抽油杆柱引起的悬点最大惯性载荷上冲程

合集下载

抽油机悬点运动规律及悬点载荷

抽油机悬点运动规律及悬点载荷

第二节抽油机悬点运动规律及悬点载荷一、教学目的了解抽油机悬点的运动规律,抽油机悬点静载和动载的计算方法以及最大载荷、最小载荷的位置及其计算值。

二、教学重点、难点教学重点:1悬点运动规律;2、载荷计算。

-| I *教学难点:1最大载荷和最小载荷的计算。

三、教法说明课堂讲授并辅助以多媒体课件展示相关的图形和动画。

四、教学内容本节主要介绍两个方面的问题:1.抽油机悬点运动规律.2.抽油机悬点载荷计算.(一)抽油机悬点运动规律1、简化为简谐运动时悬点运动规律假设条件:r/l〜0、r/b〜0游梁和连杆的连接点B的运动可看做简谐运动,即认为B点的运动规律和D点做圆运动时在垂直中心线上的投影(C点)的运动规律相同。

则B点经过t时间(曲柄转角© )时位移为:S B = r(1 cos ) = r(1 - cos t)■图3-13抽油机四连杆机构简图以下死点为坐标零点,向上为坐标正方向,则悬点A的位移为:a aSA=b S B = b r(i°S 7V A'S A,仙计dt bwA点的速度为:图3-14筒谐运动时悬点位移.速度、加遠度吨线7・丄■ A/ \〉等直4/y*\P>.!亠I 1L / 1*\iraA点的加速度为:W 2rcos t2、简化为曲柄滑块机构时悬点运动规律假设条件:° r门:14把B点绕游梁支点的弧线运动近似地看做直线运动,则可把抽油机的运动简化为曲柄滑块运动。

Dffl 曲柄滑块机构简图A 点位移:扎 21 aS A = r(1 - cos —sin )2 bA 点速度:(二)抽油机悬点载荷计算1、悬点所承受的载荷 (1)静载荷V A 严dtr (sina护2)bA 点加速度:W“;;2r(cosa 2S .2 max1802 (1十)图3-n 悬点加速度变化庙线1-按简谐运动计算:A 精确计算: 3-按曲柄滑块机构计算+ 扎cos2>) —bS 2(1 - )l am ax图3-氐悬点速度变化曲线1-按筒谐运动计算;A 精确计算; 3-按曲柄滑块机构计算包括:抽油杆柱载荷;作用在柱塞上的液柱载荷;沉没压力对悬点载荷的影响;井口回压对悬点载荷的影响。

抽油机平衡

抽油机平衡
2 c
式中 Xub——抽油机结构的不平衡值,N,是折算到游梁平衡块重心位置的附加平衡力, 可查抽油机的出厂说明书。
二、抽油机的平衡( 三 ) 抽油机的平衡方式


2.曲柄平衡 抽油机工作时,要使电机在上、下冲程中作功近似 相等,可靠调节曲柄平衡块在曲柄上的位置(平衡 半径)来实现。 由于这种平衡方式便于调节,又不产生象游梁平衡 时在游梁上造成过大的惯性力,所以多用于大型抽 油机(50kN以上的重型抽油机),但这种平衡会使 曲柄轴上有较大的负荷和离心力。如图4—4所示, 下冲程中储存的位能:



(二)平衡的基本原理 抽油机之所以不平衡,是因为在上、下冲程中驴头悬点载荷不同,因而 造成电动机在上、下冲程中做功不相等。抽油机平衡的目的是为了在上、下 冲程中使电动机作功近似相等。 下面用最简单的机械平衡方式来说明这种可能性和达到平衡的基本条件。 1.下冲程 假定抽油杆柱下行时作功为Ad,在抽油机没有平衡的条件下这部分功全部传 给电动机,使它作负功。现在只在游梁的后端悬挂一个足够大重物,以致于 仅靠抽油杆柱下行时所作的功(Ad)都不能抬起,还需要电动机来带动作功 Amd才能抬起来,这时可得到下列平衡方式 Aw=Amd+Ad 或 Amd=Aw-Ad 式中 Aw——下冲程中抽油杆柱自重和电动机举升重物需要作的功,即重物 储存的能; Amd——下冲程中电机对重物作的功,即电机在下冲程中作的功; Ad——下冲程中抽油杆柱对重物所作的功,即驴头悬点作的功;
二、抽油机的平衡


(一)抽油机不平衡的危害 当游梁式抽油机一抽油泵装置工作时,驴头悬点上作用的载荷是变化的。 上冲程时,驴头悬点需要提起抽油杆柱和液柱,在抽油机未进行平衡的条件下, 电动机就要作功,才能使驴头上行。在下冲程时,抽油杆柱在其自重的作用下 克服浮力下行,这时电动机不仅不需要对外作功,反而接受外来能量作负功, 这就是抽油机在上、下冲程中不平衡的原因。抽油机工作过程中,电动机在上、 下冲程中作功不相等称为抽油机的不平衡。 抽油机不平衡时将带来以下危害: (1)降低电动机使用效率和寿命。由于负荷不均匀,降低电动机使用效率 和寿命。满足最大负荷时,造成功率的浪费较大。 (2)缩短抽油机使用寿命。由于负荷不均匀,在曲柄旋转一周中载荷忽大 忽小,会使抽油机发生剧烈振动而缩短抽油机的寿命。 (3)影响抽油机和抽油泵的正常工作。由于负荷不均匀,会破坏曲柄旋转 速度的均匀性,从而使驴头上、下摆也不均匀,影响抽油机和抽油泵的正常工 作。

第十章 有杆泵采油3

第十章  有杆泵采油3
W max W r Wl Firu W r Wl W r sn
2
1790
(1 )
W min W rl Fird W rl
W r sn
2
1790
(1 )
令: W r W rl

W l l gA p L
则悬点所承受的最大和最小载荷公式可 分别写成另一种形式:
在下面的讨论中忽略了液柱的振动载荷。 (1) 抽油杆柱的振动引起的悬点载荷 在初变形期末激发起的抽油杆柱的纵向振动, 可用一端固定、一端自由的细长杆的自由纵振 动微分方程来描述
2u t
2
a
2
2u x
式中 u ——抽油杆柱任一截面的弹性位移,m;
x ——自悬点到抽油杆柱任意截面的距离,m; a——弹性波在抽油杆柱中的传播速度,等于 抽油杆中的声速,m/s; t——从初变形期末算起的时间,s。
s——光杆冲程,;n ——冲次,。
2
(2n 1)
n 0

( 1) n
2
sin( 2 n 1) 0 t
E——抽油杆材料的弹性模量。 EA r 最大振动载荷为 F v v max a
式中
最大振动载荷发生在 t 2 , 2 ...处。但 实际上由于存在阻尼,振动将会随时间逐 渐衰减,故最大振动载荷发生在处,出现 最大振动载荷的时间则为 L
第三节
抽油机悬点载荷计算
抽油机在工作时悬点所承受的载荷,是进行 抽油设备选择及工作状况分析的重要依据。 一、 悬点承受的载荷
振动
惯性 摩擦 杆重
动载荷
静载荷
液重
沉没压力 井口回压 浮力
其他载荷
1. 抽油杆柱的重力产生的悬点静载荷

常规有杆泵采油技术资料

常规有杆泵采油技术资料
泵吸入的条件: 泵内压力(吸入压力)低于沉没压力。
A-上冲程
泵的工作原理
下冲程:柱塞下行,固定阀在重力作用下关闭。泵 内压力增加,当泵内压力大于柱塞以上液柱压力时, 游动阀被顶开,柱塞下部的液体通过游动阀进入柱 塞上部,使泵排出液体。
泵排出的条件: 泵内压力(排出压力)高于柱塞以上的液柱压力。
柱塞上下抽汲一次为一个冲程,在一个冲程内完 成进油与排油的过程。
(一) 悬点所承受的载荷 1)静载荷
①抽油杆柱载荷;②作用在柱塞上的液柱载荷;③沉没压力对悬点载 荷的影响;④井口回压对悬点载荷的影响
①抽油杆柱载荷
上冲程: Wr fr s gL qr gL (即杆柱在空气中的重力) 下冲程: Wr fr L(s l )g qrLg (即杆柱在液体中的重力)
链条式抽油机
带传动抽油机
滚筒型抽油机
(二)抽油泵
一般要求
1)结构简单,强度高,质量好,连接部分密封可靠。 2)制造材料耐磨和抗腐蚀性好,使用寿命长。 3)规格类型能满足油井排液量的需要,适应性强。 4)结构上应考虑防砂、防气,并带有必要的辅助设备。 5)便于起下。
(二)抽油泵
主要组成:泵筒、柱塞及游动阀(排出阀) 和固定阀(吸入阀) 分类:按照抽油泵在油管中的固定方式 可分为:管式泵和杆式泵
③运动规律不同。后置式上、 下冲程的时间基本相等;前 置式上冲程较下冲程慢。
16
游梁式抽油机系列型号表示方法
CYJ 12—3.3—70(H) F(Y,B,Q)
F:复合平衡
Y:游梁平衡 平衡方式代号 B:曲柄平衡
Q:气动平衡
减速箱齿轮形代号,H为点啮合双 圆弧齿轮,省略渐开线人字齿轮
减速箱曲柄轴最大允许扭矩,kN.m

抽油机悬点运动规律分析及载荷计算汇总

抽油机悬点运动规律分析及载荷计算汇总

9次/分,使用
2
1 2
"油管,3/4"抽油杆,原油密度
900kg/m3,油井含水33%。试计算悬点最大和最
小载荷,并计算各种载荷占最大载荷的百分比。
• 解:l fW W (1-fW )0 =0.33×1000+(1-
0.33)×900 =933 kg/m3
• 根据抽油机型号CYJ-5-2.1-13HB,查得连杆长
Wl
(1
Sn 2 1790
)
为简谐运动,忽略摩擦载荷和液柱惯性载荷
公式Ⅴ
Pm a x
(Wr
Wl
)(1 Sn2 1790
)
简谐运动,忽略摩擦载荷,考虑了液柱惯性载荷
三、三种抽汲运动的对比
31
表3-5 三种抽汲运动的对比
简谐运动
曲柄滑块运动
普通抽油机
前置型抽油机
Ф=00 时 加速度的
极值
Wa
S 2
Wr Wl Wr' Wl'
27
Wm a x
Wr
Wl
Wr
Sn2 1790
(1
r) l
Wr '
Wl '
Wr
Sn2 1790
(1
r) l
Wl '
Wr [b
Sn2 1790
(1
r )] l
若取r / l 1/ 4,则
Wm a x
Wl
Wr
(1
Sn2 1440
)
(3-25)
(3-26)
22
上冲程主要受(1) (2) (3)的影响,增加悬点载荷; 下冲程主要受(1) (2) (4) (5)的影响,减少悬点载

采油工程第3章有杆泵采油(1-1)

采油工程第3章有杆泵采油(1-1)

节能
双驴头游梁式抽油机
链条式抽油机 宽带传动抽油机 液压抽油机
加大冲程

常 规 型 游 梁 式 抽 油 机


异 型 游 梁 式 抽 油 机
旋 转 驴 头 游 梁 式 抽 油 机
调 径 变 矩 游 梁 式 抽 油 机



链条式抽油机
皮带式抽油机



链传式抽油机
天轮式抽油机
直线往复式抽油机
一、抽油装置
游梁式抽油机系列型号表示方法
CYJ
12—3.3—70(H) F(Y,B,Q)
F:复合平衡
Y:游梁平衡 平衡方式代号 B:曲柄平衡 Q:气动平衡 减速箱齿轮形代号, H 为点啮合双 圆弧齿轮,省略渐开线人字齿轮 减速箱曲柄轴最大允许扭矩,kN.m
光杆最大冲程,m 悬点最大载荷,10 kN
游梁式抽油机系列代号
WA dV A a 2 r cos t dt b
抽油机四连杆机构简图
简谐运动时悬点位移、速度、 加速度曲线
一、抽油机悬点运动规律
(二)简化为曲柄滑块机构时悬点运动规律
假设条件:0<r/l<1/4
把B点绕游梁支点的弧线运动近似地看做 直线运动,则可把抽油机的运动简化为曲柄滑 块运动。 a A点位移: S A r (1 cos sin 2 ) 2 b
不同点:
①游梁和连杆的连接位置不同。
②平衡方式不同—后置式多采用
机械平衡;前置式多采用气动平
衡。
前置式气动平衡抽油机结构简图 后置式抽油机结构简图
③运动规律不同—后置式上、 下冲程的时间基本相等;前 置式上冲程较下冲程慢。

抽油机悬点运动规律及载荷分析

抽油机悬点运动规律及载荷分析

第二节 抽油机悬点运动规律及载荷分析一、游梁式抽油机悬点运动规律四连杆机构:以游梁支架轴和曲柄轴的连线为固定杆,以曲柄、连杆和游梁为三个活动杆所组成的四连杆机构。

如图3-21所示,抽油机在一个冲程中,悬点的速度和加速度不仅大小在变化,而且方向也在不断改变。

上冲程前半个冲程为加速运动,加速度方向向上;后半个冲程为减速运动,加速度方向向下。

下冲程前半个冲程为加速运动,加速度方向向下;后半个冲程为减速运动,加速度方向向上。

其最大速度发生在下、下冲程的中点,在上、下死点处速度为零;其最大加速度发生在上、下死点处,在上、下冲程的中点加速度为零。

上下死点处的最大加速度分别为:)1(220max lr s a +==ωϕ (3-12) )1(22max l r s a --==ωπϕ (3-13) 二、抽油机悬点载荷计算与分析(一)静载荷1.抽油杆柱载荷上冲程,悬点承受着整个抽油杆柱的重力为:g L f W s r r ρ= =Lg q r (3-21)对于多级抽油杆:g ┅L q L q W r r r )(2211++=式中 r W —— 抽油杆柱的重力,N ;r f —— 抽油杆的截面积,m 2;L —— 抽油杆柱的长度,m ;s ρ—— 抽油杆材料(钢)的密度,3/7850m kg s =ρ。

r q —— 每米抽油杆的平均质量,kg/m ;(可查表3-1)21r r 、q q —— 用多级组合杆柱时各级抽油杆柱的每米平均质量,kg/m ; 21、L L —— 用多级组合杆柱时各级抽油杆柱的长度,m 。

下冲程,作用在悬点上的杆柱载荷等于抽油杆柱的重力减去杆柱受到的浮力:g L f W l s r r )(ρρ-='或b W Lgb q W r r r ==' (3-23)式中 'r W —— 抽油杆柱在液体中的重力,N ;sl s b ρρρ-=――抽油杆的失重系数 l ρ—— 抽汲液体的密度,3/m kg ;当原油含水时,可用下式近似计算:w w w o l f f ρρρ+-=)1( (3-24)式中 o ρ—— 原油密度,3/m kg ;w ρ—— 水的密度,3/m kg ;w f —— 原油含水率,小数。

抽油机载荷计算(2006.2.15)

抽油机载荷计算(2006.2.15)

已知抽油机型号泵挂深度L(m)2180计算抽油杆上冲程在悬点载荷Wr (牛)=qr*L*g油水混合液密度ρm(公斤/米3)=n w*ρw+(1-n w)*ρ0抽油杆下冲程在悬点载荷Wr '(牛)=qr*L*b*g活塞上的液柱载荷Wl (牛)=(fb-fr)*L*ρm1*g上冲程中抽油杆引起的悬点最大惯性载荷Iru (牛)=Wr*s*n*n*(1+r/L1)/1790下冲程中抽油杆引起的悬点最大惯性载荷Id (牛)=Wr*s*n*n*(1-r/L1)/1790上冲程悬点最大载荷Pmax (牛)=Wr +Wl +Iru下冲程悬点最小载荷Pmax (牛)=Wr'- Id液柱载荷Wl ' (牛)=fb*L*ρm1*g公式1上冲程悬点最大载荷P1max (牛)=(Wr+w1 ')*(1+s*n/137)公式2上冲程悬点最大载荷P2max (牛)=(Wr+w1 ')*(1+s*n*n/1790)公式3上冲程悬点最大载荷P3max (牛)=w1 '+Wr*(b+s*n*n/1790)*(1+r/l)公式4上冲程悬点最大载荷P4max (牛)=w1+Wr*(1+s*n*n/1790)公式5上冲程悬点最大载荷P5max (牛)=(w1+Wr)*(1+s*n*n/1790)泵径D(mm)冲程s(m)冲数n(次/分)油管2 1/2"抽油杆 3/4"抽油杆7/8"抽油杆1"4436380900900 724969356386424681538633631025626050249232137721121727101551103040空气中每米3/4"抽油杆重qr(牛)空气中每米7/8"抽油杆重qr(牛)空气中每米1"抽油杆重qr(牛)2.33.074.17原油密度ρo(公斤/米3)抽油杆材料钢的密度ρs(公斤/米3)油井含水nw(%)901785034。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
取r/l=1/4时,
SN 2 I ru Wr 1440
下冲程: 液柱引起的悬点最大惯性载荷 上冲程:
Wr S 2 r SN 2 r I rd (1 ) Wr (1 ) g 2 l 1790 l
Wl S 2 r SN 2 r I lu (1 ) Wl 1 g 2 l 1790 l
amax
amax
0
S 2 r (1 ) 2 l
S 2 r (1 ) 2 l
180
抽油杆柱的惯性力: 液柱的惯性力:

f p fr ftf f r
Wr Ir WA g
Il Wl WA g
为油管过流断面变化引起液柱加速度变化的系数
悬点加速度在上、下冲程中大小和方向是变化的。 上冲程:前半冲程加速度为正,即加速度向上,则惯性力向 下,从而增加悬点载荷;后半冲程中加速度为负,即加速
图3-11 悬点加速度变化曲线 1-按简谐运动计算;2-精确计 算;3-按曲柄滑块机构计算
图3-10 悬点速度变化曲线 1-按简谐运动计算;2-精确计 算;3-按曲柄滑块机构计算
amax
amax
0
S 2 r (1 ) 2 l
S 2 r (1 ) 2 l
180
第二节 抽油机悬点运动规律及载荷
教学目的:
了解抽油机悬点的运动规律,抽油机悬点静载和动载的 计算方法以及最大载荷、最小载荷的位置及其计算值。
教学重点、难点: 教学重点
1、悬点运动规律 2、载荷计算
教学难点
最大载荷和最小载荷的计算
教法说明:
课堂讲授并辅助以多媒体课件展示相关的图形和动画。
A点的加速度为:
dv A a 2 WA r cos t dt b
图3-8 简谐运动时悬点位移、 速度、加速度曲线
(二)简化为曲柄滑块机构时悬点运动规律
假设条件:
0 r l 1 r l
把B点绕游梁支点的弧线运动近似地看 做直线运动,则可把抽油机的运动简化为 曲柄滑块运动。
qr ( s l ) / s qr b qr
b ( s l ) / s
失重系数
②作用在柱塞上的液柱载荷 上冲程:
游动阀关闭,作用在柱塞上 的液柱载荷为:
Wl ( f p f r ) Ll g
下冲程: 游动阀打开,液柱载荷作用于油 管,而不作用于悬点。
度向下,则惯性力向上,从而减小悬点载荷。
下冲程:与上冲程相反,前半冲程惯性力向上,减小悬点载
荷;后半冲程惯性力向下,将增大悬点载荷。
图3-11 悬点加速度变化曲线 1-按简谐运动计算;2-精确计 算;3-按曲柄滑块机构计算
图3-10 悬点速度变化曲线 1-按简谐运动计算;2-精确计 算;3-按曲柄滑块机构计算
图3-7 抽油机四连杆机构简图
S B r (1 cos ) r (1 cost a S A S B r (1 cos t ) b b
A点的速度为:
dS A a vA r sin t dt b
A-上冲程
B-下冲程
③沉没压力(泵口压力)对悬点载荷的影响 上冲程 在沉没压力作用下,井内
液体克服泵入口设备的阻力进入泵 内,此时液流所具有的压力即吸入 压力。吸入压力作用在柱塞底部产 生向上的载荷:
P i pi f p ( pn pi ) f p
下冲程 吸入阀关闭,沉没压力对 悬点载荷没有影响。
④井口回压对悬点载荷的影响 液流在地面管线中的流动阻力所造成的井口回压对悬点将产 生附加的载荷。 上冲程:增加悬点载荷: P hu ph ( f p f r ) 下冲程:减小抽油杆柱载荷: Phd ph f r 2.动载荷(惯性载荷、振动载荷) ①惯性载荷(忽略杆液弹性影响) 抽油机运转时,驴头带着抽油杆柱和液柱做变速运动, 因而产生抽油杆柱和液柱的惯性力。惯性力与质量有关,与 悬点加速度的大小成正比,其方向与加速度方向相反。
a A点位移: S A r (1 cos sin 2 )
2
b
A点速度:
vA
dS A a r (sin sin 2 ) dt 2 b
dv A a 2 r (cos cos 2 ) A点加速度: WA dt b
图3-9 曲柄滑块机构简图
教学内容:
1. 抽油机悬点运动规律 2. 抽油机悬点载荷计算
一、抽油机悬点运动规律
(一)简化为简谐运动时悬点运动规律
假设条件:r/l0、r/b0 游梁和连杆的连接点B的运动可看 做简谐运动,即认为B点的运动规律
和D点做圆运动时在垂直中心线上的
投影(C点)的运动规律相同。 则B点经过t时间(曲柄转角φ)时位 移为:
度向下,则惯性力向上,从而减小悬点载荷。
下冲程:与上冲程相反,前半冲程惯性力向上,减小悬点载
荷;后半冲程惯性力向下,将增大悬点载荷。
抽油杆柱引起的悬点最大惯性载荷
上冲程:
W S r W S N r sN r I ru r 2 (1 ) r 1 Wr 1 g 2 l g 2 30 l 1790 l
二、抽油机悬点载荷计算
(一)悬点所承受的载荷
1.静载荷 包括:抽油杆柱载荷;作用在柱塞上的液柱载荷;沉没压 力对悬点载荷的影响;井口回压对悬点载荷的影响 ①抽油杆柱载荷
上冲程
下冲程
Wr f r s gL qr gL (即杆柱在空气中的重力)
Lg (即杆柱在液体中的重力) Wr f r L( s l ) g qr
抽油杆柱的惯性力: 液柱的惯性力:

f p fr ftf f r
Wr Ir WA g
Il Wl WA g
为油管过流断面变化引起液柱加速度变化的系数
悬点加速度在上、下冲程中大小和方向是变化的。 上冲程:前半冲程加速度为正,即加速度向上,则惯性力向 下,从而增加悬点载荷;后半冲程中加速度为负,即加速
相关文档
最新文档