基于PLC的电梯控制

合集下载

《2024年基于PLC的四层电梯控制系统的设计》范文

《2024年基于PLC的四层电梯控制系统的设计》范文

《基于PLC的四层电梯控制系统的设计》篇一一、引言随着现代建筑的高度和复杂性不断增加,电梯作为垂直交通的重要工具,其安全性和效率性显得尤为重要。

本文将详细介绍一种基于PLC(可编程逻辑控制器)的四层电梯控制系统的设计,该系统旨在提高电梯的运行效率、安全性和用户体验。

二、系统概述本系统采用PLC作为核心控制器,通过编程实现对四层电梯的逻辑控制、信号处理和安全保护等功能。

系统包括电梯轿厢、厅门、控制系统、电源系统等部分,能够实现电梯的上下行、开关门、信号响应等基本功能。

三、硬件设计1. PLC控制器:选用高性能的PLC控制器,具有高可靠性、高速度和高精度的特点,能够满足电梯控制系统的需求。

2. 传感器:包括位置传感器、门状态传感器、超载传感器等,用于检测电梯的状态和信号,为控制系统提供输入信息。

3. 执行器:包括电机、电磁铁等,根据控制系统的指令执行开关门、上下行等操作。

4. 电源系统:为整个电梯控制系统提供稳定的电源,确保系统的正常运行。

四、软件设计1. 编程语言:采用梯形图或指令表等编程语言,实现电梯的逻辑控制和信号处理。

2. 控制逻辑:根据电梯的实际需求,设计合理的控制逻辑,包括上下行控制、开关门控制、信号响应等。

3. 安全保护:通过设置各种安全保护措施,如超载保护、防撞保护、紧急制动等,确保电梯的安全运行。

4. 故障诊断:通过故障诊断程序,对电梯的故障进行检测和定位,方便维护和检修。

五、系统功能1. 上下行控制:根据乘客的需求和电梯的实际情况,自动或手动控制电梯的上下行。

2. 开关门控制:通过传感器检测门的状态和乘客的需求,自动控制电梯的开关门。

3. 信号响应:通过接收来自厅外的召唤信号和内部指令信号,实现电梯的响应和调度。

4. 安全保护:通过设置各种安全保护措施,确保电梯在运行过程中的安全性和稳定性。

5. 故障诊断与维护:通过故障诊断程序对电梯进行检测和定位,方便维护和检修。

同时,提供详细的维护记录和报告,以便对电梯的运行状态进行评估和优化。

基于plc的电梯控制系统设计

基于plc的电梯控制系统设计

基于plc的电梯控制系统设计1. 介绍电梯作为现代城市中不可或缺的交通工具,其安全性和效率对于城市的正常运转至关重要。

为了实现电梯的安全和高效运行,基于PLC(可编程逻辑控制器)的电梯控制系统应运而生。

本文将深入研究基于PLC 的电梯控制系统设计,并探讨其在实际应用中的优势和挑战。

2. 电梯工作原理在深入研究基于PLC的电梯控制系统设计之前,我们需要了解电梯的工作原理。

一般而言,电梯由机房、轿厢、轿厅、对讲系统、门机等组成。

当乘客按下轿厅或轿内按钮时,信号将传递给PLC进行处理,并通过门机控制开关门。

3. 基于PLC的电梯控制系统设计3.1 PLC在电梯控制中的优势基于PLC实现电梯控制具有许多优势。

首先,PLC具有高度可编程性和灵活性,可以根据不同需求进行程序开发和修改。

其次,PLC可以实现多任务处理,并能够处理多个输入和输出信号,提高电梯的运行效率和安全性。

此外,PLC还具有可靠性高、抗干扰能力强等特点,能够保证电梯的正常运行。

3.2 基于PLC的电梯控制系统设计要点在设计基于PLC的电梯控制系统时,需要考虑以下要点。

首先是安全性,包括轿厢超载保护、轿厅门和轿内门安全保护等。

其次是效率,包括调度算法设计、门机控制优化等。

还需要考虑可靠性和可扩展性,以适应未来可能的升级和扩展需求。

4. 基于PLC的电梯调度算法4.1 传统调度算法传统调度算法主要基于电梯内外按钮信号来实现调度决策。

常见的算法有先来先服务(FCFS)、最短寻找时间(SSTF)等。

这些算法简单易实现,但在高峰时段可能导致某些楼层长时间等待。

4.2 基于PLC的改进调度算法基于PLC的改进调度算法可以更好地优化电梯运行效率。

例如,在高峰时段可以实现优先服务特定楼层的功能,以减少等待时间。

此外,基于PLC的电梯调度算法还可以根据电梯负载情况进行智能调度,以避免超载和提高电梯的运行效率。

5. 基于PLC的门机控制优化门机控制是电梯运行过程中关键的一环。

基于PLC的五层电梯控制系统的设计

基于PLC的五层电梯控制系统的设计

基于PLC的五层电梯控制系统的设计引言电梯作为现代建筑中不可或缺的一部分,为人们提供出行便利。

本文旨在设计一个基于可编程逻辑控制器(PLC)的五层电梯控制系统,以确保电梯安全、高效地运行。

系统设计1. 电梯控制器PLC作为电梯控制系统的核心部分,负责处理和响应各种指令和信号。

其主要功能包括:- 接收来自用户的请求信号,如上行、下行、停止等;- 监控电梯运行状态,如位置、速度等;- 控制电梯运行,包括开启、关闭门以及楼层间的移动;- 处理故障和紧急情况,如停电和火灾。

2. 急停系统为了确保乘客和电梯的安全,我们设计了一个可靠的急停系统。

当系统检测到紧急情况时,PLC将立即向电梯发送停止信号,停止在当前楼层并打开门以供乘客疏散。

3. 楼层选择系统为了方便乘客选择所需的楼层,我们设计了一个楼层选择系统。

在电梯门口和每一层楼的电梯入口处安装触摸屏,乘客可以通过触摸屏选择所需的楼层。

PLC将接收到的楼层信号转化为控制指令,使电梯按照所选楼层运行。

4. 电梯调度算法为了提高电梯的运行效率和乘客体验,我们采用了一个高效的电梯调度算法。

该算法根据乘客的楼层选择、电梯的当前位置和运行状态,智能地决定电梯的移动方向和最佳路径,使电梯能够以最短的时间满足乘客请求。

5. 门控制系统为了确保乘客和电梯的安全,我们设计了一个可靠的门控制系统。

当电梯运行时,门将自动关闭并锁定,以防止乘客意外摔落。

当电梯到达目标楼层时,门将自动开启,乘客可安全进出电梯。

结论基于PLC的五层电梯控制系统的设计可以有效地提高电梯的运行效率和乘客体验,并保证乘客和电梯的安全。

这个系统通过使用PLC作为核心控制器、急停系统、楼层选择系统、电梯调度算法和门控制系统等模块,实现了自动化、智能化和可靠性强的电梯控制功能。

在未来的研究中,我们可以进一步优化和改进设计,以适应更高楼层和更复杂的电梯环境。

基于plc的电梯控制课程设计

基于plc的电梯控制课程设计

基于plc的电梯控制课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理及其在电梯控制系统中的应用。

2. 学生能够描述电梯运行的常用传感器及其功能。

3. 学生能够掌握基于PLC的电梯控制程序的编写和调试方法。

技能目标:1. 学生能够运用所学知识,设计简单的电梯控制程序,实现电梯的基本运行功能。

2. 学生能够通过PLC编程软件,进行电梯控制逻辑的模拟与调试。

3. 学生能够分析电梯控制过程中可能出现的故障,并提出相应的解决方案。

情感态度价值观目标:1. 培养学生对自动化控制技术的兴趣,激发其创新精神和探索欲望。

2. 培养学生团队协作意识,使其在合作中提高沟通与解决问题的能力。

3. 强化学生的安全意识,使其认识到电梯控制系统在实际应用中的重要性。

分析课程性质、学生特点和教学要求,将课程目标分解为以下具体学习成果:1. 学生能够独立完成PLC电梯控制系统的原理图绘制。

2. 学生能够编写并调试实现电梯运行的基本程序。

3. 学生能够以小组形式进行项目展示,展示电梯控制系统的设计过程和成果。

4. 学生能够针对电梯控制系统的实际案例,提出合理的优化建议。

本课程教学内容主要包括以下几部分:1. PLC基础知识:介绍PLC的基本原理、结构、工作方式及其在电梯控制系统中的应用。

2. 电梯控制系统组成:讲解电梯控制系统的常用传感器、执行器、控制单元等组成部分及其功能。

3. PLC编程与调试:学习PLC编程软件的使用方法,掌握电梯控制程序编写、下载、调试等过程。

4. 电梯控制程序设计:分析电梯运行过程,设计实现电梯召唤、楼层显示、门控制等基本功能的程序。

5. 电梯控制系统故障分析:探讨电梯控制过程中可能出现的故障现象,分析原因并提出解决方法。

教学内容安排如下:第一课时:PLC基础知识,电梯控制系统组成。

第二课时:PLC编程与调试,电梯控制程序设计。

第三课时:电梯控制程序设计实践,小组项目展示。

基于PLC的电梯控制系统设计及优化分析

基于PLC的电梯控制系统设计及优化分析

基于PLC的电梯控制系统设计及优化分析电梯作为现代城市中不可或缺的交通工具,其安全性和效率对于人们的生活质量起着重要的影响。

其中,电梯控制系统的设计和优化是保证电梯正常运行和提高其效率的关键。

本文将介绍一种基于PLC(可编程逻辑控制器)的电梯控制系统设计及优化分析方案。

PLC作为一种可编程的电子设备,其具有高可靠性、快速响应能力和灵活的配置特点,在电梯控制系统中有着广泛的应用。

首先,本文将阐述电梯控制系统的基本原理和工作流程。

电梯控制系统主要由电梯控制器、电梯传感器和电梯执行元件等组成。

其中,电梯控制器作为主控制单元,负责监测电梯状态、接收用户指令,并控制电梯的运行。

电梯传感器用于检测电梯的位置、速度和负载等参数。

电梯执行元件包括电机、制动器和门禁系统等,用于实现电梯的运行。

接下来,将介绍PLC在电梯控制系统中的应用。

PLC作为电梯控制系统的核心控制设备,其主要通过接口模块与电梯控制器、传感器和执行元件进行通信。

PLC具有可编程性强、适应性广的特点,可以根据不同的需求编写程序,实现各种各样的控制策略。

通过PLC的控制,电梯可以根据用户的指令实现楼层之间的运行,并且可以根据传感器的反馈信息实时调整运行状态,提高电梯的安全性和运行效率。

在设计电梯控制系统时,应考虑到电梯的安全性和运行效率。

对于安全性而言,设计应包括以下几方面内容:1)防止电梯超载,当电梯达到额定载荷时,应及时报警并停止运行;2)防止电梯超速,当电梯的运行速度超过设定范围时,应及时采取制动措施;3)防止电梯故障,通过PLC的检测和监控功能,可以实时监测电梯的运行状态,发现故障并报警。

对于运行效率的优化,可以从以下几个方面考虑:1)电梯调度算法的选择,通过合理的调度算法,可以实现多电梯间的协调和优化;2)楼层选择算法的优化,通过分析用户的需求和习惯,优化楼层选择算法,减少用户等待时间;3)电梯运行速度的优化,根据实际情况动态调整电梯的运行速度,提高运行效率。

基于PLC的电梯控制系统设计及优化方案

基于PLC的电梯控制系统设计及优化方案

基于PLC的电梯控制系统设计及优化方案一、引言电梯作为现代城市生活中不可或缺的交通工具之一,其安全性和可靠性对于人们的生活质量起着重要的作用。

本文就基于可编程逻辑控制器(PLC)的电梯控制系统进行设计和优化,旨在提高电梯的运行效率和安全性。

二、电梯控制系统的设计1. 系统结构设计电梯控制系统主要由PLC、人机界面(HMI)、电机驱动器和传感器组成。

其中,PLC负责控制电梯的运行状态,HMI用于操作和显示电梯的运行信息,电机驱动器控制电梯的运行方向和速度,传感器用于感知电梯的位置和负载情况。

2. 控制逻辑设计基于PLC的电梯控制系统需要考虑多重因素,包括电梯的运行状态、外部乘客需求和电梯的安全性。

可以采用以下控制逻辑进行设计:- 根据外部信号确定电梯的运行方向:当电梯处于静止状态时,根据上下行按钮的信号确定电梯的运行方向。

- 响应楼层请求:当电梯处于运行状态时,监测电梯上下移动过程中每一层的请求,根据最近楼层请求和电梯当前所处楼层确定是否停靠。

- 控制电梯的加速度和减速度:根据电梯的负载情况和运行状态,控制电梯的加速度和减速度,以平稳地进行上下运动。

3. 安全保护设计为了保证电梯的安全性,需要在电梯控制系统中设计各种安全保护机制,包括速度保护、超载保护、门把手保护和故障诊断等。

- 速度保护:通过传感器监测电梯的速度,设置速度上下限,一旦检测到速度超出设定范围,立即停止电梯运行。

- 超载保护:通过传感器监测电梯的负载情况,设置负载上限,一旦检测到超载,禁止进入更多的乘客,确保电梯的正常运行。

- 门把手保护:在电梯门上设置安全传感器,一旦检测到门把手或其他物体卡住,立即停止电梯门的关闭过程。

- 故障诊断:通过PLC的自动故障诊断功能,可以及时发现电梯控制系统的故障,并进行报警或者自动处理。

三、电梯控制系统的优化方案1. 智能调度算法在电梯控制系统中,采用智能调度算法可以优化电梯的运行效率和乘客的等待时间。

基于PLC的住宅楼电梯控制系统设计

基于PLC的住宅楼电梯控制系统设计

基于PLC的住宅楼电梯控制系统设计一、引言随着城市化进程的加速,住宅楼的高度不断增加,电梯成为了人们日常生活中不可或缺的垂直交通工具。

为了提供安全、高效、舒适的乘梯体验,设计一个可靠的电梯控制系统至关重要。

可编程逻辑控制器(PLC)以其稳定性高、可靠性强、编程灵活等优点,在电梯控制系统中得到了广泛的应用。

二、电梯控制系统的需求分析(一)功能需求1、能够实现电梯的上升、下降、停止等基本运行操作。

2、具备楼层呼叫功能,乘客在轿厢内和各楼层均可发出呼叫请求。

3、实现电梯的自动开关门控制,确保乘客安全进出。

4、具有超载检测和报警功能,防止电梯超载运行。

(二)性能需求1、响应迅速,确保乘客的呼叫能够及时得到处理。

2、运行平稳,减少电梯启停时的冲击和振动。

3、精度高,能够准确停靠在指定楼层。

(三)安全需求1、配备多种安全保护装置,如限速器、安全钳、缓冲器等。

2、具备电气安全保护功能,如短路保护、过载保护、漏电保护等。

3、具有故障诊断和报警功能,以便及时发现和排除故障。

三、PLC 选型与硬件设计(一)PLC 选型根据电梯控制系统的输入输出点数、控制要求和性能指标,选择合适型号的 PLC。

例如,可以选择西门子 S7-200 系列、三菱 FX 系列等。

(二)输入输出设备1、输入设备楼层呼叫按钮:安装在各楼层和轿厢内,用于发出呼叫请求。

门开关传感器:检测电梯门的开关状态。

超载传感器:检测轿厢内的载重情况。

位置传感器:用于确定电梯的位置。

2、输出设备电机驱动器:控制电梯电机的运行。

门机驱动器:控制电梯门的开关。

指示灯:显示电梯的运行状态和楼层信息。

(三)硬件电路设计设计 PLC 与输入输出设备之间的连接电路,包括电源电路、输入电路和输出电路。

确保电路的稳定性和可靠性,同时考虑抗干扰措施。

四、电梯控制系统的软件设计(一)控制流程设计1、初始化电梯上电后,进行系统初始化,包括设置初始楼层、清除呼叫信号等。

2、上升和下降控制根据楼层呼叫信号和当前电梯位置,判断电梯的运行方向。

《2024年基于PLC的变频调速电梯系统设计》范文

《2024年基于PLC的变频调速电梯系统设计》范文

《基于PLC的变频调速电梯系统设计》篇一一、引言随着科技的不断发展,电梯的控制系统日益向着数字化、智能化的方向发展。

基于PLC(可编程逻辑控制器)的变频调速电梯系统,是当前电梯行业广泛采用的一种高效、可靠的电梯控制系统。

本文将详细阐述基于PLC的变频调速电梯系统的设计原理、系统构成、工作原理及其应用。

二、系统设计原理基于PLC的变频调速电梯系统设计主要遵循可靠性、可维护性、经济性及适用性等原则。

该系统通过PLC控制变频器,实现对电梯的精确调速,提高了电梯的舒适度和安全性。

1. 精确调速:通过变频器对电机进行精确控制,使电梯运行更加平稳,减少震动和噪音。

2. 节能降耗:根据电梯的实际运行需求,自动调整电机运行速度,实现节能降耗。

3. 保护功能:具备过载、过流、过压等保护功能,确保电梯运行安全。

三、系统构成基于PLC的变频调速电梯系统主要由以下部分构成:1. PLC控制器:作为系统的核心,负责接收电梯的指令信号,控制变频器的输出,实现对电机的精确控制。

2. 变频器:将电源的交流电转换为直流电,再通过逆变器将直流电转换为电机所需的交流电,实现对电机的调速。

3. 电机:作为电梯的驱动装置,负责将电能转换为机械能,驱动电梯的运行。

4. 传感器:包括速度传感器、位置传感器等,负责实时监测电梯的运行状态,为PLC控制器提供反馈信号。

5. 人机界面:用于显示电梯的运行状态、故障信息等,方便用户操作和维修。

四、工作原理基于PLC的变频调速电梯系统的工作原理如下:1. 用户通过按钮或呼叫系统发出指令,请求电梯运行。

2. PLC控制器接收指令信号,根据电梯的实际运行状态和需求,控制变频器的输出,调节电机的运行速度。

3. 电机根据变频器的指令,驱动电梯运行。

4. 传感器实时监测电梯的运行状态和位置,将信息反馈给PLC控制器。

5. PLC控制器根据反馈信号,调整变频器的输出,确保电梯运行的稳定性和舒适性。

6. 如遇故障或异常情况,系统将自动启动保护功能,确保电梯的安全运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西北工业大学明德学院本科毕业设计论文摘要随着社会和科学技术的发展,在现代社会中,电梯已经成为不可缺少的运输设备。

由可编程控制器控制的电梯运行系统,正以飞快的速度发展着。

本次设计结合欧姆龙CP1H系列PLC完成,并运用组态王6.53进行动态仿真。

其中涉及PLC的工作原理、功能特点、发展及趋势、PLC控制电梯的软、硬件设计。

各种指令及内存单元分配,I/O分配,模块化程序设计,逻辑控制等一系列专业知识。

在结合了示意图、指令表和程序流程图的基础之上设计了电梯的控制梯形图。

最后运用CX-Programmer7.3实现程序运行,并结合组态王6.53实现动态画面效果。

采用PLC控制的电梯可靠性高、维护方便、开发周期短,这种电梯运行更加可靠,已成为目前在电梯控制系统中使用最多的控制方式,也可以使电梯运行更加安全、方便、舒适。

关键词:PLC,可编程控制器,电梯,欧姆龙ABSTRACTWith the development of society and science technology, the elevator has became to be an indispensable transportation equipment. Controlled by programmable controller of the elevator operation system is developing at a fast pace.The design combined with Omron CPIH series PLC, and dynamic simulation using the Kingview 6.53, which involved in three-layer of the elevators’ PLC characteristic, function, development trend, PLC control software and hardware. It is also include distribution of all instructions and memory unit, allocation of I/O, modular program design, logic control and a series of professional knowledge. The elevator control ladder diagram is proposed on the base of the diagram, the instruction list and program flow chart. Finally, using CX-Programmer7.3 implementation program to run, and combining with Kingview 6.53 for dynamic picture.PLC control of elevator is in high reliability, easy maintenance and has short development cycle, the elevator operation is more reliable,has become to be the most currently used in the elevator control system control mode, which can also makes the elevator running more safe, convenient and comfortable.KEYWORDS: PLC,Programmable Controller,elevator,Omron目录第一章绪论 (5)1.1电梯的起源、发展、分类及主要参数 (5)1.2PLC定义及基本结构 (11)1.3PLC工作原理和功能特点 (12)1.4任务设计综述 (14)第二章电梯的控制要求 (16)2.1电梯设计要求 (16)2.2三层电梯工作示意图及机箱界面图 (16)2.3PLC选型规则及型号选择 (17)2.4PLC外部接线图 (22)2.5电机的选型 (23)第三章电梯的程序设计 (24)3.1电梯控制系统流程图 (24)3.2信号请求分析 (24)3.3电梯设计方案 (26)3.4地址分配 (26)3.5CX-Programmer编程软件介绍 (27)3.6三层电梯功能图及梯形图 (28)第四章组态画面设计 (37)4.1组态王介绍 (37)4.2电梯的逻辑功能控制 (38)4.3电梯内外部结构及功能简介 (38)4.4组态王监控电梯的要求 (39)4.5组态王监控电梯的过程 (39)第五章系统调试及运行 (46)5.1程序编写中的问题及解决 (46)5.2模拟调试和现场运行中的问题及解决 (47)5.3动态画面演示 (47)参考文献 (50)致谢 (51)毕业设计小结 (52)附录 (53)第一章绪论1.1电梯的起源、发展、分类及主要参数1.1.1电梯的起源电梯在我们的工作生活中占有如此重要的地位。

它是集机械原理应用、电气控制技术、微处理器技术、系统工程学、人体工程学及空气动力学等多学科和技术分支于一体的机电设备,它是建筑物中的永久性垂直交通工程。

然而,电梯家族并没有悠久的历史,电梯面世至今不过一百多年。

与电梯相类似的这种升降设备,起源于古代农业和建筑业中的原始起重升降机械,如我国古代周朝时期(公元前1100年)就出现提水用的辘轳,是由木制(或竹制)的支架、卷筒、贡柄和绳索组成的卷筒式卷扬机。

据说在希腊,也曾于公元前236年由阿基米德设计出下种人力驱动的卷筒式卷扬机,安装在妮罗宫殿里三台。

而这三台卷扬机被称为电梯的“鼻祖”。

在瓦特发明了蒸汽机之后,于1850年,在美国纽约市出现了世界第一台由亨利·活特曼制作的以蒸汽机为动力的卷扬机。

1852年美国人伊沙·格雷夫斯·奥梯斯(1811-1861)年发明了世界上第一部以蒸汽机为动力、配有安全装置的载人升降机。

这便是世界上第一部备有安全装置的客梯,在1857年被安装在纽约市豪华商厦里。

在1889年,美国奥梯斯升降机公司推出了世界第一部以电动机为动力的升降机,这才开始出现了名副其实的电梯,同年在纽约市的马累特大厦安装成功。

在1903年,又将卷筒式(即鼓轮式)驱动方式改进为槽轮式(即曳引式)驱动。

所谓卷筒式驱动,是将引绳缠卷在卷筒上来提升重物,而槽轮也称为曳引式驱动,是在曳引绳一端提升重物,另一端为平衡重,依靠曳引绳与曳引轮的绳槽之间的摩擦来驱动重物作垂直运动。

因此,只要在曳引系统的容量和强度允许范围内,通过改变曳引绳长度就可适应不同的提升高度,而不再像卷筒式那样受卷筒长度限制。

此外,当重物或平衡重碰底时,曳引绳与曳引槽会由于摩擦力减小而打滑,从而避免了像卷筒式那样,在失控时造成的曳引绳断裂等严重事故的发生。

曳引式驱动可以使用多条曳引绳,而卷筒式驱动方式使用的曳引绳条数却受到限制。

曳引式驱动方式为长行程并具有高度安全性的现代电梯奠定了基础。

当时的电梯使用直流电动机驱动,用改变串接在电枢回路中的电阻值的方法来调节电梯运行速度。

后来发明了交流感应电动机,在1900年开始用于驱动电梯。

最初的交流电动机只是单速的,电梯运行性能很不理想。

直到发明了交流双速电动机,才基本满足了电梯的运行要求。

1.1.2电梯的发展随着社会的发展,建筑物规模越来越大,楼层越来越多。

所以,对电梯的调速精度、调速范围等静态和动态特性提出了更高的要求。

尽管交流电动机结构简单,造价便宜,但在调速性能方面却难以满足更高的要求,而对直流电动机来讲,由于后来采用了发电机-电动机组调速系统,能较好地满足电梯调速的高要求。

因此,在20世纪前半叶,电梯的电力拖动,尤其是高层建筑物中的电梯速度的调节,几乎都是采用直流调速系统来实现的。

1900年美国奥梯斯电梯公司制造出世界上第一台自动扶梯。

1915年已设计成功电梯自动平层控制系统。

1933年美国制造出 6m/s的高速电梯。

1949年研制出4-6台电梯的群控系统。

1955年出现了真空电子管小型计算机控制的电梯。

1962年在美国已出现了8.5m/s的超高速电梯。

1967年将固体晶闸管用于电梯拖动系统。

随着电力电子技术的发展,在用晶闸管取代直流发电机-电动机组的同时,研制出了交流调压调速系统,使交流电梯的调速性能得到了明显改善。

1976年将微处理器应用于电梯。

1977年日本三菱电机株式会社开发出了10m/s的超高速电梯。

至此,电梯的控制技术已有了很大发展。

进入80年代,电梯控制技术又有了新的变化。

由于固体功率器件的不断发展和完善以及微机技术的应用,出现了交流变频调速(VVVF)系统。

1984年在日本已将其用于2m/s以上的高速电梯。

1985年以后,又将其延伸到中、低速交流调速电梯。

交流变频调速技术被认为是电梯行业的当代技术。

1985年日本生产出世界上第一台螺旋式自动扶梯,使其明显减小了占地面积。

1993年日本生产的12.5m/s世界上最高速的交流变频调整电梯已投入运行。

当前,在电梯电力拖动方面,除了大容量电梯还采用直流拖动系统以外,用交流变频调速方式取代直流调速方式,已成为高速电梯的主流。

应用微机全面取代继电器控制逻辑实现闭环控制,可进一步提高电梯的性能和可靠性,并可降低现场调试要求,是电梯控制技术的方向。

现代电梯技术,更加强调运行质量和降低噪声,电梯控制将趋向多微机分散分层控制。

电梯群控系统是现代电梯技术的又一重要组成部分。

它不但有完善的分区服务、运行监控、客流交通统计分析等功能,还具备故障诊断功能。

在电梯品种方面,出现了双层电梯、大吨位的集装厢电梯等。

为适应摩天大楼对电梯的特殊要求,目前正在研制无绳直线驱动电梯。

对于电梯的曳引机,目前除了中、低速范围的电梯还采用蜗轮副减速装置外,其他均已采用圆柱斜齿轮曳引系统,使效率提高了15%-25%。

此外,用电子位置传感器取代机械选层器、用更先进的装置取代门安全触板、增设轿厢内通信设施以及轿厢非安全门区语音提醒和运行状态语音报告等装置,也是电梯技术现代化的体现。

对现代电梯性能的衡量,主要着重于可靠性、安全性和乘坐的舒适性。

此外,对经济性、能耗、噪声等级和电磁干扰程度等方面也有相应要求。

随着时代的发展,对人在与外界隔离封闭的电梯轿厢内心理上的压抑感和恐惧感也应有所考虑。

因此,提倡对电梯进行豪华性装修,比如:轿厢内用镜面不锈钢装潢、在观光电梯井道设置宇宙空间或深海景象;进而主张电梯、扶梯应与大自然相协调,在扶梯的周围种植花草;在轿厢壁和顶棚装饰某些图案,甚至是有变化的图案,并且在色彩调配上要令人赏心悦目;在轿厢内播放优美的音乐,用以减少烦躁;在轿厢内播放电视节目,乘客可收看天气预报、新闻等。

相关文档
最新文档