高中物理复合场问题分析

合集下载

高中物理复合场解题模型论文

高中物理复合场解题模型论文

高中物理复合场解题模型论文摘要:科学技术的飞速发展以基本物理原理为理论依据,复合场物理模型在社会生产中的应用极为常见,譬如常见的粒子选择器、回旋加速器、质谱仪以及电磁流量计等都采用了复合场的物理规律。

实际解题中常见的类型有粒子选择器原理以及回旋加速器的考察,粒子选择器的基本原理是根据入射进入复合场带电粒子的速度大小,决定了所受电场力和洛伦兹力相对大小的比例,进而产生不同方向的运动轨迹,达到选择粒子的目的,其他几种应用器件的工作原理基本类似,其根本是对复合场中电场力、洛伦兹力以及重力的合理分析,也是正确解题的先决条件。

一.高中物理复合场基本元素分析1.1平衡元素人类对事物规律的探究以挖掘特殊信息为切入点,高中物理解题也不例外,复合场问题的求解涉及到整合物理内容的核心元素,在该类问题的探究中寻找平衡条件无疑成为求解问题的先决条件,因此力学平衡条件是复合场问题中的首要元素,复杂问题的求解必须通过简单的平衡条件开始,尤其在带电粒子复合场运动模型中,寻找多种力共同作用时的平衡条件成为解题的核心纽带。

1.2电场元素复合场问题求解中构成上述平衡条件的基本单元之一为电场力的作用,从整个物理学内容来看,电场力特性是电学知识通过力学规律在现实生活中的客观体现,解决电学知识离不开力学规律的基础支撑,同时电学知识也使得力学体系更加完善。

复合场中电学基本元素中用到的基本公式为大家所熟知的电场力公式:F电=qE。

高中阶段接触的电场大多属于匀强电场,亦即解题中可以将F电视为恒力进行求解,此外,带电粒子在运动过程中所受电场力的方向和其电负性相关,也是决定正确求解的关键因素。

1.3磁场元素在高中物理中复合场问题求解中,洛伦兹力与电场力同等重要,也是整个高中物理的核心内容。

洛伦兹力表述了磁场对处于其中的带电粒子的作用,其效果通过运动轨迹体现出来。

洛伦兹力从形式上表示为:F电=qvBsinɑ,显然其大小与电荷量、运动速度以及磁场强度相关。

高中物理解决复合场中非圆周运动方法配速法

高中物理解决复合场中非圆周运动方法配速法

高中物理解决复合场中非圆周运动方法配速法一、配速法概述配速法是解决复合场中非圆周运动问题的一种有效方法。

其基本思想是:在复合场中,给物体施加一个虚拟的速度,使其在该虚拟速度的作用下,只受其中一种力(如重力或洛伦兹力)的作用,从而将复杂问题转化为简单问题进行求解。

二、配速法应用步骤1.分析题意,明确所求物理量。

2.选择合适的虚拟速度,使物体只受其中一种力作用。

3.建立运动方程,求解物理量。

4.检验虚拟速度是否合理。

三、配速法应用实例例题:一个带电量为q的粒子,质量为m,从竖直向上的匀强磁场中由静止释放,求粒子运动轨迹。

解:1.分析题意:求粒子运动轨迹。

2.选择虚拟速度:设粒子沿水平方向的速度为v,则粒子只受重力作用。

3.建立运动方程:y = y0 + v0t + ½gt²x = v0t4.检验虚拟速度:v²= v0²+ 2gy由上式可知,虚拟速度是合理的。

5.求解物理量:x = v0ty = y0 + ½gt²粒子运动轨迹为抛物线。

四、配速法注意事项1.选择虚拟速度时,应使物体只受其中一种力作用。

2.建立运动方程时,应考虑所有作用在物体上的力。

3.检验虚拟速度是否合理,是确保解题正确性的关键。

五、配速法拓展应用配速法还可以应用于解决其他复合场中非圆周运动问题,例如:•带电粒子在匀强电场和匀强磁场中的运动•带电粒子在非匀强磁场中的运动•流体在非匀强引力场中的运动六、总结配速法是一种解决复合场中非圆周运动问题的重要方法,具有简单易懂、应用范围广等优点。

掌握配速法,可以有效提高解决复合场中非圆周运动问题的能力。

高中物理人教版选修3-1分类题型5:等效场-重力与电场的复合场

高中物理人教版选修3-1分类题型5:等效场-重力与电场的复合场

高中物理选修3-1题型5(等效场-重力与电场复合场)1、复合场物体仅在重力场中的运动时最常见、最基本的运动,但是对处在匀强电场中的宏观物体而言,它的周围不仅有重力场,还有匀强电场,同时研究这两种场对物体运动的影响,问题就会变得复杂一些。

此时,可以将重力场与电场合二为一,用“复合场”来代替两个分立的场。

形象的把这个复合场叫做等效场或等效重力场。

2、处理思路(1)受力分析,计算等效重力(重力与电场力的合力)的大小和方向;(2)在复合场中找出等效最低点、最高点。

过圆心做等效重力的平行线与圆相交。

(3)根据圆周运动供需平衡结合动能定理列方程处理。

1、如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则(B)A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒2、如图所示,竖直放置的光滑绝缘圆环上套有一带正电的小球,圆心O处固定有一带负电的点电荷,匀强电场场强方向水平向右,小球绕O点做圆周运动,那么以下说法错误的是(D)A.在A点小球有最大的电势能B.在B点小球有最大的重力势能C.在C点小球有最大的机械能D.在D点小球有最大的动能3、如图所示,水平向左的匀强电场场强大小为E,一根不可伸长的绝缘细线长度为L,细线一端拴一个质量为m、电荷量为q的带负电小球,另一端固定在O点。

把小球拉到使细线水平的位置A,然后由静止释放,小球沿弧线运动到细线与水平方向成角θ=60°的位置B时速度为零。

以下说法中正确的是(B)A.A点电势低于的B点的电势B.小球受到的重力与电场力的关系是C.小球在B时,细线拉力为T=2mgD.小球从A运动到B过程中,电场力对其做的功为4、如图所示,竖直平面内有一固定的光滑椭圆大环,其长轴长BD=4L、短轴长AC=2L。

高中物理复习精讲 第10讲 复合场专题

高中物理复习精讲  第10讲 复合场专题

1.带电粒子在复合场中的受力复合场是指电场、磁场和重力场并存,或者其中某两场并存,或分区域存在的某一空间。

粒子经过该空间时可能受到的力有重力、电场力和洛伦兹力,抓住三个力的特点是分析和求解相关问题的前提和基础。

2.带电粒子在复合场中的几种典型运动 ⑴ 直线运动 自由的带电粒子(无轨道约束)在匀强电场、匀强磁场和重力场中做的直线运动应该是匀速直线运动,除非运动方向沿匀强磁场方向而粒子不受洛伦兹力,这是因为电场力和重力都是恒力,带电粒子在复合场中的运动知识点睛第10讲 复合场专题重力:若为基本粒子(如电子、质子、α粒子、离子等)一般不考虑重力;若为带电颗粒(如液滴、油滴、小球、尘埃等)一般需要考虑重力。

电场力:带电粒子(体)在电场中一定受到电场力作用,在匀强电场中,电场力为恒力,大小为F qE =。

电场力的方向与电场的方向相同或相反。

静电场中,电场力做功也与路径无关,只与初末位置的电势差有关,电场力做功一定伴随着电势能的变化。

洛伦兹力:带电粒子(体)在磁场中受到的洛伦兹力与运动的速度(大小、方向)有关,洛伦兹力的方向始终既和磁场方向垂直,又和速度方向垂直,故洛伦兹力永远不做功,也不会改变粒子的动能。

当速度变化时,会引起洛伦兹力的变化,合力也相应的发生变化,粒子的运动方向就要改变而做曲线运动。

当匀速直线运动时,0F 合,常用力的合成法分析。

⑵ 匀速圆周运动......当带电粒子进入匀强电场、匀强磁场和重力场共存的复合场中,电场力和重力相平衡,粒子运动方向与匀强磁场方向相垂直时,带电粒子就在洛伦兹力作用下做匀速圆周运动。

可等效为仅在洛伦兹力作用下的匀速圆周运动。

此种情况下要同时应用平衡条件和向心力公式分析。

⑶ 曲线运动.... 当带电粒子所受的合外力是变力,且与初速度方向不在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹不是圆弧,也不是抛物线。

3.带电粒子在复合场中运动的力学观点⑴ 正确的受力分析:除重力、弹力、摩擦力外,要特别注意电场力和洛伦兹力的分析,搞清场和力的空间方向及关系。

高中物理人教版第十章-磁场 第七课时 带电粒子(质点)在复合场中的运动

高中物理人教版第十章-磁场 第七课时  带电粒子(质点)在复合场中的运动

a F合 qvB 2g
mm
y 1 at2,x vt,tan y
2
x
解得:t 3v,x 3v2
g
g
x
B o A θ F电
mg
B z
y
则A、B之间的距离为:L x 2 3v2 cos 60 g
电场力做功:W=EqL=6mv2
例4:如图所示,虚线上方有场强为E1=6×104 N/C的匀强 电场,方向竖直向上,虚线下方有场强为E2的匀强电场 (电场线用实线表示),另外在虚线上、下方均有匀强磁 场,磁感应强度相等,方向垂直纸面向里.ab是一根长为 L=0.3 m的绝缘细杆,沿E1电场线方向放置在虚线上方的 电磁场中,b端在虚线上.现将套在ab杆上的电荷量为q= -5×10−8 C的带电小环从a端由静止开始释放后,小环先 做加速运动后做匀速运动到达b端,小环与杆间的动摩擦 因数为μ=0.25,不计小环的重力,小环脱离ab杆后在虚线 下方仍沿原方向做匀速直线运动.
(1)求虚线下方的电场强度E2方向以及a 大E小1 ;
Bb
(2)若小环到达b点时立即撤去虚线下方的磁场,其他
条件不变,测得小环进入虚线下方区域后运动轨迹上一点
P到b点的水平距离为 L ,竖直距离为 L ,则小环从a
2
3
到b的运动过程中克服摩擦力做的功为多少?
解析:(1)小环脱离ab杆后
a E1
向下方向做匀速直线运动,受力
U qvB E电q d q
U
F电
F洛
v
v
即:E U Bvd
F洛
F电
3.电磁流量计
如图所示为原理图。一圆形导管直径为d,用非
磁性材料制成,其中有可以导电的液体向右流动。导

高中物理之带电粒子在组合场和复合场中的运动

高中物理之带电粒子在组合场和复合场中的运动

一、复合场与组合场1.复合场:电场、磁场、重力场共存,或其中某两场共存.2.组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现.二、带电粒子在复合场中的运动分类1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.非匀变速曲线运动当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.[自我诊断]1.判断正误(1)带电粒子在复合场中的运动一定要考虑重力.(义)(2)带电粒子在复合场中不可能处于静止状态.(义)(3)带电粒子在复合场中不可能做匀速圆周运动.(义)(4)带电粒子在复合场中做匀变速直线运动时,一定不受洛伦兹力作用.(J)(5)带电粒子在复合场中做圆周运动时,一定是重力和电场力平衡,洛伦兹力提供向心力.(J)(6)带电粒子在复合场中运动涉及功能关系时,洛伦兹力可能做功.(义)2.(多选)如图所示,两虚线之间的空间内存在着正交或平行的匀强电场E 和匀强磁场B,有一个带正电的小球(电荷量为+ q、质量为附从电、磁复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过电、磁复合场的是()解析:选CD.A图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定增大,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动,故A错误.B图中小球受重力、向上的电场力、垂直纸面向外的洛伦兹力,合力与速度方向一定不共线,故一定做曲线运动,故B错误.C图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动,故C正确. D图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动,故D正确.3.(多选)在空间某一区域里,有竖直向下的匀强电场E和垂直纸面向里的匀强磁场B,且两者正交.有两个带电油滴,都能在竖直平面内做匀速圆周运动,如右图所示,则两油滴一定相同的是()A.带电性质B.运动周期C.运动半径D.运动速率解析:选AB.油滴受重力、电场力、洛伦兹力做匀速圆周运动.由受力特点及运动特点知,得mg=qE ,结合电场方向知油滴一定带负电且两油滴比荷%二E相等.洛伦兹力提供向心力,有周期T:缥,所以两油滴周期相等,故选A、qBm vB.由r二m知,速度v越大,半径则越大,故不选C、D.4. (2017・湖北襄阳调研)如图所示,两导体板水平放置,两板间电势差为U, 带电粒子以某一初速度。

“等效法”巧解复合场的圆周运动问题

“等效法”巧解复合场的圆周运动问题

“等效法”巧解复合场的圆周运动问题
摘要:
物理教学中,等效法是常用的一种方法,等效法是从效果等同出发研究物理现象和物理过程的一种科学方法。

等效的概念在中学物理中应用很广。

例如,力的合成和分解,运动的合成与分解,热功当量,电路的总电阻,交流电的有效值等;他们的计算都是应用等效法得出的。

带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题是高中物理教学中一类重要而典型的题型。

对于这类问题,若采用常规方法求解,过程复杂,运算量大。

若采用“等效法”求解,则能避开复杂的运算,过程比较简捷。

所谓“等效法”就是先求出重力与电场力的合力,将这个合力视为一个“等效重力”,将α=F合/m 视为“等效重力加速度”。

再将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解即可。

下面通过两个实例分析说明“等效法”在此类问题中的应用。

高中物理复合场问题处理方法探研

高中物理复合场问题处理方法探研

成才之路【学科教学与成才研究】高中物理复合场问题处理方法探研傅祥(江苏省扬州市广陵区红桥高级中学,江苏扬州225000)摘要:复合场问题一般是电场、磁场、重力场的两两组合,或是三场合一。

学生在进行复合场问题处理时,首先弄清楚题目中的复合场是由哪些场组成的,然后运用相关的物理学知识进行分析和解决,往往能取得良好的效果。

文章结合具体题型,对高中物理复合场问题处理方法进行探研。

关键词:高中物理;复合场;问题;处理方法;分析;探研中图分类号:G633.7文献标志码:A文章编号:1008-3561(2019)02-0086-01作者简介:傅祥(1988-),男,江苏扬州人,二级教师,从事高中物理教学与研究。

电场和磁场的复合场问题是高中物理学习的重点和难点,有很强的综合性,对学生的能力要求很高。

高中物理复合场问题的处理需要学生找准问题的切入点,从问题的特殊状态入手,找准复合场中的平衡状态,特别是对于一些带电粒子在复合场中的运动,需要学生结合已知条件,寻找对粒子起作用的多种力,其关键点是多种力作用的平衡状态。

在复合场中,粒子一般会受到重力、电场力、洛伦兹力等力的作用,这就要求学生能够对研究对象所受的不同性质的力进行分析,运用力学的知识进行物体运动轨迹或是速度的推断和计算。

因此,复合场问题最终会转化成力学问题和运动学问题。

一、无约束复合场问题无约束复合场问题,主要是对粒子在复合场中的运动受力以及运动轨迹进行分析。

此类问题需要学生以力学的受力分析为基础,从粒子达到受力平衡的状态入手进行分析,确定粒子平衡状态的条件是解决此类复合场问题的关键。

一般来说,复合场中的重力、电场力、洛伦兹力中的任意两个或三个的合力在某个方向上平衡,即合力为零时,即可以列出相关的方程,无约束复合场的问题基本就能顺利处理了。

例1:如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高中物理复合场问题分析复合场问题综合性强,覆盖的考点多(如牛顿定律、动能定理、能量守恒和圆周运动),是理综试题中的热点、难点。

复合场一般包括重力场、电场、磁场,该专题所说的复合场指的是磁场与电场、磁场与重力场、电场与重力场,或者是三场合一。

所以在解题时首先要弄清题目是一个怎样的复合场。

一、无约束1、 匀速直线运动如速度选择器。

一般是电场力与洛伦兹力平衡。

分析方法:先受力分析,根据平衡条件列方程求解1、 设在地面上方的真空室内,存在匀强电场和匀强磁场.已知电场强度和磁感强度的方向是相同的,电场强度的大小E =m ,磁感强度的大小B =.今有一个带负电的质点以=υ20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量q 与质量之比q/m 以及磁场的所有可能方向.1、由题意知重力、电场力和洛仑兹力的合力为零,则有22)()(Eq Bq mg +=υ=q 222E B +υ,则222E B g m q +=υ,代入数据得,=m q / 1.96C/㎏,又==E B /tan υθ,可见磁场是沿着与重力方向夹角为75.0arctan =θ,且斜向下方的一切方向2、(海淀区高三年级第一学期期末练习)15.如图28所示,水平放置的两块带电金属板a 、b 平行正对。

极板长度为l ,板间距也为l ,板间存在着方向竖直向下的匀强电场和垂直于纸面向里磁感强度为B 的匀强磁场。

假设电场、磁场只存在于两板间的空间区域。

一质量为m 的带电荷量为q 的粒子(不计重力及空气阻力),以水平速度v 0从两极板的左端中间射入场区,恰好做匀速直线运动。

求: (1)金属板a 、b 间电压U 的大小; (2)若仅将匀强磁场的磁感应强度变为原来的2倍,粒子将击中上极板,求粒子运动到达上极板时的动能大小; (3)若撤去电场,粒子能飞出场区,求m 、v 0、q 、B 、l满足的关系;(4)若满足(3)中条件,粒子在场区运动的最长时间。

2、(1)U=l v 0B ;(2)E K =21m v 0221-qB l v 0;(3)m qBl v 40≤或m qBl v 450≥; (4)qBm π 3、两块板长为L=1.4m ,间距d=0.3m 水平放置的平行板,板间加有垂直于纸面向里,图28b a q lB=的匀强磁场,如图所示,在两极板间加上如图所示电压,当t=0时,有一质量m=2⨯10-15Kg ,电量q=1⨯10-10C 带正电荷的粒子,以速度Vo=4×103m/s 从两极正中央沿与板面平行的方向射入,不计重力的影响,(1)画出粒子在板间的运动轨迹(2)求在两极板间运动的时间答案:(1) 见下图(2)两板间运动时间为 t=⨯解析:本题主要考查带电粒子在电磁复合场中的匀速圆周运动和匀速直线运动。

第一个10-4s 有电场,洛伦兹力F=qE=5⨯10-7N (方向向下),f=qvB=5⨯10-7N(方向向上),粒子作匀速直线运动,位移为x=v o t=0.4m ;第二个10-4s 无电场时,做匀速圆周运动,其周期为T=qBm π2=1⨯10-4s, 半径为 R=qB mv =⨯-2m<2d 不会碰到板,粒子可以转一周 可知以后重复上述运动粒子可在磁场里作三个完整的圆周运动,其轨迹如图(2)直线运动知x L =4.04.1= 由图像可得,粒子转了3周,所以B(a)⨯10-4s 54 2 1 O (b)图10-5在两板间运动时间T ’=+3T=4、如图3-4-2所示的正交电磁场区,有两个质量相同、带同种电荷的带电粒子,电量分别为q a 、、q b ,它们沿水平方向以相同速率相对着直线穿过电磁场区,则( )A .它们若带负电,则 q a 、>q bB .它们若带负电,则 q a 、<q bC .它们若带正电,则 q a 、>q bD .它们若带正电,则q a 、<q b5、如图3-4-8所示,在xoy 竖直平面内,有沿+x 方向的匀强电场和垂直xoy 平面指向纸内的匀强磁场,匀强电场的场强E =12N/C ,匀强磁场的磁感应强度B =2T .一质量m =4×10-5㎏、电量q =×10-5C 的带电微粒,在xoy 平面内作匀速直线运动,当它过原点O 时,匀强磁场撤去,经一段时间到达x 轴上P 点,求:P 点到原点O 的距离和微粒由O 到P 的运动时间.6、如图3-4-9所示,矩形管长为L ,宽为d ,高为h ,上下两平面是绝缘体,相距为d的两个侧面为导体,并用粗导线MN 相连,令电阻率为ρ的水银充满管口,源源不断地流过该矩形管.若水银在管中流动的速度与加在管两端的压强差成正比,且当管的两端的压强差为p 时,水银的流速为v 0.今在矩形管所在的区域加一与管子的上下平面垂直的匀强磁场,磁感应强度为B (图中未画出).稳定后,试求水银在管子中的流速.7、如图3-4-10所示,两水平放置的金属板间存在一竖直方向的匀强电场和垂直纸面向里的匀强磁场,磁感应强度为B ,一质量为4m 带电量为-2q 的微粒b 正好悬浮在板间正中央O 点处,另一质量为m 的带电量为q 的微粒a ,从P 点以一水平速度v 0(v 0未知)进入两板间正好做匀速直线运动,中途与B 相碰.(1) 碰撞后a 和b 分开,分开后b 具有大小为的水平向右的速度,且电量为-q/2.分开后瞬间a 和b 的加速度为多大分开后a 的速度大小如何变化假如O 点左侧空间足够大,则分开后a 微粒运动轨迹的最高点和O 点的高度差为多少(分开后两微粒间的相互作用的库仑力不计)(2) 若碰撞后a 、b 两微粒结为一体,最后以速度 v 0从H 穿出,求H 点与O 点的高度差.a 图O8、在平行金属板间,有如图1-3-31所示的相互正交的匀强电场的匀强磁场.α粒子以速度v 0从两板的正中央垂直于电场方向和磁场方向射入时,恰好能沿直线匀速通过.供下列各小题选择的答案有:A .不偏转B .向上偏转C .向下偏转D .向纸内或纸外偏转⑴若质子以速度v 0从两板的正中央垂直于电场方向和磁场方向 射入时,将 ( A )⑵若电子以速度v 0从两板的正中央垂直于电场方向和磁场方向射入时,将( A )⑶若质子以大于的v 0速度,沿垂直于匀强电场和匀强磁场的方向从两板正中央射入,将( B )⑷若增大匀强磁场的磁感应强度,其它条件不变,电子以速度v 0沿垂直于电场和磁场的方向,从两板正中央射入时,将 ( C )9、电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积).为了简化,假设流量计是如图1-3-37所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c .流量计的两端与输送流体的管道相连接(图中虚线).图中流量计的上下两面是金属材料,前后两面是绝缘材料.现于流量计所在处加磁感应强度为B 的匀强磁场,磁场方向垂直于前后两面.当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电阻的两端连接,I 表示测得的电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为 ( A )A .)(a c bRB I ρ+ B .)(c b aR B I ρ+C .)(b a cR B I ρ+D .)(abc R B I ρ+2、匀速圆周运动当带电粒子所受的重力与电场力平衡时,带电粒子可以在洛伦兹力的作用下,在垂直于磁场的平面内做匀速圆周运动。

无约束的圆周运动必为匀速圆周运动。

分析方法:先受力分析, 一般是洛伦兹力提供向心力,然后根据牛顿定律和匀速圆周运动知识,以及其他力平衡条件列方程求解。

1、 一带电液滴在如图3-13所示的正交的匀强电场和匀强磁场中运动.已知电场强度为E ,竖直向下;磁感强度为B ,垂直纸面向内.此液滴在垂直于磁场的竖直平面内做匀速圆周运动,轨道半径为R .问:(1)液滴运动速率多大方向如何(2)若液滴运动到最低点A 时分裂成两个液滴,其中一个在原运行方向上作匀速圆周运动,半径变为3R ,圆周最低点也是A ,则另一液滴将如何运动1、(1)Eq=mg ,知液滴带负电,q=mg/E ,R m Bq 2υυ=,E BRg m BqR ==υ.(2)设半径为3R 的速率为v 1,则R m q B 32/2211υυ=,知υυ3331===EBgR m BqR ,由动量守恒,212121υυυm m m +=,得v 2=—v .则其半径为R Bqm Bq m r ==⋅=υυ2222/. 2、如图1-3-33,在正交的匀强电磁场中有质量、电量都相同的两滴油.A 静止,B 做半径为R 的匀速圆周运动.若B 与A 相碰并结合在一起,则它们将 ( B )图图1-3-31 图1-3-33图1-3-37A .以B 原速率的一半做匀速直线运动B .以R /2为半径做匀速圆周运动C . R 为半径做匀速圆周运动D .做周期为B 原周期的一半的匀速圆周运动3、在真空中同时存在着竖直向下的匀强电场和水平方向的匀强磁场,如图1-3-39所示,有甲、乙两个均带负电的油滴,电量分别为q 1和q 2,甲原来静止在磁场中的A 点,乙在过A 点的竖直平面内做半径为r 的匀速圆周运动.如果乙在运动过程中与甲碰撞后结合成一体,仍做匀速圆周运动,轨迹如图所示,则碰撞后做匀速圆周运动的半径是多大原来乙做圆周运动的轨迹是哪一段假设甲、乙两油滴相互作用的电场力很小,可忽略不计.B q q v m m r )()(2121++=';DMA 是4、 如图1-3-41所示的空间,匀强电场的方向竖直向下,场强为E 1,匀强磁场的方向水平向外,磁感应强度为B .有两个带电小球A 和B 都能在垂直于磁场方向的同一竖直平面内做匀速圆周运动(两小球间的库仑力可忽略),运动轨迹如图。

已知两个带电小球A 和B 的质量关系为m A =3m B ,轨道半径为R A =3R B =9cm . (1) 试说明小球A 和B 带什么电,它们所带的电荷量之比q A : q A 等于多少(2) 指出小球A 和B 的绕行方向 (3) 设带电小球A 和B 在图示位置P 处相碰撞,且碰撞后原先在小圆轨道上运动的带电小球B 恰好能沿大圆轨道运动,求带电小球A 碰撞后所做圆周运动的轨道半径(设碰撞时两个带电小球间电荷量不转移)。

都带负电荷,13q q B A=;都相同;cm R A 7='5、如图1-3-52甲所示,空间存在着彼此垂直周期性变化的匀强电场和匀强磁场,磁场和电场随时间变化分别如图中乙、丙所示(电场方向竖直向上为正,磁场方向垂直纸面水平向里为正),某时刻有一带电液滴从A 点以初速v 开始向右运动,图甲中虚线是液滴的运动轨迹(直线和半圆相切于A 、B 、C 、D 四点,图中E 0和B 0都属未知)(1) 此液滴带正电还是带负电可能是什么时刻从A点开始运动的(2) 求液滴的运动速度和BC 之间的距离.1)、带正电,可能是s n 10)34(π-(n=1,2,3,…)(2)2m/s, 0.4m6、(18分)如图所示,半径R=0.8m 的四分之一光滑圆弧轨道位于竖直平面内,与长CD=2.0m 的绝缘水平面平滑连接,水平面右侧空间存在互相垂直的匀强电场和匀强磁场,电场强度E=40N/C ,方向竖直向上,磁场的磁感应强度B=,方向垂直纸面向外。

相关文档
最新文档