玻璃的结构与性质
玻璃断裂力学及玻璃结构

玻璃断裂力学及玻璃结构一、玻璃的基本性质玻璃是一种非晶态材料,具有优异的透明性、耐腐蚀性、绝缘性、隔热性等特性。
它是我们在建筑、电子、光学、化学等众多领域中不可或缺的材料。
二、玻璃的形成与制备玻璃的形成通常需要经历高温熔融和快速冷却的过程。
玻璃的制备方法主要包括焰熔法、浮法、压延法等。
不同的制备方法会得到不同性质和用途的玻璃。
三、玻璃的力学性能玻璃的力学性能主要表现为弹性模量、硬度、抗冲击性等。
其中,弹性模量是衡量材料刚性的重要指标,玻璃的弹性模量通常很高。
硬度是材料抵抗外部机械作用的能力,玻璃的硬度通常与硅酸盐成分有关。
抗冲击性是指材料在冲击下的韧性,玻璃的抗冲击性取决于其化学成分和微观结构。
四、玻璃的电学性能玻璃的电学性能主要包括电导率、介电常数等。
电导率是衡量材料导电性的指标,玻璃的电导率通常很低,具有良好的绝缘性能。
介电常数是衡量材料在电场作用下极化程度的指标,玻璃的介电常数通常较高。
五、玻璃的化学稳定性玻璃的化学稳定性是指其在各种环境条件下的耐腐蚀性和稳定性。
玻璃一般具有良好的化学稳定性,能够在大多数环境下保持其结构和性质的稳定性。
六、玻璃的结构与缺陷玻璃的结构通常是无序的,没有明显的晶体结构。
然而,玻璃中可能存在一些微观结构缺陷,如微小颗粒、气泡等。
这些缺陷可能影响玻璃的力学和光学性能。
七、玻璃的强度与断裂力学玻璃的强度是指其在受力作用下的最大承载能力。
断裂力学是研究材料在裂纹扩展条件下的力学行为。
玻璃的强度和断裂力学性质与其微观结构、化学成分和制备工艺等因素有关。
通过对玻璃的强度和断裂力学的研究,可以优化玻璃的性能和使用安全性。
八、玻璃的应用与前景玻璃因其独特的性质和广泛的应用领域而备受关注。
在建筑领域,玻璃可以用于制作窗户、幕墙等,提高建筑的采光和节能性能;在电子领域,玻璃可以用于制作显示器、太阳能电池等;在光学领域,玻璃可以用于制作镜头、眼镜等;在化学领域,玻璃可以用于容器、管道等。
玻璃结构及性质

T越大,即温度越低,对应的rc越小
影响临界晶核的半径的因素是T
2、玻璃形成的动力学条件
理论分析: 晶核生成速率N正比于 其中 称为临界晶核形成功,u为扩散激活能。
1.2 a
(A)晶核形成速率N 过冷度对成核速率的影响
玻璃体形成的条件
2、玻璃形成的动力学条件
2
3
玻璃体形成的条件
单击添加标题
01.
1、玻璃形成的热力学观点
Tg
ΔGv越大析晶动力越强,越不容易形成玻璃。 ΔGv越小析晶动力越弱,越容易形成玻璃。
玻璃
晶体
ΔGa
ΔGv
SiO2 ΔGv=2.5; PbSiO4 ΔGv=3.7 Na2SiO3 ΔGv=4.6 玻璃化的能力: SiO2> PbSiO4 > Na2SiO3
2、玻璃形成的动力学条件
玻璃体形成的条件
02
容易形成玻璃的结晶动力学曲线
03
2玻璃形成的动力学分析
01
N,C
04
2、玻璃形成的动力学条件
不同材料的N与C和过冷度关系曲线的形状及过冷温度范围可以有很大区别。
对于金属材料,u一般较小.u小则扩散容易,一旦形核,将迅速长大,在曲线上升阶段,材料的结晶就已经完成,故金属材料结晶能力非常强,很难形成非晶态。 (若冷却速度足够快,金属与合金也可获得非晶态固体)
玻璃体形成的条件
2玻璃形成的动力学分析
2、玻璃形成的动力学条件
3)易形成玻璃的材料,如 等: u值很大,扩散困难,晶核难长大。在高温才会有较大生长速率。 在过冷度不大时 较大,很难形成核. 在低温下易于形成晶核。 结果: 晶体生长速率C与晶核生成速率N曲线分开。 4) 只有在两条曲线相交的阴影部分才是容易结晶的区域,但这两者又都很小。因此这类物质容易成为玻璃体。
玻璃的结构与性质

玻璃的结构与性质玻璃是一种无机非晶固态材料,是由一定比例的硅酸盐和其他氧化物经高温熔融后迅速冷却而成。
玻璃具有诸多优点,如硬度高、耐腐蚀、透明度好、化学稳定性好等,因此广泛应用于建筑、日用品、电子通信、纺织等领域。
玻璃的结构是其性质的基础。
在玻璃中,硅酸盐的主要成分是SiO2,而其他氧化物则可作为玻璃的添加剂,以调节玻璃的颜色、热膨胀系数等性质。
在玻璃中,氧原子形成正四面体结构,而硅原子则填充在四面体中心,形成一种类似于冰晶石的三维网络结构。
由于氧和硅的电子云作用力强,因此Si-O键是玻璃中的主要结构基团。
不同类型的玻璃中,结构单元之间的连接方式也不尽相同,因此其性质亦有所差异。
玻璃的特殊性质源于其非晶结构。
晶体是具有周期性排列结构的物质,而玻璃则是一种无定形的、未能在固态中形成晶体结构的物质。
由于玻璃中的原子没有固定的空间位置,因此难以计算玻璃的机械、光学等性质。
同时,由于其非晶结构的存在,玻璃具有如下几个特点:1.灵活性。
晶体的原子排列方式常常受到限制,而玻璃的原子排列则显得灵活多变。
这种灵活性使得玻璃能够被加工成各种形状,获得各种性质。
2.易变性。
晶体由于其明确的原子排列方式,为其赋予了明确的物理性质,在不同的条件下其物理性质变化也比较小。
而玻璃由于其非晶结构,使得其物理性质变化比较明显,在不同的温度、压强条件下,玻璃的机械性能、热力学性质都有所不同。
3.断裂韧性低。
由于玻璃没有明确的原子排列方式,因此它的原子间结合力并不十分均匀,特别是玻璃中存在一些空隙、缺陷等结构的存在,使得其断裂韧性很低,容易因外力的作用而破裂。
4.密实性高。
晶体有明确的原子排列方式,因此原子之间的空隙要比玻璃少得多。
从数学角度来讲,晶体的最紧堆积密度为0.74,而玻璃的密度则可以达到0.95左右。
玻璃的高密度是其化学稳定性好、透明度高等性质的重要基础。
同时,玻璃的高密度也为其在各个领域的应用提供了巨大的优势。
总之,玻璃的结构和性质密不可分,了解玻璃的结构将有助于我们更好地理解其性质、应用及加工过程。
玻璃论文 结构 组成 性能

玻璃的组成、结构和性能姓名:郑朝阳班级:材料化学12-02班学号:311213020233引言:在自然界的固体物质中存在着晶态和非晶态两种状态。
有人把“非晶态”“玻璃态”看作是同义词,也有人将它们加以区别。
我国的技术词典中把“玻璃态”定义为“从熔体冷却,在室温下还保持熔体结构的固体物质状态”,习惯上常称玻璃为“过冷的液体”,“非晶态”作为更广义的名词,包括用其它方法获得的以结构无序为主要特征的固体物质状态。
关键词:玻璃组成结构性能正文:㈠各种“玻璃”的成分(1)普通玻璃(Na2SiO3、CaSiO3、SiO2或Na2O•CaO•6SiO2)(2)石英玻璃(以纯净的石英为主要原料制成的玻璃,成分仅为SiO2)(3)钢化玻璃(与普通玻璃成分相同)(4)钾玻璃(K2O、CaO、SiO2)(5)硼酸盐玻璃(SiO2、B2O3)(6)有色玻璃在(普通玻璃制造过程中加入一些金属氧化物。
Cu2O——红色;CuO——蓝绿色;CdO——浅黄色;CO2O3——蓝色;Ni2O3——墨绿色;MnO2——紫色;胶体Au——红色;胶体Ag——黄色)(7)变色玻璃(用稀土元素的氧化物作为着色剂的高级有色玻璃)(8)光学玻璃(在普通的硼硅酸盐玻璃原料中加入少量对光敏感的物质,如AgCl、AgBr等,再加入极少量的敏化剂,如CuO等,使玻璃对光线变得更加敏感)(9)彩虹玻璃(在普通玻璃原料中加入大量氟化物、少量的敏化剂和溴化物制成)(10)防护玻璃(在普通玻璃制造过程加入适当辅助料,使其具有防止强光、强热或辐射线透过而保护人身安全的功能。
如灰色——重铬酸盐,氧化铁吸收紫外线和部分可见光;蓝绿色——氧化镍、氧化亚铁吸收红外线和部分可见光;铅玻璃——氧化铅吸收X射线和r射线;暗蓝色——重铬酸盐、氧化亚铁、氧化铁吸收紫外线、红外线和大部分可见光;加入氧化镉和氧化硼吸收中子流。
(11)微晶玻璃(又叫结晶玻璃或玻璃陶瓷,是在普通玻璃中加入金、银、铜等晶核制成,代替不锈钢和宝石,作雷达罩和导弹头等)。
玻璃的主要成分和结构特点

玻璃的主要成分和结构特点玻璃是一种无定形固体材料,其主要成分是硅酸盐。
硅酸盐是由硅氧键连接的硅和氧原子组成的化合物。
在玻璃中,每个硅原子都与四个氧原子形成四面体结构,而每个氧原子则与两个硅原子形成桥式键,从而形成了硅氧网状结构。
这种结构特点决定了玻璃的特殊性质和性能。
玻璃的无定形结构使其没有明确的晶体结构,没有周期性的排列规律。
这使得玻璃没有晶体的典型特性,如明显的熔点和断裂面的平行排列。
相反,玻璃在加热过程中会逐渐变软,并在一定温度范围内转变为可塑状态,最终变成液体。
这种无定形结构也使得玻璃的断裂面呈现出玻璃特有的光滑平整的特点。
玻璃的硅氧网状结构使其具有高度的硬度和刚性。
硅酸盐的硅氧键是非常强大的化学键,能够提供玻璃所需的强度和耐磨性。
这也是为什么玻璃被广泛用于制作窗户、器皿和建筑材料等领域的原因之一。
另外,玻璃的硅氧网状结构还赋予了玻璃良好的耐腐蚀性能,使其能够抵抗大部分化学品的侵蚀。
玻璃的硅氧网状结构还决定了其特殊的光学性质。
由于玻璃中硅氧键的存在,玻璃能够几乎完全透明地传播光线。
这使得玻璃成为一种理想的光学材料,广泛应用于光学仪器、眼镜和显示器等领域。
另外,玻璃的硅氧网状结构还赋予了玻璃特殊的折射和反射性质,使得玻璃能够用于制作镜子和光学透镜等光学元件。
玻璃的硅氧网状结构还决定了其热稳定性和导热性能。
由于硅酸盐的硅氧键强度高,玻璃具有较高的熔点和较好的耐热性。
这使得玻璃能够在高温环境下保持稳定的结构和性能。
另外,玻璃的硅氧网状结构中的无定形空隙也使得玻璃具有较低的导热性能,能够有效地隔热。
这使得玻璃成为一种理想的保温材料,广泛应用于建筑、汽车和电子等领域。
玻璃的主要成分是硅酸盐,其结构特点是硅氧网状结构。
这种结构决定了玻璃的无定形性、硬度和刚性、耐腐蚀性、光学性质、热稳定性和导热性能等特点。
这些特点使得玻璃成为一种广泛应用于各个领域的重要材料。
玻璃的分子式

玻璃的分子式简介玻璃是一种非晶态固体材料,具有无定形结构,其分子式并不像晶体一样具有明确的化学式。
然而,玻璃的主要成分是硅氧化物,其化学式可以简化为SiO2。
本文将介绍玻璃的分子结构、成分以及制备方法,以帮助读者更好地了解玻璃的分子式。
玻璃的分子结构玻璃是由无定形的、高度随机排列的分子组成的固体。
与晶体不同,玻璃的分子结构缺乏长程的周期性。
这是由于玻璃的制备过程中,原子或分子无法形成有序的排列结构。
因此,玻璃的分子结构是一种无序的、非晶态的结构。
玻璃的成分玻璃的主要成分是硅氧化物(SiO2),也称为二氧化硅。
硅氧化物是一种无机化合物,化学式为SiO2。
硅氧化物是玻璃的主要结构形成单元,它们通过共价键连接在一起,形成三维的、无规则的网状结构。
除了硅氧化物,玻璃的成分还包括其他氧化物,如氧化钠(Na2O)和氧化钙(CaO),以及少量的添加剂。
这些添加剂可以改变玻璃的性质,例如增加其抗热性、抗冲击性或透明度。
玻璃的制备方法玻璃的制备方法主要包括以下几个步骤:1.原料准备:根据所需玻璃的成分,准备相应的原料。
通常,硅源使用二氧化硅(SiO2)或硅酸盐,碱源使用氢氧化钠(NaOH)或碳酸钠(Na2CO3),碱土金属源使用氧化钙(CaO)等。
2.混合和熔化:将适量的原料混合在一起,并放入高温熔炉中进行熔化。
熔化过程中,原料会逐渐熔化并混合在一起,形成均匀的熔体。
3.成型:将熔化的玻璃熔体倒入预先设计好的模具中,然后通过冷却使其凝固成固体。
4.退火:为了消除内部应力并提高玻璃的稳定性,制备好的玻璃制品通常需要进行退火处理。
退火是将玻璃制品加热到较高温度,然后缓慢冷却的过程。
通过以上制备方法,可以制备出各种不同成分和性质的玻璃,例如硼硅酸玻璃、石英玻璃、钠钙玻璃等。
玻璃的应用玻璃是一种非常常见的材料,广泛应用于各个领域。
以下是一些常见的玻璃应用:1.建筑:玻璃在建筑中被用作窗户、门、墙壁等。
透明的玻璃可以提供自然光线和景观视野。
玻璃的物理知识点总结

玻璃的物理知识点总结1. 玻璃的结构特点玻璃的结构特点是其非晶态结构。
在晶体结构中,原子或分子按照一定的规则排列,而在非晶体结构中,原子或分子的排列无序,没有明显的晶格结构。
这使得玻璃呈现出均匀、透明的外观,并且具有良好的光学性能。
玻璃的非晶态结构也使得其具有较高的抗拉强度和抗冲击性,是一种较为牢固的材料。
2. 玻璃的光学性质玻璃具有较好的透明性和折射性能。
在入射光线垂直于玻璃表面时,玻璃的折射率大约为1.5左右,这使得光线可以在玻璃内部进行传播,呈现出较好的透明性。
同时,玻璃的折射率变化范围较大,这也为制备各种光学器件提供了基础条件。
此外,玻璃还具有较好的光学均匀性和抗老化性能,可以长时间保持良好的光学性能。
3. 玻璃的热学性质玻璃在一定温度范围内呈现出较好的热稳定性。
一般情况下,玻璃的软化温度约为600-800摄氏度,而玻璃的熔化温度约为1000-1500摄氏度。
这使得玻璃可以在一定温度范围内进行加工和应用。
同时,玻璃的线膨胀系数较小,热膨胀性能较好,不易受温度变化的影响。
4. 玻璃的力学性质玻璃具有较高的硬度和抗拉强度。
一般情况下,玻璃的硬度在5-7摩氏硬度之间,这使得玻璃可以抵御一定程度的划伤和磨损。
同时,玻璃的抗拉强度和弯曲强度也较高,一般情况下可以承受较大的力学载荷。
综上所述,玻璃作为一种非晶体固体材料,具有一系列独特的物理性质和特点,这使得其在各个领域具有广泛的应用价值。
通过对玻璃结构的理解,可以更好地掌握玻璃的制备、加工和应用技术,为玻璃的进一步研究和开发提供了基础条件。
同时,玻璃的物理性质也为其在建筑、光学、仪器等领域的应用提供了理论支持和技术保障。
希望本文对于玻璃的物理知识有所帮助,欢迎批评指正。
玻璃的结构与性质

[SiO4]石英晶体结构以及所表达的石英玻璃、钠硅酸盐 玻璃晶子结构示意图
晶子学说的价值在于它第一次指出了玻璃中存 在微不均匀物,即玻璃中存在一定的有序区域,这对 于玻璃分相、晶化等本质的理解有重要价值。
无规则网络学说
查氏把离子结晶化学原则和晶体结构知识推演到玻璃态 物质,描述了离子—共价键的化合物,如熔融石英、硅酸盐 和硼酸盐玻璃。 核心观点:
3.无固定熔点
玻璃态物质由固体转变为液体是在一定温度区 间(转化温度范围内) 进行的,它与结晶态物质不同,没有固定熔点。
4.性质变化的连续性和可逆性
玻璃态物质从熔融状态到固体状态的性质变化过程是连续的和可逆的, 其中有一段温度区域呈塑性,称为“转变”或“反常”区域,在这区域内性 质有特殊变化。图1-1表示物质的内能和比容随温度的变化。
1.2玻璃的生成规律及其相变
1.2.1影响玻璃生成的因素
1.热力学条件
2. 动力学条件
1.热力学条件
玻璃态物质与相应结晶态物质相比具有较大的内能,因此它总是有降低内能向晶 态转变的趋势,所以通常说玻璃是不稳定的或亚稳的,在一定的条件
下(如热处理)可以转变为多晶体。玻璃一般是从熔融态冷却而 成。在足够高的熔制温度下,晶态物质原有的晶格和质点的有规则排列被破坏,发
中间体
(1)比碱金属和碱土金属化合价高而配位数小的阳离子。
(2)可以部分地参加网络结构。 如BeO,MgO,ZnO,Al2O3等,
2.各种氧化物在玻璃中的作用
(1)碱金属氧化物
★当碱金属氧化物加入到熔融石英玻璃中,促使硅氧四面体间连 接断裂,出现非桥氧,使玻璃结构疏松,导致一系列性能变坏。 ★由于碱金属离子的断网作用使它具有了高温助熔、加速玻璃 熔化的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
促进分相,P2O5,TiO2 分相对玻璃析晶的影响
提供界面
提高原子迁移率
起晶核作用
分相对玻璃性质的影响
分相对具有迁移特性的性能如粘度、电阻、化学稳 定性、玻璃转化温度等影响较大。当分相形貌为球 形液滴时,玻璃呈现较低的粘度、低的电阻或化学 不稳定;当分相为连通相时,玻璃呈现高粘度、高 电阻或化学稳定。
各种氧化物在玻璃中的作用P7
§3.2 玻璃的生成规律及其相变
3.2.1影响玻璃生成的因素
1.热力学条件 ΔG = ΔH - TΔS
2.动力学条件
晶核形成速率或晶体生长速度 晶核形成速率或晶体生长速度 晶核形成速率或晶体生长速度
U
I
U
I
UI
过冷度
a
过冷度
b
过冷度
c
/°C
生成玻璃的动力学条件:控制熔体的冷却速率 (粘度增大速率)
3.3.2玻璃的表面张力和密度
1.表面张力 表面张力的定义 影响表面张力的因素
一定范围内温度升高,质点间结合力减弱,液体的 表面张力减小。
各种氧化物对表面张力的影响表1-2 F-、SO42-能显著降低玻璃液的表面张力
晶子学说强调了玻璃结构的近程有序性;无规则网络 学说着重说明玻璃结构的连续性、统计均匀性与无序 性。
3.1.3 几种典型的玻璃结构
玻璃基本结构参数
X—每个多面体中非桥氧离子的平均数。 Y—每个多面体中桥氧离子的平均数。 Z—每个多面体中氧离子的平均总数。 R—玻璃中氧离子总数与网络形成离子总数之比。 X,Y,R,Z之间的关系为:X + Y = Z
A=-1.4788Na2O+0.8350K2O+1.6030CaO+5.4936MgO-1.5183Al2O3+1.4550 B=-6039.7Na2O-1439.6K2O-3919.3CaO+6285.3MgO+2253.4Al2O3+5736.4 T0=-25.07Na2O-321.0K2O+544.3CaO+384.0MgO+294.4Al2O3+198.1
(离子势Z/r) 如果正离子R在熔体中与氧形成强键,以致氧很难被硅 夺去,在熔体中表现为独立的离子聚集体。这样就出现 了两个液相共存,一个是含少量硅的富R-O相,另一个 是含少量R的富Si-O相。 在分相玻璃中,所加低浓度组分差不多富集在微相中。
对于R2O-SiO2二元系统,如果第三组分能提高混 溶温度,则能助长分相;如果第三组分能提高系统 粘度,则有抑制分相的倾向。
lg
应变点 退火点 变形点 软化点 流动点
600 00 1000 1200
T/C
2.玻璃粘度与组成的关系
3.玻璃粘度参考点
4.玻璃粘度的计算
奥霍琴法
适用于含有MgO,Al2O3的钠钙硅玻璃。Na2O在12%-16%, CaO+MgO在5%-12%, Al2O3在0-5%,SiO2在64%80%范围时,可用下式
曲线头部顶点对应析出 晶体体积分数是10-6时 的最短时间。
t/s
析晶体积分数是10-6时3T曲线
影响玻璃形成的动力学因素
在熔点时具有高的粘度,且粘度随温度降低而剧增 的熔体容易形成玻璃。
在相似的粘度-温度曲线下,具有较低熔点(Tm)和 较高玻璃态转变温度(Tg)的熔体易形成玻璃. 即Tg /Tm2/3。
分相对具有加和特性的性能如密度、折射指数、热 膨胀系数、强度等影响不敏感。
§3.3 玻璃的性质
3.3.1 玻璃的粘度 1.玻璃粘度与温度的关系 所有实用硅酸盐玻璃,其粘度 与温度的变化规律都属于同一 类型。 10Pa.s –1011 Pa.s ,玻璃 的粘度由温度和化学组成决 定。 1011 Pa.s- 1014 Pa.s,玻 璃的粘度由时间、温度和化 学组成决定。 玻璃的料性
3.1.2 玻璃结构的假说
晶子学说
认为玻璃由微晶和无定形物质两部分组成,微晶与无定形物 质间有明显的界限;微晶取向无序。
可以解释玻璃的分相、晶化等。
无规则网络学说
认为玻璃的近程有序与晶体相似,即形成氧离子多面体(三 角体和四面体),多面体间顶角相连形成三维空间连续的网 络,但其排列是无序的。解释玻璃的各向同性、内部性质均 匀性和性质变化的连续性。
X + 1Y = R 2
即
X = 2R - Z Y = 2Z - 2R
如石英玻璃(SiO2) Z=4,R=2/1 则X=2x24=0, Y=2x4—2x2=4
Na2O.SiO2,Z=4,R=(2+1)/1则X=2,Y=2
结构参数Y越大,网络连接程度越紧密,玻璃的机械 强度越高;
Y越小,网络连接越疏松,网络空穴越大,网络改性 离子在网络空穴中越易移动,玻璃的热膨胀系数增大, 电导增加,高温下的粘度下降。
3.2.2 熔体和玻璃体的相变
1.熔体和玻璃体的成核过程
均匀成核:临界核半径愈小晶核愈容易形成。
非均匀成核:成核剂和初晶相的界面张力愈小,或 它们之间的晶格常数愈接近,成核愈 容易。
2.晶体生长
影响结晶的因素:温度、粘度、杂质、界面能等。
3.玻璃的分相
分相:液相的不混溶性 分相的本质:取决于组分间的相互作用程度
T=AX+BY+CZ+D
富尔切尔法
适用于温度在500-1400,粘度在10-1012Pa.s,各组成范围为: 1molSiO2,0.15-0.2 molNa2O, 0.12-0.20molCaO ,00.051molMgO,0.0015- 0.073molAl2O3.
T=T0+B/(tan+A)
1.石英玻璃(SiO2) 2.钠钙硅玻璃(Na2O-CaO-SiO2)
ρ(θ)
晶体
玻璃
θ
3. 硼酸盐玻璃(B2O3)
硼氧反常性
4.其它氧化物
3.1.4 玻璃结构中阳离子的分类及各种氧化物 在玻璃中的作用
玻璃结构中阳离子的分类 P7
根据单键强度的大小,将氧化物分为: 网络生成体氧化物:能够单独形成玻璃。 网络外体氧化物:不能单独形成玻璃,但能改变 网络结构。 中间体氧化物:介于网络生成体和网络外体之间。