (2)将(将(22)式代入()式代入(11)式中得)式中得10arcsin x xdx =ò8p. 例19设()f x [0,]p 上具有二阶连续导数,()3f p ¢=且[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.解 由于0[()()]cos f x f x xdx p¢¢+ò00()sin cos ()f x d x xdf x p p¢=+òò[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp¢¢¢=-++òò()(0)2f f p ¢¢=--=.故 (0)f ¢=2()235f p ¢--=--=-.例20 计算2043dxx x +¥++ò.分析 该积分是无穷限的的反常积分,用定义来计算. 解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+ =ln 32.。

高中高考考点难点常见题型(带答案解析) 定积分与微积分的基本定理(解析版)

高中高考考点难点常见题型(带答案解析) 定积分与微积分的基本定理(解析版)

简单已测:424次正确率:91.8 %1.定积的值是( )A.B.C.D.考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的概念、微积分基本定理答案:D 解析:,故选:.⼀般已测:3296次正确率:69.9 %2.计算( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:定积分的概念、定积分的⼏何意义答案:B解析:选⼀般已测:4642次正确率:87.5 %3.若,,则,,的⼤⼩关系为( )A.B.C.D.考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的基本性质、定积分的常⽤结论答案:B解析:由于,,,且,所以,故选.⼀般已测:3883次正确率:75.3 %4.若,则( )2xdx ∫0212342xdx =x =4∫202∣∣∣∣20D (1−cos x )dx =∫− 2π2ππ+2π−2π−2(1−cos x )dx=(x −sin x )∫− 2π2π =π−2.∣∣∣∣ 2π− 2πB .S = x dx 1∫122S = dx 2∫12x 1S =e dx 3∫12x S 1S 2S 3S <S <S 123S <S <S 213S <S <S 231S <S <S321S = x dx = x ∣ = − = 1∫12231312383137S = dx =lnx ∣ =ln 22∫12x 112S = e dx =e ∣ =e −e 3∫12x x 122ln 2< <e −e 372S <S <S 213B f (x )=x +2 f (x )dx 2∫01 f (x )dx=∫01A.B.C.D.考点:微积分基本定理求定积分、运⽤定积分的相关性质解题知识点:被积函数的原函数、微积分基本定理答案:B解析:令(常数),则,所以,解得,故选:.中等已测:4750次正确率:71.2 %5.在如图所⽰平⾯直⻆坐标系中,正⽅形的边⻓为,曲线是函数图象位于正⽅形内的部分,直线恰好是函数在处的切线,现从正⽅形内任取⼀点,那么点取⾃阴影部分的概率等于( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:曲边梯形的⾯积、定积分的⼏何意义答案:D解析:正⽅形的边⻓为,由函数,得,则,得.⼜当时,,可得,曲线的解析式为,阴影部分⾯积.点取⾃阴影部分的概率等于.故选:.−1−31 311f (x )dx =m ∫01f (x )=x +2m 2m = f (x )dx =( x +2mx ) = +2m ∫01313∣∣0131m =− 31B OABC 1m y =a (x −1)+b 2AC y=a (x −1)+b 2x =0P P1213141 61∵OABC 1,∴S =1正方形OABC y =a (x −1)+b 2y =2a (x −1)′y ∣ =−2a =−1′x =0a =21x=0y =a +b =1b = 21∴m y = (x −1)+ 21221∴S = [ (x −1)+ −(−x +1)]dx = x dx = x ∣=∫0121221∫012126130161∴P 61D⼀般已测:4665次正确率:92.6 %6.已知,则⼆项式的展开式中的系数为( )A.B.C.D.考点:利⽤定积分的性质解题、微积分基本定理求定积分知识点:定积分的概念、微积分基本定理答案:C 解析:,的展开式的通项公式为,令得,,展开式中的系数为.⼀般已测:2948次正确率:92.5 %7.实数使得复数是纯虚数,则的⼤⼩关系是( )A.B.C.D.考点:⽤定义求定积分、⽤所求定积分的⼏何意义求定积分知识点:定积分的概念、复数的概念答案:C解析:,它为纯虚数,所以,表⽰单位圆的四分之⼀的⾯积为,所以,应选.中等已测:3726次正确率:56.3 %8.若,则=( )A.B.a = dx ∫ e 1e x1(1− )x a 5x −316080−80−160∵a= dx =lne −ln =2∫ e 1e x 1e 1∴(1−)=(1−)xa 5x25T=C (−2)x r +15r r −r −r=−3r =3∴x −3C (−2)=−80533a1−i a +i b = xdx ,c= dx ∫01∫011−x 2a ,b ,c a <b <c a <c <b b <c <a c <b <a= = 1−i a +i1−i 1+i ()()a +i 1+i ()()2a −1+a +1i ()a =1,b = xdx = ∣ = ,c = dx ∫012x 20121∫011−x 2 4πb <c <a C f x + f x dx =x ()∫01() f x dx ∫01()41 21C.D.考点:⽤定义求定积分、利⽤定积分的性质解题知识点:定积分的基本性质、基本积分公式答案:A 解析:由,则,则,,则,故选A .⼀般已测:2708次正确率:72.5 %9.⼀个⼈骑⻋以⽶/秒的速度匀速追赶停在交通信号灯前的汽⻋,当他离汽⻋⽶时,交通信号灯由红变绿,汽⻋开始做变速直线⾏驶(汽⻋与⼈的前进⽅向相同),若汽⻋在时刻的速度⽶/秒,那么此⼈( ).A.可在秒内追上汽⻋B.不能追上汽⻋,但其间最近距离为⽶C.不能追上汽⻋,但其间最近距离为⽶D.不能追上汽⻋,但其间最近距离为⽶考点:⼆次函数的单调性、利⽤定积分的⼏何意义解题知识点:微积分基本定理、基本积分公式答案:D解析:设该⼈骑⻋⾏驶距离和汽⻋⾏驶距离的差为,则,所以,所以该⼈不能追上汽⻋,但其间最近距离为⽶⼀般已测:391次正确率:82.7 %10.甲、⼄两⼈从同⼀起点出发按同⼀⽅向⾏⾛,已知甲、⼄⾏⾛的速度与⾏⾛的时间分别为,(如图),当甲⼄⾏⾛的速度相同(不为零)时刻( )A.甲⼄两⼈再次相遇B.甲⼄两⼈加速度相同12fx +f x dx =x ()∫01()f x =x − f x dx ()∫01() fx dx = x − f x dx dx∫01()∫01(∫01())= xdx − f x dx dx = − f x dx ∫01∫01[∫01()]21∫01()∴ f x dx = − f x dx ∫01()21∫01() f x dx =∫01()41625t v (t )=t 716147S (t )S (t )= 6−t dt =6t −t ∫0t()212S (t ) =S (6)=36−18=18max 7v =甲t v =t 乙2C.甲在⼄前⽅D.⼄在甲前⽅考点:微积分基本定理求定积分、运⽤定积分的相关性质解题知识点:定积分的物理意义、变速运动问题答案:C解析:由,得,解得(舍),或.由..所以当甲⼄⾏⾛的速度相同(不为零)时刻甲在⼄前⽅.故选:.中等已测:1818次正确率:73.8 %11.已知,若函数满⾜,则称为区间上的⼀组``等积分''函数,给出四组函数:①②;③;④函数分别是定义在上的奇函数且积分值存在.其中为区间上的“等积分”函数的组数是( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:定积分的基本性质、微积分基本定理答案:C解析:本题是新定义问题,主要考查对定义的理解和定积分的计算.对于①,⽽,所以①是⼀组“等积分”函数;对于②,,⽽,所以②不是⼀组``等积分''函数;对于③,函数的图像是以原点为圆⼼,为半径的半圆,故,⽽,所以③是⼀组``等积分''函数;对于④,由于函数分别是定义在上的奇函数且积分值存在,利⽤奇函数的图像关于原点对称和定积分的⼏何意义,可以求得函数的定积分,所以④是⼀组``等积分''函数.故选.简单已测:3293次正确率:86.3 %12..v =v 甲乙 =t t 2t =0t =1 dt = t ∣ = ∫01t 32 230132 t dt = t ∣= ∫0123130131C a <b f (x ),g (x ) f (x )dx = g (x )dx ∫a b∫a bf (x ),g (x )[a ,b ]f (x )=2∣x ∣,g (x )=x +1;f (x )=sinx ,g (x )=cosx f (x )=,g (x )= πx 1−x 2432f (x ),g (x )[−1,1][−1,1]1234f x dx = 2x dx = 2−x dx + 2xdx =2,∫−11()∫−11∣∣∫−10()∫01g x dx = x +x ∣ =2∫−11()(212)−11 f (x )dx = sinxdx =0∫−11∫−11 g x dx = cos xdx =2sin 1≠0∫−11()∫−11f (x )1 f x dx = dx = ∫−11()∫−111−x 22πg x dx = πx ∣ = ∫−11()413−112πf (x ),g (x )[−1,1] f (x )dx = g x dx =0∫−11∫−11()C (sinx +cosx )dx =∫− 2π2π考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的概念、被积函数的原函数答案:解析:;故填.⼀般已测:4543次正确率:94.5 %13..考点:利⽤定积分的⼏何意义解题知识点:定积分的概念、定积分的⼏何意义答案:解析:函数即:,表⽰以为圆⼼,为半径的圆在轴上⽅横坐标从到的部分,即四分之⼀圆,结合定积分的⼏何意义可得.故答案为.⼀般已测:2478次正确率:65.4 %14.⼀辆汽⻋在⾏驶中由于遇到紧急情况⽽刹⻋,以速度⾏驶⾄停⽌,在此期间汽⻋继续⾏驶的距离是.考点:定积分在求⾯积中的应⽤、微积分基本定理求定积分知识点:定积分的物理意义、基本积分公式答案:解析:本题考查定积分的概念.令,化为,⼜,解得.汽⻋继续⾏驶的距离.⼀般已测:4698次正确率:91.6 %15.若正实数满⾜,则的最⼩值为.考点:利⽤基本不等式求最值、利⽤公式求定积分知识点:定积分的基本性质、基本积分公式答案:解析:由题意得;即,所以(当且仅当时等号成⽴).所以,即的最⼩值为.简单已测:1192次正确率:87.8 %16.有⼀⾮均匀分布的细棒,已知其线密度为,棒⻓为,则细棒的质量.考点:⽤定义求定积分、微积分基本定理求定积分2(sinx +cosx )dx =−cosx +sinx ∣ ∫− 2π 2π()−2π2π=1+1=22 ( )dx ∫121−(x −1)2=4πy=1−(x −1)2(x −1)+y =1(x ≥1,y ≥0)22(1,0)1x 12 ( )dx = ×π×1=∫121−(x −1)24124π 4πv (t )=7−3t +1+t 254+25ln 5v (t )=7−3t + =01+t253t −4t −32=02t >0t =4S = (7−3t + )dt =(7t − t +25ln (1+t ))∣ =4+25ln 5∫041+t 2523204m ,n + = (x +)dx m 2n 1∫−22π14−x 2log (m +2n )22(x + )dx = dx = × π×2=2∫−22π14−x 2π1∫−224−x 2π1212 + =2m 2n 1m +2n =(m +2n )( + )= + +2≥2 +2=4m 12n 1m 2n 2n m × m 2n 2n m m =2n log m +2n ≥log 4=22()2log (m +2n )22ρx =x ()32M =(1)(2)知识点:定积分的物理意义、定积分的常⽤结论答案:解析:依题意有:.⼀般已测:3051次正确率:65.2 %17.在区间上给定曲线.试在此区间内确定点的值,使图中的阴影部分的⾯积与之和最⼩,并求最⼩值.考点:导数在最⼤值、最⼩值问题中的应⽤、定积分在求⾯积中的应⽤知识点:利⽤导数求函数的最值、微积分基本定理答案:时,最⼩,且最⼩值为解析:⾯积等于边⻓分别为与的矩形⾯积去掉曲线与轴、直线所围成的⾯积,即.的⾯积等于曲线与轴,,围成的⾯积去掉矩形边⻓分别为,⾯积,即.所以阴影部分的⾯积.令,得或.时,;时,;时,.所以当时,最⼩,且最⼩值为.⼀般已测:401次正确率:92.8 %18.已知.求的单调区间;求函数在上的最值.考点:利⽤导数研究函数的单调性、利⽤导数求闭区间上函数的最值知识点:函数单调性和导数的关系、利⽤导数求函数的最值(1)答案:单调调增区间是,单调递减区间是.解析:依题意得,,定义域是.,令,得或; 令得,且函数定义域是,函数的单调增区间是,单调递减区间是.(2)答案:最⼤值是,最⼩值是.解析:由(1)知函数在区间上为减函数,区间上为增函数, 且,在上的最⼤值是,最⼩值是.4x dx= ∣ =4∫0234x 402[0,1]y =x 2t S 1S 2t=21S (t )41S 1t t 2y =x 2x x =t S =t ⋅t − x dx = t 12∫0t 2323S 2y =x 2x x =t x =1t 21−t S = x dx −t (1−t )= t −t + 2∫t 122323231S (t )=S +S = t −t + (0≤t ≤1)12343231S (t )=4t −2t =4t (t − )=0′221t =0t = 21t =0S (t )= 31t = 21S (t )= 41t =1S (t )= 32t = 21S (t )41F (x )= (t +2t −8)dt ,(x >0)∫0x2F (x )F (x )[1,3](2,+∞)(0,2)F (x )= (t +2t −8)dt =( t +t−8t )∣ = x +x −8x ∫0x 231320x 3132(0,+∞)(1)F (x )=x +2x −8′2F (x )>0′x >2x <−4F (x )<0,′−4<x <2(0,+∞)∴F (x )(2,+∞)(0,2)F (3)=−6F (2)=− 328F (x )(0,2)(2,3)F (1)=− ,F (2)=− ,F (3)=−6320328∴F (x )[1,3]F (3)=−6F (2)=− 328(1)(2)中等已测:3275次正确率:52.7 %19.已知⼆次函数,直线,直线(其中,为常数),若直线,与函数的图象以及,、轴与函数的图象所围成的封闭图形(阴影部分)如图所⽰.求,,的值;求阴影⾯积关于的函数的解析式.考点:求函数解析式的常⽤⽅法、利⽤定积分的⼏何意义解题知识点:⼆次函数的解析式、⼆次函数的图象(1)答案:, , 解析:由图形可知⼆次函数的图象过点,,并且的最⼤值为,则解得,函数的解析式为.(2)答案:解析:由得,,,,直线与的图象的交点坐标为由定积分的⼏何意义知:.f (x )=ax +bx +c 2l :x =21l :y =−t +8t 220≤t ≤2t l 1l 2f (x )l 1l 2y f (x )a b c S t S (t )a=−1b =8c =0(0,0)(8,0)f (x )16 ⎩⎨⎧c =0,a ⋅8+b ⋅8+c =02=164a 4ac −b 2 ⎩⎨⎧a =−1b =8c =0∴f (x )f (x )=−x +8x 2S (t )=− t +10t −16t + 3432340{ y =−t +8t 2y =−x +8x2x −8x −t (t −8)=02∴x =t 1x =8−t 2∵0≤t ≤2∴l 2f (x )(t ,−t +8t )2S (t )= −t +8t −−x +8x dx + [(−x +8x )−(−t +8t )]dx ∫0t [(2)(2)]∫t 222=[(−t +8t )x −(− +4x )]∣ +[(− +4x )−(−t +8t )x ]∣ 23x 320t 3x 322t 2=− t +10t −16t + 3432340。

定积分应用方法总结(经典题型归纳)

定积分应用方法总结(经典题型归纳)

定积分复习重点定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质1212(1)()()().(2)[()()]()().(3)()()()().bbaab bb aaab c baackf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+⎰⎰⎰⎰⎰⎰⎰⎰为常数其中a<c<b2.微积分基本定理如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式。

3.求定积分的方法(1)利用微积分基本定理就定积分 ①对被积分函数,先简化,再求定积分.例如:230(1-2sin)2d πθθ⎰注:322()3x x '=,(-cos )sin x x '=②分段函数,分段求定积分,再求和.(被积函数中带有绝对值符号时,计算的基本思路就是用分段函数表示被积函数,以去掉绝对值符号,然后应用定积分对积分区间的可加性,分段进行计算)1.计算积分⎰---322|32|dx x x解1. 由于在积分区间]3,2[-上,被积函数可表示为⎩⎨⎧≤<-----≤≤---=--.31,)32(,12,32|32|222x x x x x x x x 所以⎰---322|32|dx x x 13)32()32(312122=-----=⎰⎰---dx x x dx x x .(2)利用定积分的几何意义求定积分如定积分12014x dx π-=⎰,其几何意义就是单位圆面积的14。

(课本P60 B 组第一题) (3)利用被积函数的奇偶性a. 若()f x 为奇函数,则()0aa f x dx -=⎰;b. 若()f x 为偶函数,则0()()a aa f x dx f x dx-=⎰⎰2;其中0a >。

定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案例1求lim 丄(循2丁2『L Vn 3) •n n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘nn n nn入和式中各项•于是将所求极限转化为求定积分•即lim A (习n 2 ^2n 2 LVn 3) = lim -(^—L ^—) = VXdx - • n nnnn,n ,n ° 42 -- ------ r例 2o (2x x dx = ___________• 2 . ________解法1由定积分的几何意义知, °. 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0)与x 轴所围成的图形的面积.故2,2x x 2dx = _ • 0 2'1 sin 2tcostdt = 2。

2J sin 2t costdt =2 : cos 2 tdt^22x 2 2x例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)=分析这是求变限函数导数的问题,利用下面的公式即可(1) f (x) =2xe x e x可得xf (x) = 0 f (t)dt xf (x) •x 1例 4 设 f(x)连续,且。

f(t)dt x ,贝U f (26) = _________________O Ax 1解 对等式0 f(t)dtx 两边关于x 求导得3 2f(x 1) 3x 1,解法2本题也可直接用换元法求解.令x 1= Sint (2 t 2),则d v(x)dx u(x)f(t)dt f[v(x)]v(x) f[u(x)]u (x) • (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即xf (x) x 0 f (t)dt ,则x 2dx =3 1 令x 1 26得x 3,所以f (26)27故f(x 3 1) 丄3x 例5函数F(x)F (x)1 1,令F (x) 0得r 3,解之得xx1 10 x -,即(0,-)为所求.9 9f (x)x0 (1 t)arctan tdt 的极值点.f (x) = (1 x)arctan x .令 f (x) = 0,得 x 1 , x 0.列表如下:x(,0)0 (0,1) 1(1,)f (x)-0 +f (x)的极大值例7已知两曲线y f (x)与y g(x)在点(0,0)处的切线相同,其中arcs inxg(x) 0t 2e dt , x [ 1,1],试求该切线的方程并求极限 lim nf (?).n n分析两曲线y f (x)与y g(x)在点(0,0)处的切线相同,隐含条件f(0) g(0),f (0)g (0) •解由已知条件得f(0)g(0)°e " dt且由两曲线在(0,0)处切线斜率相同知f (0)g(0)(arcsin x)2e1 x 2故所求切线方程为 y x .而lim nf (-) n nIim3nf(-) n3 0 nf(0) 一 3f (0) 3 •x 22sin tdtlim 0;x 0分析 该极限属于型未定式,可用洛必达法则. 0X 22sin tdt lim ------------------ = lim = ( 2) lim= ( 2)x 0:t (t sin t)dt x 0( 1) x (x sinx) 、7 x 0x sinx ' 丿2x(sin x 2)22 2(x ) 34x(x 0)的单调递减开区间为x 1(3点,x 0为极小值点.由题意先求驻点.于是12x=(2) lim =0 . x 0sinx注此处利用等价无穷小替换和多次应用洛必达法则.1 x t 2例9 试求正数a 与b ,使等式lim -------------------- dt 1成立.x 0x bsin x 0 ‘ ―t 2分析 易见该极限属于 0型的未定式,可用洛必达法则.1 x 2lim.a x 01 bcosx21 x lim3x 0x 2故f(x)是g(x)同阶但非等价的无穷小.2例11计算1|x|dx .分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.2 220 2x 0 x 251|x|dx = 1( x)dx 0xdx = [ y] 1 [y]0 =-.在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如[-]32丄,则是错误的.错误的原因则是由于被积函数 」2在x 0处间断且在被x 6 x 2lim__ x 0x bsin x 0 . a 2x_ _t 「dt = lim _— =lim 1f 2 x 01 bcosx x op x 2x 2limx 01 bcosx由此可知必有 lim(1 bcosx) 0,得 b 1 .又由得a 4 .即a 4 , si nx1xlim a x 01 cosxb 1为所求. 例10设f (x)sin t 2dt , g(x) x 3 x 4,则当0 时,f (x)是 g(x)的( ). A .等价无穷小.B .同阶但非等价的无穷小.解法1由于lim 型 lim si 门伽浪)cosxx 0g(x) x 0C .高阶无穷小.D .低阶无穷小.mo Hx3x 2 4x 3cosx3 4xmo Hxsin (sin x)x解法2 将sin t 2展成t 的幕级数, 1 2 3 3!(t)f (x) 0 sin x 2 [t 2 再逐项积分,得到1 si n 42L ]dt 1 . 3 一 sin xlim 少 x 0g(x).31sin x(- lim -1 . 4sin x 4234x x1 lim -x 01 ■ 4 . sin x L 42 1 xUdx x积区间内无界 例12设f(x)是连续函数,且f(x) 1x 3 0 f(t)dt ,则 f (x)所以 分析本题只需要注意到定积分因f (x)连续,f (x)必可积,从而a 1—,所以 4例13 计算12x21 分析 bf (x)dx 是常数(a, b 为常数).从而f (x) x 3a ,且f(x) x1 21[―X 2 3ax]0 23 2 .10 f (t)dt 是常数,记 10 f (t)dt a ,则1 o(x3a)dx3a a ,x dx. 1 1 x 2由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. I 2x 2 x ------ dx = II 1 x 2 I 2x 2----- dxII .1 x 2 ___ dx .由于 11 1 x 2一是偶函数,而 1 1 x 2 旦古函数, 是奇 2 x 111=dx 2 x0,I2x 2 xII1 x 2dx = 4 由定积分的几何意义可知 例14计算肿(x 2 011 x 20 1x 2dx 1 2x 2 1 dx = 4 1x 2 (11x 2) 0x _= dx 1 1 x 2t 2)dt ,其中 分析 要求积分上限函数的导数, 元使被积函数中不含 ,然后再求导. 由于 x 2 otf(xx 2dx = 4 dx 4;FVdx故令x 2xdx 01 4 dx 0 f(x)连续. 但被积函数中含有 x ,因此不能直接求导,必须先换2 1 x2 2 2t )dt = 2 0f(x t )dt .2 20时u x ;当t x 时u 0,而dtx2 2 1tf(x t)dt=;222d 1 x tf(x t)dt= dx [2 0x 2f (U)( du)=idu ,所以x 2f (u)du ,f (u)du] =£ f(x 2) 2x = xf (x 2).错误解答 — tf(x 2 t 2)dtxf(x 2 x 2) xf(O).dx 0错解分析这里错误地使用了变限函数的求导公式,公式d x(x) a f (t)dt f (x)dx a中要求被积函数f(t)中不含有变限函数的自变量 x ,而f (x 2 t 2)含有x ,因此不能直接求导,而应先换元. 15 计算 3 xsinxdx .分析 被积函数中出现幕函数与三角函数乘积的情形,通常采用分部积分法.=1ln21 In3 .417计算2e si nxdx .分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于 02e x sin xdx;sin xde x [e x sinx]〕2e x cosxdxe^2e x cos xdx ,(1)而02 *cosxdx2cos xde x[e x cosx](?o2e x ( sin x)dx2e x sin xdx 01 , (2)将(2)式代入(1)式可得?e x s in xdx e 2[2 e x sin xdx 1],故2 e xsin xdx1 ~2-(e 2 1). 21例 18 计算 xarcsinxdx .解 3 xs in xdx 3 xd(0 0 '3cosx) [x ( COSX )]oo3( cos x) dx616计算0兽dx .3cosxdx¥ 6分析被积函数中出现对数函数的情形,可考虑采用分部积分法.1x)d(-3 xJdx= 1ln(1 0(3 x)2'1Fln(1x)】1(3 x) (1 x)dx1 In2 21 xarcsin xdx分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于 0 [ f (x) f (x)]cos xdx 0 f (x)d sinxcosxdf (x){ f (x)sin x 00 f (x)sin xd" {[ f (x)cosx]° 0f (x)sin xd 冷f ( ) f (0) 2 .故 f (0) 2 f ( )2 3分析 该积分是无穷限的的反常积分,用定义来计算.解 dxtdx1 t 11 解2= lim 2= lim ()dxx 4x 3 t 0 x 4x 3 t 2 0 x 1 x 31 x 1 t 1 t 1 1 =lim [In ]0= lim (In In ) t2 x3 t 2 t 3 3分析 被积函数中出现反三角函数与幕函数乘积的情形,通常用分部积分法.1解xarcs in xdx1x20arcsinxd (一2x1[ arcsinx]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关定积分问题的常见题型解析题型一 利用微积分基本定理求积分 例1、求下列定积分:(1)()13031x x dx -+⎰ (2)()941x x dx +⎰(3)⎰--2224x分析:根据求导数与求原函数互为逆运算,找到被积函数得一个原函数,利用微积分基本公式代入求值。

评注:利用微积分基本定理求定积分dx x f ab )(⎰的关键是找出)()(/x f x F =的函数)(x F 。

如果原函数不好找,则可以尝试找出画出函数的图像, 图像为圆或者三角形则直接求其面积。

题型二 利用定积分求平面图形的面积例2 如图 ,求直线y=2x+3与抛物线y=x 2所围成的图形面积。

分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积。

为了确定出被积函数和积分和上、下限,我们需要求出两条曲线的交点的横坐标。

评注:求平面图形的面积的一般步骤:⑴画图,并将图形分割成若干曲边梯形;⑵对每个曲边梯形确定其存在的范围,从而确定积分上、下限;⑶确定被积函数;⑷求出各曲边梯形的面积和,即各积分的绝对值之和。

关键环节:①认定曲边梯形,选定积分变量;②确定被积函数和积分上下限。

知识小结:几种典型的曲边梯形面积的计算方法:(1)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≥0)围成的曲边梯形的面积: S =()⎰badx x f ,如图1。

(2)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≤0)围成的曲边梯形的面积: S =()()⎰⎰-=babadx x f dx x f ,如图2。

(3)由两条直线x=a 、x=b (a <b )、两条曲线y=()x f 、y=()x g (()()x g x f ≥)围成的平面图形的面积:S =()()⎰-badx x g x f ][,如图3。

题型三 解决综合性问题例3、在曲线2x y =(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围的面积为121。

试求:(1)切点A 的坐标;(2)过切点A 的切线方程。

分析:设出切点A 的坐标,利用导数的几何意义,写出切线方程,然后利用定积分求出所围成平面图形的面积,从而确定切点A 的坐标,使问题解决。

评注:本题将导数与定积分联系起来,解题的关键是求出曲线三角形AOC 的面积。

定积分的两种非常规用法定积分是新课标的新增内容,它不仅为传统的高中数学注入了新鲜血液,还给学生提供了数学建模的新思路、“用数学”的新意识,通常利用定积分可以求平面图形的面积、平面曲线的弧长、旋转体体积、变速直线运动的路程及变力作功等。

另外,利用定积分也能求物体所受的力、证明不等式。

一、求物体所受的力例1.矩形闸门宽a 米,高h 米垂直放在水中,上沿与水面平齐,则该闸门所受水的压力F 等于 ( )其中水的密度为ρkg/m 3,g 单位是m/s 2,A.⎰hgahdh 0ρ B.⎰agahdh 0ρ C.⎰agahdh 021ρ D. ⎰agahdh 02ρ二、利用积分证明不等式 例3.求证16<∑=8011k k<17.例析定积分的解题功能定积分是通过无限分割、近似替代、借助求和再利用极限来达到计算的目的.在此过程中,因为无限分割,所以求和时可以近似替代即“以直代曲”、“以匀速代变速”、“以均匀代非均匀”… …这就是定积分处理问题的基本思想,下面通过具体例子来展示这种思想在解题中的具体体现。

一、求由一条曲线y=f(x)直线所围成平面图形的面积例1.求由曲线y= sin x 与x 轴在区间[0,2π]上所围成图形的面积S.分析 因为y= sin x 在[0,π]上的积分为正值,在[π,2π]上的积分为负值,其面积应取绝对值.二、求由两条曲线和直线所围成图形的面积例2.求曲线y=e x ,y=e -x 及x=1所围成的图形面积.分析 根据条件作出图形,由曲线方程解出积分上、下限,利用图形确定被积函数,利用定积分求出面积.三、求变速直线运动的路程例3 一点在直线上从时刻t=0(s)开始以速度v=t 2-4t+3(m/s)运动,求: (1)在t=4 s 的位置; (2)在t=4 s 运动的路程.四、变力作功例4. 由胡克定律知,把弹簧拉长所需要的力与弹簧的伸长量成正比.现已知1 N 的力能使一个弹簧伸长0.01 m,求把弹簧拉长0.1 m 所作的功.五、定积分的综合应用例5.已知抛物线y=x 2-2x 及直线x=0,x=a,y=0围成的平面图形的面积为34,求a 的值. 分析:根据a 的取值的不同分类讨论,通过解方程求解.略谈定积分的应用数学在生活中诞生,在应用中发展;定积分也是如此,它从计算曲边梯形的面积开始到计算曲线的弧长,再求变速直线运动的物体的位移,到后来在几何、物理、力学等都有十分广泛的应用,充分展现了定积分的威力。

当然,由于我们目前的基础知识有限,我们可以掌握的应用是有限的,本文在课本的基础上再向同学们介绍一点另外的应用,供学习时参考。

1、求面积例1、求由x y 42=与直线42-=x y 所围成图形的面积2、求体积例2、将抛物线22x y =在第一象限与0=y 、1=x 所转成的平面图形绕x 轴旋转一周,求所得旋转体的体积。

3、物体的作功 例3、一弹簧在弹性限度内,拉伸弹簧所用的力与弹簧伸长的长度成正比,如果N 20的力能使弹簧伸长cm 3,求把弹簧从平衡位置拉长cm 13(在弹性限度内)时所做的功。

一道定积分问题的多种解法计算定积分⎰103xdx 。

解法一:(利用定积分的定义) 1)分割:把区间]1,0[等份成n 个小区间),...,3,2,1](,1[n i nin i =-,其长度为nx 1=∆,把曲边梯形分成n 个小曲边梯形,其面积记为),...,3,2,1(n i S i =∆。

(2)近似代替:用小矩形面积代替小曲边梯形面积,),...,3,2,1(),1(3113)1(2n i i nn n i x n i f S i =-=⨯-⨯=∆-=∆。

(3)作和:n n n n i n S ni ni i 123)]1(21[3)1(32121-⋅=-+++=-=∆∑∑==Λ。

(4)求极限:23123lim )1(3lim 12=-⋅=-=∞→=∞→∑n n i n S n ni n 。

所以⎰103xdx 23=。

解法二:(利用定积分的几何意义)所求定积分为由0,1,0,3====y x x x y 围成的图形的面积。

如图所示,所求定积分即为阴影部分的面积,且面积为23。

所以⎰103xdx 23=。

解法三:(利用微积分基本定理)⎰13xdx 230123|232102=-⨯==x 。

用定积分求面积的技巧求平面图形的面积是定积分在几何中的重要应用.把求平面图形的面积问题转化为求定积分问题,充分体现了数形结合的数学思想.求解此类题常常用到以下技巧. 一、巧选积分变量求平面图形面积时,要注意选择积分变量,以使计算简便. 例1 求抛物线22y x =与直线4y x =-围成的平面图形的面积.二、巧用对称性在求平面图形面积时,注意利用函数的奇偶性等所对应曲线的对称性解题,也是简化计算过程的常用手段.例2 求由三条曲线2241y x y x y ===,,所围图形的面积. 三、分割计算例3 求由抛物线243y x x =-+-及其在点(03)M -,和点(30)N ,处两条切线所围成的图形的面积.用定积分求面积的两个常用公式求平面图形围成的面积是定积分重要应用之一,下面介绍求面积的两个常用公式及其应用.一、两个常用公式公式一:由连续曲线y =f (x ),直线x =a ,x =b 与y =0所围成的曲边梯形的面积A 为 A =|()|baf x dx ⎰.特别地,⑴当f (x )≥0时(如图1),A =()baf x dx ⎰;⑵当f (x )≤0时(如图2),A =-()baf x dx ⎰;⑶当f (x )有正有负时(如图3),A =()caf x dx ⎰-()bcf x dx ⎰.公式二:由连续曲线y =f (1图及直线x =a ,x =b 所围成的图形(如图4)的面积A 为A =[()()]baf xg x dx -⎰.走出定积分运用的误区通过定积分与微积分基本定理部分知识的学习,初步了解定积分的概念,为以后进一步学习微积分打下基础.同时体会微积分的产生对人类文化发展的意义和价值,培养学生的创新意识和创新精神.在实际解题中,由于这部分知识的特殊性,经常会由于种种原因出现一些错误,下面结合实际加以剖析.1.公式应用出错微积分基本定理为:一般地,如果)(x f 是区间[a ,b]上的连续函数,并且)(x F '=)(x f ,那么⎰badx x f )(=)()(a F b F -.2.几何意义出错我们知道,当函数)(x f 在区间[a ,b ]上恒为正时,定积分⎰badx x f )(的几何意义是以曲线)(x f 为曲边的曲边梯形的面积.在一般情况下,定积分⎰badx x f )(的几何意义是介于x轴,函数)(x f 的图象以及直线x=a ,x=b 之间各部分面积的代数和.3.实际应用出错利用定积分可以用来解决平面几何中的面积问题.其实,除几何方面外,定积分在工程物理等方面的应用也极其广泛,可以用来处理变速直线运动的路程和速度问题,也可以用来解决变力的作功问题等.。

相关文档
最新文档