浅谈阻尼器的类型和原理分析
建筑阻尼器分类

建筑阻尼器分类建筑阻尼器是一种用于减震和减振的装置,广泛应用于高层建筑、桥梁、塔楼等结构中。
根据其结构和工作原理的不同,可以将建筑阻尼器分为几类。
一、摩擦阻尼器摩擦阻尼器是一种常见的建筑阻尼器,它利用材料之间的摩擦力来吸收和消耗结构的振动能量。
摩擦阻尼器通常由两个平行的金属板之间夹有一定厚度的摩擦材料组成,当结构发生振动时,板的相对滑动会产生摩擦力,从而减小结构的振幅。
摩擦阻尼器适用于抗震性能要求不高的建筑,如住宅、商业建筑等。
二、液体阻尼器液体阻尼器是利用流体的粘滞阻力来减震的装置。
液体阻尼器通常由一个密封的容器、流体以及阻尼液压缸或阻尼阀组成。
当结构发生振动时,流体在阻尼液压缸中流动,通过液体的粘滞阻力来消耗振动能量,从而减小结构的振幅。
液体阻尼器适用于振动频率较高且抗震性能要求较高的建筑,如桥梁、高层建筑等。
三、摆锤阻尼器摆锤阻尼器是一种利用摆锤的运动来减振的装置。
它由一个或多个摆锤和摆杆组成,安装在结构上方。
当结构发生振动时,摆锤会随着结构的振动而产生摆动,通过摆锤的惯性力来消耗振动能量,从而减小结构的振幅。
摆锤阻尼器适用于抗震性能要求较高的建筑,如塔楼、烟囱等。
四、形状记忆合金阻尼器形状记忆合金阻尼器是一种利用形状记忆合金的特性来减振的装置。
形状记忆合金是一种具有记忆性能的合金材料,当受到外力作用时,能够改变自身的形状,当外力消失时,又能恢复原来的形状。
形状记忆合金阻尼器通过形状记忆合金的形状变化来消耗振动能量,从而减小结构的振幅。
形状记忆合金阻尼器适用于抗震性能要求较高且需要长寿命的建筑,如大型桥梁、高层建筑等。
五、电磁阻尼器电磁阻尼器是一种利用电磁力来减振的装置。
它由电磁铁和磁铁之间的间隙组成,当结构发生振动时,电磁铁会受到激励电流的作用而产生磁力,通过磁力的吸引和排斥来消耗振动能量,从而减小结构的振幅。
电磁阻尼器适用于振动频率较高且抗震性能要求较高的建筑,如桥梁、高层建筑等。
建筑阻尼器是一种有效的减震和减振装置,能够提高建筑结构的抗震性能。
阻尼器工作原理

阻尼器工作原理阻尼器是一种常见的工程机械装置,它的作用是通过消耗能量来减缓或抑制机械振动或运动。
在工程设计中,阻尼器被广泛应用于各种机械系统中,例如汽车悬挂系统、建筑结构、桥梁、风力发电机等。
阻尼器的工作原理是通过转化机械振动或运动能量为热能或其他形式的能量来实现减震或减振的效果。
本文将从阻尼器的分类、工作原理和应用领域等方面来详细介绍阻尼器的工作原理。
一、阻尼器的分类。
根据阻尼器的工作原理和结构特点,可以将阻尼器分为多种类型,常见的阻尼器包括液体阻尼器、气体阻尼器、摩擦阻尼器和涡流阻尼器等。
1. 液体阻尼器,液体阻尼器是一种利用流体阻尼来实现减震的装置,通常由密封的容器、流体和阀门等组成。
当机械振动或运动时,流体在容器内流动,通过阀门的调节来消耗机械能,从而实现减震的效果。
2. 气体阻尼器,气体阻尼器是一种利用气体的压缩和膨胀来实现减震的装置,通常由气缸、活塞和阀门等组成。
当机械振动或运动时,气体在气缸内压缩或膨胀,通过阀门的调节来消耗机械能,从而实现减震的效果。
3. 摩擦阻尼器,摩擦阻尼器是一种利用摩擦力来实现减震的装置,通常由摩擦片、弹簧和阀门等组成。
当机械振动或运动时,摩擦片在摩擦面上产生摩擦力,通过阀门的调节来消耗机械能,从而实现减震的效果。
4. 涡流阻尼器,涡流阻尼器是一种利用涡流效应来实现减震的装置,通常由导体、磁场和阀门等组成。
当机械振动或运动时,导体在磁场中产生涡流效应,通过阀门的调节来消耗机械能,从而实现减震的效果。
二、阻尼器的工作原理。
阻尼器的工作原理可以总结为能量转换和能量消耗两个方面。
在机械振动或运动时,阻尼器通过转换机械能为其他形式的能量来实现减震或减振的效果。
1. 能量转换,当机械振动或运动时,阻尼器将机械能转换为热能、声能或其他形式的能量。
例如,液体阻尼器通过流体的摩擦来将机械能转换为热能,气体阻尼器通过气体的压缩和膨胀来将机械能转换为热能,摩擦阻尼器通过摩擦力来将机械能转换为热能,涡流阻尼器通过涡流效应来将机械能转换为热能。
阻尼器抗震原理

阻尼器抗震原理阻尼器是一种能够缓解或消除结构物地震响应的重要装置。
它的基本原理是利用受控减振摩擦力和内部流体的运动阻力来实现减震,从而达到降低地震响应的目的。
本文将对阻尼器的抗震原理进行深入的探讨。
一、阻尼器的基本结构阻尼器是一种具有能量吸收和消散功能的装置,主要由三个部分组成:摩擦材料、流体和外壳。
摩擦材料一般为钢材或高强度复合材料,用于产生摩擦力;流体为液态或气态介质,主要用于调节结构物的振动能量;外壳则用于固定阻尼器以及隔绝中介体的流动。
二、阻尼器的减震机理1.摩擦减振效应阻尼器的摩擦减振效应是通过制动力产生的阻尼力来吸收结构物的振动能量。
当结构物发生振动时,摩擦材料中的制动力就会与结构物相互作用,从而形成一个减振系统。
随着振幅的增大,制动力也逐渐增强,减震器就会吸收更多的振动能量。
2.流体阻尼效应在阻尼器中,流体的运动阻力是减震机理的另一个重要因素。
当震动载荷作用于结构物上时,流体的流动会形成摩擦力和阻尼力,并使结构物的振动逐渐减弱。
流体本身也会吸收结构物的振动能量,并将其转化为热能或其他形式的能量。
3.摩擦材料和流体的相互作用阻尼器中的摩擦材料和流体之间存在一种复杂的相互作用关系。
当结构物处于振动状态时,摩擦材料和流体就会相互耗散能量。
摩擦材料通过制动力吸收结构物振动的动能,而流体则通过阻尼力将振动能量消耗掉。
这种相互作用可以使阻尼器具有更高的减震效率。
三、阻尼器的应用范围目前,阻尼器已经广泛应用于各种不同类型的结构物中,包括摩天大楼、桥梁、输电塔、核电站等。
阻尼器在这些结构物中的作用主要是消除结构物的固有频率,减少结构物在地震时的振动。
阻尼器还可以阻止结构物发生共振,降低结构物的疲劳损伤和结构的振幅,从而延长结构的使用寿命。
四、阻尼器的设计和选择阻尼器的设计和选择需要考虑多个因素,包括结构物的质量、地震波的频率和振动幅度等。
一般而言,较大的结构物需要使用更大的阻尼器,以便能够消耗更多的振动能量。
阻尼器原理

阻尼器原理1. 概述阻尼器是一种机械装置,用于控制或减缓振动或运动物体的速度变化。
它通过消耗和转化能量来减少或阻尼振动的幅度,并使物体的运动平稳。
在工程领域中,阻尼器被广泛应用于各种机械系统和结构,包括汽车悬挂系统、建筑物的地震减震系统以及航天器的姿态控制系统等。
本文将介绍阻尼器的原理、工作方式以及常见的几种类型。
2. 阻尼器的原理阻尼器基于能量消耗和能量转化的原理来减缓或阻尼振动。
当一个振动系统受到外界作用力或冲击时,系统中的能量将从一个形式转化为另一个形式并被消耗。
阻尼器通过摩擦、液体阻尼或气体阻尼来消耗能量。
当阻尼器连接到振动系统时,能量会从系统传递到阻尼器中,并在阻尼器内部转化为摩擦热、液体摩擦力或气体压力。
3. 阻尼器的工作方式阻尼器的工作方式取决于其类型。
下面介绍几种常见的阻尼器类型及其工作原理:3.1 液体阻尼器液体阻尼器是一种利用液体流动产生阻力的装置。
它由一个密封的容器、阻尼液体和连通管道组成。
当振动或运动物体施加作用力于液体阻尼器时,液体会因阻力而流动,阻碍物体的运动。
流动的液体通过管道传输能量,并在摩擦中耗散。
3.2 气体阻尼器气体阻尼器与液体阻尼器类似,但使用的是气体而不是液体。
气体阻尼器通常包括一个气密的容器和通过容器的孔道连接的气体。
当振动或运动物体施加作用力于气体阻尼器时,气体会产生压力,并通过孔道流出。
气体流动时会产生阻力,阻碍物体的运动。
3.3 摩擦阻尼器摩擦阻尼器使用摩擦力来减缓或阻尼振动。
它通常由一对相对运动的表面组成,其中至少一个表面具有摩擦材料。
当振动或运动物体施加作用力于摩擦阻尼器时,摩擦力会产生并减缓物体的运动。
摩擦力通过摩擦材料的表面摩擦来耗散能量。
4. 阻尼器的应用阻尼器在各种机械系统和结构中有着广泛的应用。
以下是几个常见的应用实例:•汽车悬挂系统:阻尼器通过减少车身的振动来提供汽车乘坐的平稳性和舒适性。
•建筑物地震减震系统:阻尼器用于减少建筑物在地震中的振动,并保护其结构的稳定性和安全性。
建筑阻尼器分类

建筑阻尼器分类建筑阻尼器是一种用于减震和控制建筑结构振动的装置。
根据其工作原理和结构特点,可以将建筑阻尼器分为多种类型。
本文将介绍四种常见的建筑阻尼器分类:摩擦阻尼器、液体阻尼器、液体流阻尼器和调谐质量阻尼器。
一、摩擦阻尼器摩擦阻尼器是一种利用摩擦力来消耗结构能量,减小结构振幅的装置。
它由摩擦材料和施力机构组成,通过调节施力机构的预紧力来改变摩擦力的大小。
摩擦阻尼器具有结构简单、安装方便、耐久性好等优点,被广泛应用于各类建筑结构中。
二、液体阻尼器液体阻尼器是一种利用液体内部黏性阻尼来消耗振动能量的装置。
液体阻尼器通常由容器、液体和活塞组成,当建筑结构发生振动时,液体内部黏性阻尼将振动能量转化为热能而消耗掉。
液体阻尼器具有响应速度快、可调节性好等特点,广泛应用于高层建筑、桥梁和大型机械设备等领域。
三、液体流阻尼器液体流阻尼器是一种利用液体流动阻力来消耗振动能量的装置。
它由液体介质、流通通道和调节机构组成,当结构发生振动时,液体通过流通通道流动,产生阻力将振动能量耗散。
液体流阻尼器具有结构简单、流体动力学特性稳定等优点,广泛应用于大型建筑、桥梁和风力发电机组等领域。
四、调谐质量阻尼器调谐质量阻尼器是一种利用调谐质量系统来控制结构振动的装置。
它由质量块、弹簧和阻尼器组成,通过调节质量块的质量和弹簧的刚度来改变系统的固有频率,从而实现对结构振动的控制。
调谐质量阻尼器具有控制精度高、自适应性强等特点,被广泛应用于高层建筑、桥梁和大型机械设备等领域。
建筑阻尼器是一种重要的减震控制装置,可以根据其工作原理和结构特点进行分类。
摩擦阻尼器、液体阻尼器、液体流阻尼器和调谐质量阻尼器是四种常见的建筑阻尼器分类。
它们各具特点,在不同的工程领域发挥着重要的作用,为建筑结构的安全性和舒适性提供了有效的保障。
随着科技的不断进步,建筑阻尼器的研究和应用将会越来越广泛,为人们的生活带来更多的便利和安全。
阻尼减震器工作原理

阻尼减震器工作原理阻尼减震器是一种常见的机械减震器,广泛应用于工程、建筑和机械设备等领域。
本文将介绍阻尼减震器的工作原理,包括阻尼器的种类、材料及结构组成、工作原理及应用,旨在为读者进一步了解阻尼减震器的设计和应用提供参考。
一、阻尼器的种类及材料在实际工程应用中,阻尼器种类较多。
按照阻尼器的使用方式不同,可以将其分为主动阻尼和被动阻尼。
主动阻尼是指阻尼器主动进行能量吸收和减震,例如在地震时由节制器主动减小建筑物位移波动;被动阻尼是指阻尼器受到外力后才能够发挥所具有的减震、减振效果,例如汽车减震器、建筑物减震器等。
根据材料的不同,阻尼器又可以分为金属材料、高分子材料、陶瓷材料和液体材料等四类。
金属材料阻尼器主要应用于航天、国防等高档领域,由于耐高温、耐腐蚀、强度高等特点而备受青睐。
高分子材料阻尼器的主要材质是橡胶、聚氨酯和硅橡胶等,常用于汽车减震器和公路桥梁等领域。
陶瓷材料阻尼器含有氧化铝、氧化锆和硼硅酸钠等材料,可以在高温和高压环境下稳定运行,广泛应用于航空航天、核电站等领域。
液体阻尼器主要由油液和气液组成,它们又可以分为单向流动和双向流动两类。
二、阻尼器的结构组成阻尼器的结构组成各不相同,但是基本上均包含了阻尼材料、阻尼部件和机械螺纹和连杆等组成部分。
阻尼材料是阻尼减震器的核心,起到吸收振动能量的作用。
阻尼部件一般包括阻尼孔、阻尼片和钢质弹簧等,起到调节阻尼力和弹性力的作用,对抗机械力量的影响。
机械螺纹和连杆则用来连接阻尼器和其他机械部件,使其能够完整地组成整个阻尼系统。
阻尼器的工作原理是通过阻尼材料对振动能量的吸收和转换,来达到减小或消灭振动的目的。
当外力作用于物体上时,物体就会产生相应的振动,振动的大小和频率与外力大小和频率有关。
阻尼减震器材料的基本原理是根据牛顿第三定律:所有事物都产生相反的作用力和反作用力,当外力向材料施加过程中,材料会产生反作用力抵抗外力,从而起到减震作用。
四、阻尼器的应用1. 建筑减震领域:阻尼器应用于家庭住宅、公共建筑、办公楼,如油管阻尼器、液压阻尼器等。
阻尼器简介演示

THANKS
谢谢您的观看
阻尼器的工作原理
总结词
阻尼器通过材料的内摩擦或能量转换机制来吸收或转换能量,从而减小振动或噪 音。
详细描述
阻尼器的工作原理主要是利用材料的内摩擦或能量转换机制来吸收或转换能量。 当阻尼器受到外界激励时,内部材料会发生形变或振动,通过内摩擦力将机械能 转换为热能,从而达到减小振动或噪音的目的。
阻尼器的应用领域
利用摩擦力进行能量耗散的阻尼器。
详细描述
摩擦阻尼器主要利用接触面之间的摩擦力进行能量耗散,常见于各种机械系统、车辆和建筑结构中。 它们通过在阻尼器内部设置摩擦元件,使结构振动产生的能量通过摩擦力转化为热能,从而达到减振 降噪的目的。
隔振阻尼器
总结词
利用振动隔离原理进行能量耗散的阻尼 器。
VS
详细描述
保护结构
通过吸收能量,阻尼器可以保 护结构免受损坏,延长其使用
寿命。
控制振动
阻尼器可以有效地控制结构的 振动,提高其稳定性和舒适度
。
易于安装
阻尼器通常结构简单,易于安 装和维护。
缺点
成本较高
相比其他减震装置,阻尼器的 制造成本较高。
适用范围有限
阻尼器的性能受限于其特定的 应用范围,对于不同的结构和 环境可能需要不同类型的阻尼 器。
阻尼器在各领域的应用拓展
航空航天领域
随着航空航天技术的不断发展, 阻尼器在航空航天领域的应用将 进一步深化,以提高飞行器和航
天器的稳定性和安全性。
汽车工业
汽车工业对阻尼器的需求量巨大 ,未来阻尼器在汽车工业中的应 用将更加广泛,以提高汽车的舒
适性和安全性。
建筑领域
阻尼器在建筑领域的应用将进一 步拓展,以提高建筑的隔振、减 震和隔音性能,提升居住和工作
阻尼器的工作原理

阻尼器的工作原理
阻尼器是一种能够减小某物体振荡幅度的装置,其工作原理主要是通过吸收振动能量或阻碍振动的传播来实现。
具体来说,阻尼器的工作原理可以分为三种类型:
1. 液体阻尼器:液体阻尼器通常由一个密闭的容器和其中填充了流体(如油)的腔体组成。
当物体发生振动时,振动的能量会被转化为流体内部的摩擦热能,从而达到减小振动的效果。
液体阻尼器可通过调节腔体内的流体粘度来改变阻尼器的阻尼效果。
2. 气体阻尼器:气体阻尼器通常由一个容器和其中填充了气体(如氮气)的腔体组成。
当物体发生振动时,气体在腔体内产生压缩和膨胀,从而消耗振动的能量,并达到减小振动的效果。
气体阻尼器的阻尼效果可以通过调节气体的流量或压力来实现。
3. 涡流阻尼器:涡流阻尼器利用涡流的产生和能量耗散来达到减小振动的效果。
涡流阻尼器通常由一个导电材料制成的圆盘或环形片组成,当物体发生振动时,导电材料内部会产生感应电流,进而在设定的磁场中产生涡流,从而转化振动的能量为热能,实现阻尼的效果。
综上所述,不同类型的阻尼器在工作原理上有所差异,但都是通过吸收振动能量或阻碍振动的传播来减小物体的振荡幅度,达到减震或减振的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州大学研究生文献综述论文题目浅谈阻尼器的类型学院土木工程学院班级名称2016级专硕一班学号**********学生姓名陆富龙2016 年12 月18 日关于阻尼器的类型总结摘要:随着抗震在结构中的重要性越来越重要,高强轻质材料的采用,高层、超高层等高柔结构及特大跨度桥梁不断涌现,相关的研究也越来越多,从结构抗震到结构的减震再到结构的隔振,各种的理念层出不穷,然在抗震中,现在比较方便和比较常用的就是在建筑结构上加入阻尼器,用以吸收地震或风震产生的能量,以提高结构的抗震性能,随着科技的发展,各种阻尼器不断的更新创新,运用各种的原理来优化阻尼器,对于形式多样、要求各异的工程结构,如何在推广应用消能技术时,选择适合的阻尼器类型并进行阻尼器的合理优化设计将关系到这一技术的发展前景,具有重要的现实意义,值得进一步探讨研究。
关键词:阻尼器,类型,适用Abstract: with the earthquake is becoming more and more important in the importance of the structure, high-strength lightweight material used, high-rise structure and extra long-span Bridges and super-tall soft, related research also more and more, from the structure seismic to structure of shock absorption and vibration isolation of the structure, various LiNianCeng out one after another, but in the earthquake, is now more convenient and more commonly used in building structures with dampers, earthquake or wind to absorb energy, to improve the seismic performance of structure, with the development of science and technology, the updating and innovation of various dampers, use all kinds of the principle to optimize damper, for a variety of forms and requirements of different engineering structure, how to promote application of energy dissipation technology, select the appropriate type of damper and the optimization of damper design will be related to the development prospects of this technology, has important practical significance and worthy of further research are discussed.Keywords: damper,type,apply前言近年来,国内外在工程结构的隔震、减振与振动控制方面进行了大量的研究工作,取得了丰硕的成果。
传统的建筑抗震结构体系是通过提高结构本身的性能,例如加大构件截面尺寸或者采用更高强度的材料来抵御地震作用。
但是,由于人们不能准确地预知将来可能遇到的地震作用的大小及特性,而按传统方法设计的建筑结构又不具备对外荷载进行自我调节的能力,因此,按常规的设防烈度来进行设计,一旦遇到超出设防烈度的强烈地震,建筑结构的安全性将无法得到保障。
提出了结构振动控制的概念,即通过在工程结构的特定部位装设某种装置、机构或某种施加外力的设备,改变或调整结构的动力特性,从而合理控制结构在动力荷载作用下的响应(如位移、速度、应变或者加速度等)。
结构控制的提出和发展无疑给现代建筑抗震设计带来了根本性的变化,1阻尼器的类型阻尼器是以提供运动的阻力,耗减运动能量的装置,消能减震结构体系按照所采用的减震装置,可以分为“速度相关型”和“位移相关型”和“其他类型”。
2速度相关型阻尼器速度相关型阻尼器,主要有粘滞型阻尼器(其耗能能力与速度大小相关),包括油阻尼器,粘弹性阻尼器等。
2.1粘滞阻尼器粘滞阻尼器是一种速度相关型的耗能装置,它是利用液体的粘性提供阻尼来耗散振动能量。
粘滞阻尼器的种类跟多,归纳起来可分为以下两类:第一类是液体在封闭的容器中产生一定的速度来进行耗能的阻尼器,在这类阻尼器中,活塞要迫使粘滞液体在很短的时间内通过小孔,这将产生很大的压力。
此类阻尼器的内部工艺设计要求较高。
第二类是粘滞液体在敞开的容器中产生一定的位移来进行耗能的阻尼器。
此类阻尼器要求粘滞液体尽量粘绸以获得最大限度的阻尼,因此设计中粘滞液体材料的选择是关键问题。
这类粘滞阻尼器常用的形式即是粘滞阻尼墙。
建筑中常用的粘滞液体阻尼器多是第一类阻尼器。
为正确分析附设粘滞阻尼器结构的抗震性能,国内外研究人员提出了许多相关的数学,力学模型来确定粘滞阻尼器的力学计算模型。
粘滞阻尼器的显著特点是对结构只提供附加阻尼,而不提供附加刚度,因而不会改变结构的自振周期。
其优点是安装了粘滞阻尼器的支撑不会在柱端弯矩最大时给柱附加轴力。
2.2油阻尼器油阻尼器是借助特殊结构的阀门控制液压缸内的活塞移动从而达到抑制安装节点的结构、设备或管道免受周期性荷载和偶发冲击载荷影响的阻尼装置。
它适用于防止地震、风载、水锤、汽锤、安全阀排汽、流体瞬变等产生的破坏响应。
2.3粘弹性阻尼器粘弹性阻尼器是一种速度相关型阻尼器,VED是以夹层方式将粘弹性阻尼材料和约束钢板组合在一起,其工作原理是粘弹性材料随约束钢板往复运动,通过粘弹性阻尼材料的剪切滞回变形来耗散能量。
VED所用的粘弹性阻尼材料一般是高分子聚合物或玻璃质物质。
由于粘弹性阻尼材料是一种介入粘性液体和弹性体之间的,具有储存能量和耗散的材料,它的基本特点是应变滞后于应力。
3位移相关型阻尼器位移相关型阻尼器(其耗能能力与位移大小相关),包括金属屈服型阻尼器(包括软钢阻尼器、铅阻尼器,屈曲约束支撑BRB,形状记忆合金SMA等),摩擦阻尼器等。
3.1金属阻尼器金属阻尼器主要是利用金属进入弹塑性屈服状态产生滞回进行耗能,具有造价低廉,耗能能力稳定的优点。
能量耗散是减少建筑结构或构件在地震中损伤和破坏的关键,所以应用金属阻尼器是耗散地震能量的重要手段之一。
由于金属在进入塑性状态后具有良好的滞回特性,并在弹塑性滞回变形过程中能吸收大量能量,因而被用来制造不同类型和构造的耗能减震器。
目前比较常用的包括金属软钢阻尼器、加劲钢板阻尼器、剪切钢板阻尼器、全钢防屈曲支撑和铅挤压阻尼器等。
3.2摩擦阻尼器摩擦阻尼器作为一种耗能装置,因其耗能能力强,荷载大小、频率对其性能影响不大,且构造简单,取材容易,造价低廉,因而具有很好的应用前景。
特别是在控制结构近断层地震反应和中高层结构地震反应方面有独特优势。
摩擦阻尼器对结构进行振动控制的机理是:阻尼器在主要结构构件屈服前的预定荷载下产生滑移或变形,依靠摩擦或阻尼耗散地震能量,同时,由于结构变形后自振周期加长,减小了地震输入,从而达到降低结构地震反应的目的。
摩擦阻尼器是一种依靠位移耗散能量的装置,因为摩擦力与速度和频率无关,它分为粘滞和滑移两种状态。
在反复循环加载下摩擦阻尼器的滞回曲线为矩形,符合库仑模型。
库仑模型的基本原理基于以下假设: 1.总摩擦力大小依赖于接触面表面情况况。
2.总摩擦力大小与施加在接触面的力的大小成正比。
3.若两接触体相对滑动速度较小,则摩擦力与速度无关。
4其他类型其他型阻尼器主要有调谐质量阻尼器(TMD)、调谐液体阻尼器(TLD)等。
4.1调谐质量阻尼器调谐质量阻尼器(TMD)由质块,弹簧与阻尼系统组成。
既由将其振动频率调整至主结构频率附近,改变结构共振特性,(图一)以达到减震作用。
将调谐质量阻尼器(TMD)装入结构的目的是减少在外力作用F基本结构构件的消能要求值。
在该情况下,这种减小是通过将结构振动的一些能量传递给以最简单的形式固定或连接在主要结构的辅助质量—弹簧—阻尼筒系统构成的TMD来完成的。
4.2调谐液体阻尼器调频液体阻尼器(Tuned Liquid Damper,简称TLD)是一种被动耗能减振装置,近年来进行了大量的研究和应用。
调谐液体阻尼器利用固定水箱中的液体在晃动过程中产生的动侧力来提供减振作用。
其具有构造简单,安装容易,自动激活性能好,不需要启动装置等优点,可兼作供水水箱使用。
总结阻尼器的运用使结构抗震性能大大提高,而且也为保护人民群众提供了很好的保障,消能减震结构体系应该进一步发展,从结构的抗震到结构的减震中,阻尼器运用普遍,也提供了很大的阻尼力,在运用各种阻尼器的时候要合理运用,根据结构的体系和结构的特点分析结构的位移和速度情况,而且要清楚位移相关型和速度相关型的特点和原理,才能合理的运用阻尼器,最大发挥出阻尼器的作用,使更大幅度的提高结构的抗震性能。
建立更加完善的性能评价体系对不同类型消能装置进行比较分析,以明确各类阻尼器的适用范围具体重要的现实意义,是需要更加深入的研究课题,实际工程中,结构形式复杂多样,可以考虑针对结果特性沿高度变化,具体薄弱层以及刚度突变等不同形式特点的结构进行不同类型阻尼器的减震对比深入研究,为消能技术的应用提供更加全面。
完善的依据。
参考文献:杨明飞.金属阻尼器的试验研究与应用[J].安徽理工大学学报·自然科学版,2014,03 史春芳,徐赵东. 摩擦阻尼器在工程结构中的研究与应用.建筑与结构设计,2007,09曲激婷,李宏男.位移型和速度型阻尼器减震对比研究及优化设计,大连:大连理工大学防灾减灾工程及防护工程博士论文2008,09。