北京市初中数学竞赛试题分类解析
北京八年级数学竞赛试题

北京八年级数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个角的补角是它的3倍,那么这个角的度数是多少?A. 45°B. 60°C. 90°D. 120°3. 某数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
这个数列的第10项是多少?A. 144B. 89C. 72D. 554. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 85. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 一个数的相反数是-8,这个数是多少?A. 8B. -8C. 0D. 167. 一个长方体的长、宽、高分别是2, 3, 4,它的体积是多少?A. 24B. 26C. 28D. 308. 一个数的平方是36,这个数是多少?A. 6B. ±6C. 36D. ±369. 一个等差数列的首项是2,公差是3,它的第6项是多少?A. 17B. 19C. 21D. 2310. 一个分数的分子和分母的和是21,分子是分母的1/3,这个分数是多少?A. 1/6B. 2/15C. 3/18D. 4/17二、填空题(每题4分,共20分)11. 一个数的绝对值是5,这个数可以是________。
12. 如果一个数的平方根是4,那么这个数是________。
13. 一个圆的直径是14,它的周长是________。
14. 一个数的立方根是2,这个数是________。
15. 一个等差数列的第5项是15,公差是2,首项是________。
三、解答题(每题10分,共50分)16. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。
17. 解一元二次方程:x² - 5x + 6 = 0。
18. 一个长方体的长、宽、高分别是a, b, c,求它的表面积。
北京市中学生数学竞赛高一级复赛参考解答

2020年北京市中学生数学竞赛高一年级复赛参考解答一、选择题(总分值40分,每题8分,将答案写在下面相应的空格中)1.二次三项式x 2+ax +b 的根是实数,其中a 、b 是自然数,且ab =22020,那么如此的二次三项式共有 个.答:1341.咱们发觉,事实上,数a 和b 是2的非负整数指数的幂,即,a =2k ,b =22020–k ,那么判别式Δ=a 2– 4b =22k – 422020–k =22k – 22021–k ≥0,得2k ≥2021–k ,因此k ≥32013=671,但k ≤2020,因此k 能够取2020–671+1=1341个不同的整数值.每一个k 恰对应一个所求的二次三项式,因此如此的二次三项式共有1341个.2.如右图,在半径为1的圆O 中内接有锐角三角形ABC ,H 是△ABC 的垂心,角平分线AL 垂直于OH ,那么BC = .解:易知,圆心O 及垂心H 都在锐角三角形ABC 的内部,延长AO 交圆于N ,连接AH 并延长至H 1与BC 相交,连接CN ,在Rt △CAN 和Rt △AH 1B 中,∠ANC =∠ABC ,于是有∠CAN =∠BAH 1,再由AL 是△ABC 的角平分线,得∠1=∠2.由条件AP ⊥OH ,得AH=AO=1.连接BO 交圆于M ,连接AM 、CM 、CH ,可知AMCH 为平行四边形,因此CM=AH=AO =1,BM =2,因为△MBC 是直角三角形,由勾股定理得BC ==3.已知概念在R 上的函数f (x )=x 2和g (x )=2x +2m ,假设F (x )=f (g (x )) – g (f (x ))的最小值为14,那么m = .答:14-.解:由f (x )=x 2和g (x )=2x +2m ,得F (x )= f (g (x )) – g (f (x ))=(2x +2m )2–(2x 2+2m )=2x 2+8mx +4m 2–2m ,F (x )=2x 2+8mx +4m 2–2m 的最小值为其图像极点的纵坐标()2222242(42)84284242m m m m m m m m ⨯⨯--=--=--⨯.由已知,21424m m --=,得21202m ⎛⎫+= ⎪⎝⎭,因此1.4m =-4.tan 37.5= . 答:6232-+-.解1:作Rt △ADB ,使得∠ADB =90º,AD =1,AB =2,那么∠B =30º,BD =3.延长BD 到C ,使BC =2,那么DC =23-.连接AC ,那么∠ACB =(180º–30º)÷2=75º.作∠ACD 的平分线交AD 于E ,那么∠ECD =º. 由于AC 2=AD 2+DC 2=1+(2–3)2=8–43,因此 ()2843621226262AC =-=-+=-=-.由三角形的角平分线定理,得AE AC ED DC=,于是AE ED AC DCED DC ++=,即()()()()322162233221ED AD DC AC CD ====-++-+-+-,因此()()tan 37.53221EDDC==-+6232=-+-.解2:作等腰直角三角形ABC ,使∠C =90º,AC =BC =1,那么AB =2. 作∠CAD =30º,那么CD =33,AD =233,那么∠DAB =15º. 作∠BAD 的平分线AE ,记CE =x ,那么BE =1–x ,DE =x –3. 因此33232x -=,整理得 ()()213221623 2.3232x +-+===-+--+tan 37.562321CE xAC ===-+-. 5.设f (x ) =113xx+-,概念f 1(x ) = f (f (x )),f n (x )=f (f n –1(x )) (n =2, 3,…),f 2020(2020)= . 答:10053017.A21 30º解:记01()()13x f x f x x +==-,那么()111113()()1131313xx x f x f f x x x x++--===--+-⋅-; ()211113()()11313xx f x f f x x x x--+===-+⋅+;()3201()()()()13x f x f f x f x f x x +====-; 接下来有41()()f x f x =,52()()f x f x =,63()()f x f x =,…,f n (x )的表达式是循环重复的,以3项为一周期.因此,20113670111()()()13x f x f x f x x ⨯+-===+,20112011120101005(2011)13201160343017f -===+⨯.二、(总分值15分)D 是正△ABC 的边BC 上一点,设△ABD 与△ACD 的内心别离为I 1,I 2,外心别离为O 1,O 2,求证:(I 1O 1)2+(I 2O 2)2=(I 1I 2)2. 证明:作以A 为中心、逆时针旋转60的变换(,60)R A ,使△ABD 到△ACD 1,由于∠ADC +∠AD 1C =∠ADC +∠ADB =180º,因此A 、D 、C 、D 1共圆,因此2O 是△AD 1C 的外心,也确实是(,60)12R A O O −−−−→,因此AO 1=DO 1=AO 2=DO 2=O 1O 2,因此∠O 1AO 2=∠O 1DO 2=60º.由∠AO 1O 2+∠ACB =120º+60º=180º,O 1在△ACD 的外接圆⊙O 2上.由于111(180)6012012022AI D ABD ABD ∠=∠+-∠=+⨯=,因此I 1在⊙O 2上,因此11118018030150O I D O AD ∠=-∠=-=,111118015030I O D I DO ∠+∠=-=.同理可证,I 2在△ABD 的外接圆⊙O 1上,因此22150DI O ∠=.由于12118090,2I DI ∠=⨯=而22111212906030I DO I DO I DI O DO ∠+∠=∠-=-=,比较可得1122I O D I DO ∠=∠.在△O 1I 1D 与△DI 2O 2中,因为已证O 1D=DO 2,1122150,O I D DI O ∠=∠=又1122.I O D I DO ∠=∠因此 △O 1I 1D ≌△DI 2O 2.因此,I 1O 1=DI 2,DI 1= I 2O 2.由于1290,I DI ∠=△I 1DI 2是直角三角形.依照勾股定理,有()()()2221212,DI DI I I +=而I 1O 1=DI 2,DI 1=I 2O 2. 因此()()()222112212.I O I O I I +=三、(总分值15分)n 是正整数,记n !=1×2×3×…×n ,如1!=1,2!=1×2=2,3!= 1×2×3=6,又记[a ]表示不超过a 的最大整数,求方程120111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的所有正整数解.解1:由于当x 是正整数时,[]1!x x ⎡⎤=⎢⎥⎣⎦,2!2x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦≥12x -,3!6x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦>6x –1,因此1126x x x -++-<2020即53x <120122,得方程的正整数解x 知足0<x <. 由于6!=720,7!=5040,因此方程的正整数解x <7!,即07!8!9!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦. 因此,方程20111!2!3!4!5!6!x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的解与原方程的解是一样的.设小于7!的正整数x 为上述方程的解,咱们写出(1,2,3,4,5,6)!xk k =的带余除法表达式:设16!6!r x a =+,0≤r 1<6!,(0≤a ≤6,a ∈N );因此.6!x a ⎡⎤=⎢⎥⎣⎦① 12665!5!5!r r x a a b =+=++,0≤r 2<5!,(0≤b ≤5,b ∈N ),因此65!x a b ⎡⎤=+⎢⎥⎣⎦. ② 323053054!4!4!r r xa b a b c =++=+++,0≤r 3<4!,(0≤c ≤4,c ∈N ), 因此3054!x a b c ⎡⎤=++⎢⎥⎣⎦. ③341202*********!3!3!r r xa b c a b c d =+++=++++,0≤r 4<3!,(0≤d ≤3,d ∈N ); 因此1202043!x a b c d ⎡⎤=+++⎢⎥⎣⎦. ④5436060123360601232!2!2!r r xa b c d a b c d e =++++=+++++,0≤r 5<2, (e =0,1,2);因此360601232!x a b c d e ⎡⎤=++++⎢⎥⎣⎦. ⑤5720120246272012024621!1!r xa b c d e a b c d e f =+++++=+++++,(f =0,1); 因此72012024621!x a b c d e f ⎡⎤=+++++⎢⎥⎣⎦. ⑥①~⑥相加得1237a +206b +41c +10d +3e +f =2020. 显然a =1,因此206b +41c +10d +3e +f =2020–1237=774; 易知b =3,因此41c +10d +3e +f =774–206×3=156; 易知c =3,于是10d +3e +f =156–41×3=33;类似求得d =3,e =1,f =0.所求的x =1×720+3×120+3×24+3×6+1×2+0×1=1172.x =1172是方程20111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的唯一正整数解. 解2:设f (x )=1!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,因为关于所有的正整数k ,!x k ⎡⎤⎢⎥⎣⎦都是单调增的,其和f (x )确实是增函数;又因为关于正整数x ,11!x +⎡⎤⎢⎥⎣⎦=1!x ⎡⎤⎢⎥⎣⎦+1,因此f (x )是严格单调的.经估数,将x =1172带入,求f (1172)的值,得f (1172)=2020,因此,x =1172是方程20111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的唯一正整数解.四、(总分值15分)平面上的n 个点,假设其中任3个点中必有2个点的距离不大于1,那么称如此的n 个点为“标准n 点组”.要使一个半径为1的圆纸片,对任意“标准n 点组”都能至少盖住其中的25个点,试求n 的最小值. 答案:49.解:第一证明,n min >48.在平面上画长为5的线段AB ,别离以A 、B 为圆心,画半径为的两个圆,在每一个圆内,取24个点,那么平面上有48个点满足题设条件(其中任意3点中必有2点的距离不大于1),显然,不可能画出一个半径为1的圆,其包括有25个所选的点,因此n >48.下面证明n min =49.若49=n ,设A 是其中的一点,作以A 为圆心半径为1的⊙A ,假设所有的点都在圆A 中,那么就知足题设条件.假设不是所有的点都在圆A 中,那么至少有一点B 不在圆A 中,再作以B 为圆心、半径为1的⊙B ,那么A 、B 的距离大于1(如右图),除A ,B 外,余下的47个点中每一点P 都与A 、B 组成3点组,必有两个点的距离不大于1,因此要么P A ≤1,要么PB ≤1,即点P 要么在⊙A 中,要么在⊙B 中,依照抽屉原理,必有一个圆至少包括了这47个点中的24个点,不妨设那个圆确实是⊙A ,再加上圆心A 点,就有很多于25个点在那个半径为1的⊙A 中(圆内或圆周上).因此n 的最小值是49.五、(总分值15分)已知函数f :R →R ,使得对任意实数x y z ,,都有11()()()()22f xy f xz f x f yz +-≥14, 求[1×f (1)]+[2×f (2)]+[3×f (3)]+…+[2020×f (2020)]的值.其中关于实数a ,[a ]表示不超过a 的最大整数.解:由于已知函数f R R →:,使得对任意实数x y z ,,都知足11()()()()22f xy f xz f x f yz +-≥14,可令0x y z ===,有 ()211(0)(0)(0)22f f f +-≥14,即21(0)2f ⎛⎫- ⎪⎝⎭≤0, 由于f (0)是一个实数,因此1(0).2f =再令1x y z ===,有()211(1)(1)(1)22f f f +-≥14,即21(1)2f ⎛⎫- ⎪⎝⎭≤0, 由于f (1)是一个实数,因此1(1).2f =又令0y z ==,有11(0)(0)()(0)22f f f x f +-≥14,代入1(0)2f =得对任意实数x ,都有()f x ≤12. ①又令1y z ==,有11()()()(1)22f x f x f x f +-≥14,代入1(1)2f =得对任意实数x ,都有()f x ≥12. ②综合①、②可得,对任意实数x ,都有1()2f x =.验证:函数1()2f x =知足题设条件,取的是等号,因此知足题设条件的函数的唯一解为1()2f x =.于是[][][][]1(1)2(2)3(3)2011(2011)f f f f ⨯+⨯+⨯++⨯1234201122222⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦011223310051005=+++++++++()21231005=⨯++++(11005)1005=+⨯.1011030。
2020年北京初三数学竞赛 专题练习:极端原理(含答案)

2020北京初三数学竞赛专题练习:极端原理(含答案)1.两人轮流往一个圆桌面上放同样大小的硬币.规定每人每次只能放一枚,硬币平放在桌面上,并且两两不能重叠,谁放完最后一枚.使得对方无法按照规则再放,谁就获胜.问:是先放合算还是后放合算?解析本题的极端情况是:桌面小的只能放下一枚硬币.这时当然是先放的人合算.一般情况下,先放的人把硬币放在圆桌的中心处,每当对手放下一枚硬币后,就在对方硬币关于“圆心”对称位置再放下一枚硬币,这样只要对手还能放硬币,先放的人一定也能放,所以放最后一枚硬币的人一定是先放的人,从而他必能获胜.2.在一次乒乓球循环赛中,n(n≥3)名选手中没有全胜的,证明:一定可以从中找出三名选手A、B、C,使得A胜B,B胜C,C胜A.解析没取胜场数最多的一名选手为A,由于没有一个选手是全胜的,所以在这n名选手中存在一名选手C,C胜A.考虑A击败的选手的全体,其中必有选手B胜C.事实上,若A的手下败将也都负于C,那么C胜的场数比A胜的场数至少要多1,这与A是获胜场数最多的选手矛盾.所以,存在三名选手A、B、C,使得A胜B,B胜C,C胜A.3.平面上已给997个点,将连结每两点的线段中点染成红色,证明:至少有1991个红点,能否找到恰有1991个红点的点.解析997个点中每两点都有一个距离,因而共有9979962个距离(其中有可能有些距离是相等的),其中一定有一个最大距离.设AB是最大的距离.分别以A、B为圆心,12AB为半径作圆,如图所示.点A与除点B之外的995个点的连线的中点在圆A的内部或边界上;点B与除点外的995个点的连线的中点在圆B的内部或边界上,这样我们得到了995+995=1990个红点.另外,AB的中点是不同于上述1990个红点的,所以,至少有1991个红点.下面构造一个例子,说明恰好有1991个红点,设997个点在数轴上1,2,3,…,997的位置.这时中点为:32,42,52,…,19922,19932,故红点恰有1991个.4.证明:在任意的凸五边形中,都可以找到三条对角线,由这三条对角线可以组成一个三角形.解析如图所示,在凸五边形ABCDE中,一共有5条对角线:AC、AD、BD、BE、CE,所以其中一定有一条是最长的,不妨设AC最长.ABEPD由于ACDE 是凸四边形,设AD 与CE 的交点为P ,则 AC AP PC AD CE <+<+.因为AC 最长,所以,AC 、AD 、CE 这三条对角线可以作为一个三角形的三条边.5. 平面上给定3个点。
2012年北京市中学生数学竞赛高一年级初赛试题及参考解答

2
…
7 -7×2 0 1 2+
2 2 0 1 1 的值 . + 1 2 2 2 0 1 1 -2 0 1 1×2 0 1 2+ ×2 0 1 2 2
在单位正方形 6. 分别以 A, A B C D 中, B, 以1 C, D 四 点 为 圆 心, 为半 径 画 弧 , 如图3所 示. 交点 为 M , N, L, K, 求阴影部分的面积 . 已知二次函数 7.
c 解 因为 a≠0, 由韦达定理得s 2. i n c o s α α= 和 a b s i n o s α+c α=- , a
因为 ( s i n o s i nα + c o sα + α+c α) = s ( a)
2 2 2
π π π 解 l +l o +l o = 1. o s i n t a n c o s g g g 2 2 2 3 6 4
2 2
1 所以 S△CPN -S△BPM =S△CBN -S△B . CM = 8 ( 答: A) .
x-y ) , 解 由 f( 6. x) -f( =f( y) 1-x y
) 令 x=y, 得 f( 0 =0, , 令 x=0, 得 -f( 即 f( 是 奇 函 数, =f( -y) x) y) 又由已知 , 当 x∈ ( 时, 设 -1<x<y -1, 0) x) >0, f(
+ 1 4 1 5 9 2 6 5 3 5 8…… 满足 ∈Z 和无理数 π=3. 2 ( ; 的末位数字 , k π 的小数点后第n 位数字k≠0时)
图2
)= n f(
{
3 .
( . π 的小数点后第n 位数字k=0时) ( B) 5M ( D) 9M
) 若函数 f( 的值域记为 M , 则( n) . ) f( ( A) 1M ( C) 6M
2018年北京市中学生数学竞赛初二试题(含答案)

2018年北京市中学生数学竞赛初二试题(含答案)2,3,4,5,6,7,8,9中的一个,且这些自然数的和为2018.请问这个学生写出的这17个自然数中,最小的数是多少?(请给出详细解题过程)解:设这17个自然数分别为a1,a2,…,a17,则有:a1+a2+…+a17=2018由于每个自然数的个位数码只能是1,2,3,4,5,6,7,8,9中的一个,所以每个自然数的个位数字之和一定是45,即这17个自然数的个位数字之和为765.设b1,b2,…,b17分别为这17个自然数的十位数字,则有:b1+b2+…+b17=765由于每个自然数的十位数字也只能是1,2,3,4,5,6,7,8,9中的一个,所以每个自然数的十位数字之和一定是45,即这17个自然数的十位数字之和为765.设c1,c2,…,c17分别为这17个自然数的百位数字,则有:c1+c2+…+c17=765由于每个自然数的百位数字也只能是1,2,3,4,5,6,7,8,9中的一个,所以每个自然数的百位数字之和一定是45,即这17个自然数的百位数字之和为765.由此可得,这17个自然数中最小的数为100+10+1=111.一、1.A在1到100这100个自然数中,有25个质数,分别是2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.因此,质数在这100个自然数中所占的百分比是25%。
2.C将10分拆成三个正整数之和,共有8种情况:1+1+8、1+2+7、1+3+6、1+4+5、2+2+6、2+3+5、2+4+4、3+3+4.根据“三角形两边之和大于第三边”的原则,只有(2,4,4)和(3,3,4)两组可以构成三角形。
由于等腰三角形的两个底角都是锐角,因此以2、4、4为边的等边三角形中,最小边2对的顶角也是锐角。
以3、3、4为边的等腰三角形中,由3的平方加3的平方大于4的平方可知顶角也是锐角。
北京市中学生数学竞赛(初二)答案

2022年北京市中学生数学竞赛(初二)一、选择题(每小题5分,共25分)1.已知13x x +=.则220181x x x ++的值为( D ) A .2022 B .12020 C .2025 D .12025【解析】将题设式两边平方整理得17x x +=.故21120181720182025x x x ==+++. 2.在非等腰三角形中,一个内角等于另两个内角之差,且一个内角为另一个内角的2倍.若该三角形的最小边长为1,则此三角形的面积为( B )A .1B .32C .52D .2 【解析】设三角形的内角为∠A 、∠B 、∠C ,且∠B=∠C –∠A .则∠A+(∠C –∠A )+∠C=180° ⇒ ∠C=90°.若最大角∠C 为另一个内角的2倍,易知,三角形为等腰直角三角形,与题设的条件不符. 不妨设∠A=2∠B .则∠A=960°,∠B=30°.故AC=1,BC=3.因此,所求三角形的面积为131322⨯⨯=. 3.如图,设()P P P x y ,为反比例函数2y x=在平面直角坐标系xOy 的第一象限图像上一点,过点P 作x 轴、y 轴的平行线,分别与10y x =在第一象限的图像交于点A 、B .则AOB ∆的面积为( B )A .26B .24C .22D .20【解析】连接OP .则AOB AOP POB APB S S S S ∆∆∆∆=++11011011010222P P P P P P P P P P x y y x x y y x y x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭1100122P P P P x y x y =⋅- 24=.4.已知n 为偶数.若从1开始,前n 个正整数之和的尾数为8,则后继的n 个正整数之和的尾数为( C )A .6B .4C .2D .0【解析】设2n k =,记S 为前n 个正整数之和,D 为后继的n 个正整数(由2k +1到4k )之和.则()21S k k =+,()()2214612k k k D k k ++==+. 数S 、D 的最后数字只依赖于数k 的最后数字.依题意,知k 应当以6结尾.故D 的尾数即()6616⨯+⨯的尾数是2.5.将数字和为11的自然数按由小到大的顺序排成一个数串,第m 个数为2022.则m 为( A )A .134B .143C .341D .413【解析】在一位数中没有数字和为11的数.在两位数中有29、38、47、5665、74、83、92这8个数.在三位数xyz 中,当x =1时,y 可取1,2,…,9这9个数,对应的z 取9,8,…,1,共9个数;当x =2时,y 可取0,1,…,9这10个数,对应的z 取9,8,…,0,共10个数;类似地,当x =3,4,…,9时,数字和为11的数有12x -个.故在三位数xyz 中,数字和为11的数共有9+10+9+…+3=61个.在四位数1xyz 中,数字和为11的数相当于求数字和为10的三位数xyz ,当x =0时,y 可取1,2,…,9这9个数,对应的z 取9,8,…,1,共9个数.类似地,当x =1,2,…,9时,数字和为10的三位数xyz 有11x -个.故在四位数1xyz 中,数字和为11的数共有9+10+9+…+2=63个.在2xyz 中数字和为11的数由小到大有2022、2022这2个.因此,2022为该数串中第8+61+63+2=134个数.二、填空题(每小题7分,共35分)1.在952的约数中,大于1 000 000的共有 76 个.【解析】因为952有96个正约数02,12,…,952,且2010102221000000=⨯>,1921000000<,所以,952的约数中大于1 000 000的数共有96–20=76个.2.若x 、y 均为自然数,则关于x 、y 的方程[][]2.018 5.1324x y +=的解()x y 、共有 3 个([]x 表示不超过实数x 的最大整数).【解析】因为x 、y 均是自然数,且5.13524⨯>,所以,y ∈{4,3,2,1,0}.此时,[]5.135y y =.类似地,[]2.0182x x =.故原方程变为2524x y +=.经计算,(x ,y )=(2,4),(7,2),(12,0).3.已知D 为锐角ABC ∆内一点,满足AD DC =,2ADC DBC ∠=∠,=12AB ,=10BC .如图,则BDC ∆的面积为 511 .【解析】设∠DBC=θ.则∠ADC=2θ.以D 为旋转中心,旋转△BDC 到△ADP 的位置,如右图.则AD=DC ,DP=DB ,AP=CB=10,∠DPA=∠DBC=θ,∠PDA=∠BDC ,即 ∠PDC+∠CDA=∠BDP+∠PDC .于是,∠BDP=∠ADC=2θ.作DK ⊥BP 于点K .则∠BPD=12(180°–2θ)=90°–θ⇒ ∠APB=∠APD+∠DPB=90°. 在Rt △ABP 中,22211BP AB AP =-=.作DH ⊥AP 于点H .则四边形PHDK 为矩形,有1112DH KP BP ===. 故110115112BDC PDA S S ∆∆==⨯⨯=. 4.已知1x ,2x ,…,n x 中()12i x i n =⋅⋅⋅, ,,的数值只能取201-, , 中的一个,且满足 1217n x x x ++⋅⋅⋅+=-,2221237n x x x ++⋅⋅⋅+=.则()233312n x x x ++⋅⋅⋅+的值为 5 041 . 【解析】设1x ,2x ,…,n x 中有p 个i x 取1,q 个i x 取–2,其余的i x 取0.可得217437p q p q -=-⎧⎨+=⎩, ⇒ 19p q =⎧⎨=⎩. 则i x (i =1,2,…,n )中有一个取1,有九个取–2,其余的i x 取0.故()()()22333331211925041n x x x ++⋅⋅⋅+=⨯+⨯-=.5.在1至n 这n 个正整数中,将正约数个数最多的那些数称为这n 个正整数中的“旺数” .例如,正整数1至20中,正约数个数最多的数为12、18、20,于是,12、18、20均为正整数1至20中的旺数.则在正整数1至100中的所有旺数的最小公倍数为 10 080 .【解析】首先,前100个正整数的素因数分解式中,最多含有三个不同的素因数.这是因为最小的四个素数之积为2×3×5×7=210,已超过100.其次,为使约数个数尽可能多,应使所含的素因数尽可能小.可通过试算、分类枚举来确定正约数个数最大为12的数:只含一个素因数的正因数最多的是6264=,它有七个正约数,正约数小于12;对于只含有两个不同素因数的情况,正约数个数为12的是3223⨯、523⨯;对于含有三个不同素因数的情况,正约数个数为12的是2235⨯⨯、2235⨯⨯、2237⨯⨯. 可见在前100个正整数中,正约数个数为12的旺数只有五个,其最小公倍数为52235710080⨯⨯⨯=.三、(10分)设正整数a 、b 、c 、d 满足2222a ab b c cd d -+=-+.证明:a b c d +++为合数.【解析】记s a b c d =+++.由已知得()()()223a b c d ab cd +-+=-⇒ ()()3a b c d s ab cd +--=-()()()333ab c s a b c a c b c cs=----⎡⎤⎣⎦=++-⇒ ()()3s a c b c ++. 则s 的每个素因数p 均为()()3a c b c ++的因素.故p 不超过3、a +c 、b +c 中的最大值.从而,p <s ,即s 为合数.四、(15分)如图,三个斜边彼此不等的等腰Rt ADC ∆、等腰Rt DPE ∆、等腰Rt BEC ∆,其中,AD CD =,DP EP =,BE CE =,90ADC DPE BEC ∠=∠=∠=.证明:P 为线段AB 的中点.【解析】如图,延长DP 至点F ,使得PF=PD ,连接FE 、FB .易知,DE=EF ,∠DEF=90°.则∠CED=90°–∠CEF=∠BEF .又DE=EF ,CE=BE ,于是,△CED ≌△BEF .因此,CD=BF ,∠CDE=∠BFE .连接AP 、BP .因为AD=CD ,所以,AD=BF .又DP=FP ,∠ADP=∠ADC+∠CDE –∠EDP=90°+∠CDE –45°=∠CDE +45°=∠BFE+∠PFE=∠BFP .故△ADP ≌△BFP .因此,AP=BP ,∠APD=∠BPF .若CD//PE ,则A 、D 、P ,B 、F 、P 分别三点共线.又D 、P 、F 三点共线,则A 、P 、B 三点共线.由AD=BF ,DP=PF ,得AP=AD+DP=BF+PF=BP .因此,P 为线段AB 的中点.若CD 与PE 不平行,由于点A 、B 在直线DF 的两侧,而D 、P 、F 三点共线,∠APD=∠BPF ,故A 、P 、B 三点共线,即点P 在线段AB 上.因为AP=BP ,所以,P 为线段AB 的中点.五、(15分)证明:在十进制表示中,数29的某个正整数幂的末三位数字为001.【解析】因为末三位数只有000到999这1000种不同的排列情况,而129,229,…,100129为1001个29的不同的幂数,所以,由抽屉原理,其中存在两个29的不同的幂数,它们的末三位数字是相同的,可设为29k 与29l (11001l k ≤<≤).因此,()10002929k l -,即()100029291l k l --.而(29l ,1000)=1,于是,()1000291k l --,即29k l -的末三位数字是001.。
北师大版2021—2022学年七年级数学竞赛卷(解析版)

2021—2022学年北师大版七年级数学竞赛卷 学校:___________姓名:___________班级:___________考号:___________ 一,单项选择题(本大题共8小题,每题5分,共40分)1.已知553a =,444b =,335c =,则a 、b 、c 的大小关系为( ) A .c a b <<B .c b a <<C .a b c <<D .a c b << 【答案】A【分析】把a 、b 、c 三个数变成指数相同的幂,通过底数可得出a 、b 、c 的大小关系. 【详解】解:∵a =(35)11=24311,b =(44)11=25611,c =(53)11=12511, 又∵125243256<<,∴c a b <<.故选:A .【点睛】本题考查了幂的乘方的逆运算,解答本题关键是掌握幂的乘方法则,把各数的指数变成相同.2.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是( )A .50°、130°B .都是10°C .50°、130°或10°、10°D .以上都不对【答案】C【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少20°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【详解】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣20,解得:x=10,∴这两个角的度数是10°和10°;若这两个角互补,则180﹣x=3x﹣20,解得:x=50,∴这两个角的度数是50°和130°.∴这两个角的度数是50°、130°或10°、10°.故选:C.【点睛】此题考查了平行线的性质与一元一次方程的解法.此题难度适中,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补,注意方程思想的应用.3.如图是某人骑自行车出行的图象,从图象中可以得到的信息是()A .从起点到终点共用了50minB .20~30min 时速度为0C .前20min 速度为4/km hD .40min 与50min 时速度是不相同的【答案】B【分析】 分别根据函数图象的实际意义可依次判断各个选项是否正确.【详解】A 、从起点到终点共用了60min ,故本选项错误;B 、20~30min 时速度为0,故本选项正确;C 、前20min 的速度是5/km h ,故本选项错误;D 、40min 与50min 时速度是相同的,故本选项错误.故选:B .【点睛】本题考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.4.如图,,AM CM 平分BAD ∠和BCD ∠,若3442B D ∠=︒∠=︒,,则M ∠=( )A .34︒B .38︒C .40︒D .42︒【答案】B【分析】 AD 、CM 交于点E ,AM 、BC 交于点F ,AD 、BC 交于点H ,根据三角形外角性质可证ABF 的外角AFC ∠和CMF 的外角CFA ∠是同角,分别可表示为B BAF ∠+∠与M FCM ∠+∠,根据角平分线性质可得11(180)22BAD B AHB ∠=︒-∠-∠,11(180)22BCD D CHD ∠=︒-∠-∠,将12BAD ∠、12BCD ∠代入计算即可求出. 【详解】解:AD 、CM 交于点E ,AM 、BC 交于点F ,AD 、BC 交于点H ,如图,∵ABF 的外角AFC ∠和CMF 的外角CFA ∠是同角,∵=AFC B BAF ∠∠+∠,=CFA M FCM ∠∠+∠,∵,AM CM 平分BAD ∠和BCD ∠, ∴12BAF BAD ∠=∠,12FCM BCD ∠=∠,∴1=2AFC B BAD ∠∠+∠,1=2CFA M BCD ∠∠+∠, ∵在ABH 中,11(180)22BAD B AHB ∠=︒-∠-∠, 在CDH △中,11(180)22BCD D CHD ∠=︒-∠-∠ ∴1=(180)2AFC B B AHB ∠∠+︒-∠-∠,1=(180)2CFA M D CHD ∠∠+∠︒-∠-∠; ∵AHB CHD ∠=∠, ∴11(180)(180)22B B AHB M D CHD ∠+︒-∠-∠=∠+∠︒-∠-∠, 11(180)(180)22B B AHB M D AHB ∠+︒-∠-∠=∠+∠︒-∠-∠, 整理得,1122B B M D ∠-∠=∠-∠, 化简得,1122M B D ∠=∠+∠ 将3442B D ∠=︒∠=︒,,代入1122M B D ∠=∠+∠,解得, ∴11113442382222M B D ∠=∠+∠=⨯︒+︒=︒. 故选:B .【点睛】本题考查了三角形外角性质,角平分线有关的计算,灵活运用三角形外角性质及角平分线性质是解题关键.5.已知,如图,在△ABC 中,D 为BC 边上的一点,延长AD 到点E ,连接BE 、CE ,∠ABD+12∠3=90°,∠1=∠2=∠3,下列结论:①△ABD 为等腰三角形;②AE=AC ;③BE=CE=CD ;④CB 平分∠ACE .其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C【分析】 可根据证△ABF ≌△△ADF 推出AB=AD ,得出△ABD 为等腰三角形;可根据同弦所对的圆周角相等点A 、B 、C 、E 共圆,可判出BE=CE=CD ,根据三角形内角和等于180°,可判出AE=AC ;求出∠7=90°﹣32∠2,根据∠1=∠4=∠2推出∠4≠∠7,即可得出BC 不是∠ACE 的平分线.【详解】解:作AF 平分∠BAD ,∵∠BAD=∠3,∠ABD+12∠3=90°, ∴∠BAF=12∠3=∠DAF , ∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF 和△DAF 中BAF DAF AF AFAFB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF≌△ADF(ASA),∴AB=AD,∴①正确;∵∠BAD=∠2=∠3,∴点A、B、E、C在同一个圆上,∴∠BAE=∠4=∠3,∠ABC=∠6,∴BE=CE,∵∠5=∠ADB=∠ABD,∠BAE=∠4,∴∠5=∠6,∴CE=CD,即CD=CE=BE,∴③正确;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣12∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣12∠2,∴∠ACE=∠6,∴AE=CE,∴②正确∵∠5=∠2+∠7=90°﹣12∠2,∴∠7=90°﹣32∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,∴④错误;故选C.【点睛】本题主要考查了全等三角形的判定、全等三角形的性质、同弦所对的圆周角相等、三角形内角和的相关知识,灵活运用所学知识是解题的关键.6.将一长方形纸片按如图所示的方式折叠,EF ,EG 为折痕,若30BEF ∠=︒,33AB ,则EG =( )A .3B .4C .5D .6 【答案】D【解析】过E 作EH ⊥AD,由图知,∠BEF =∠B’EF =30°,∴∠CEG =∠C’EG =60°,四边形ABCE 为长方形,∴∠AGE =60°,∴△EC’G 为等边三角形, 3AB =AB=EH 为△EC’G 的高,所以30EHcos EG =︒∴EG =6.选D.7.若220x x +-=,则3222016x x x +-+等于( )A .2020B .2019C .2018D .-2020 【答案】C【分析】将220x x +-=变形为22x x =-+,22x x +=,代入3222016x x x +-+即可求解.【详解】解:∵220x x +-=,∴22x x =-+,22x x +=,∴3222016x x x +-+2222016x x x x =+-+()2222016x x x x =-++-+22016x x =++22016=+=2018.故选:C【点睛】本题考查了根据已知代数式的值求新代数式的值,将已知条件适当变形,代入所求代数式求解是解题关键.8.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .6【答案】D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍,如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答.二、填空题(本大题共6小题,每题5分,共30分)9.若(3)1x x -=,则x 的值为__.【答案】0或4或2【分析】分底数为1或-1,指数为0几种情况,分类讨论,列方程求解即可.【详解】解:当31x -=,解得:4x =,此时(3)1x x -=,当31x -=-,解得:2x =,此时(3)1x x -=,当0x =,此时(3)1x x -=,综上所述:x 的值为:0或4或2.故答案为:0或4或2.【点睛】本题考查了0指数的性质,解题关键是根据底数和指数进行分类讨论,注意:0指数底数不为0.10.若32211123325x ax x x x ⎛⎫⎛⎫-++- ⎪⎪⎝⎭⎝⎭的积不含3x 项,则a =___________. 【答案】65【分析】先利用多项式乘多项式法则,展开合并后得到()543231111613525615x a x a x a x x ⎛⎫⎛⎫+-+-++- ⎪ ⎪⎝⎭⎝⎭,根据题意得31052a -=,即可求解a .【详解】 解:32211123325x ax x x x ⎛⎫⎛⎫-++- ⎪⎪⎝⎭⎝⎭ =543432322111163525615x x x ax ax ax x x x +---+++- =()543231111613525615x a x a x a x x ⎛⎫⎛⎫+-+-++- ⎪ ⎪⎝⎭⎝⎭ ∵32211123325x ax x x x ⎛⎫⎛⎫-++- ⎪⎪⎝⎭⎝⎭的积不含3x 项, ∴31052a -=, 解得:65a =, 故答案为:65a =. 【点睛】本题考查多项式乘多项式,掌握多项式乘多项式的运算法则是解题的关键.11.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).【答案】()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键. 12.已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A B C D →→→运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,则当y =13时,x 的值等于_____________. 【答案】23或53【分析】根据P 点的运动轨迹,分析出当P 在AB 或BC 上均有可能,再根据APE ∆的面积为13分类讨论计算即可. 【详解】(1)当P 在AB 上时,如图:11123y x == ∴23x =(2)当P 在BC 上时,如图:()()11111111112222223ABP EDC y S S S x x ∆∆⎛⎫=--=+--⋅--= ⎪⎝⎭梯ABCE ∴53x = 故答案为:23或53 【点睛】本题考查动点问题与三角形面积求算,不规则图形面积求算通常采用割补法,同时注意分类讨论.13.如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q三点所构成的三角形全等.【答案】3或9 2【分析】设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,根据∠B=∠C,分①当BE=CP=6,BP=CQ时,△BPE与△CQP全等;②当BE=CQ=6,BP =CP时,△BPE与△CQP全等,两种情况进行讨论即可.【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=6,BP=CQ时,△BPE与△CQP全等,此时,6=8﹣3t,解得t=23,∴BP=CQ=2,此时,点Q的运动速度为2÷23=3厘米/秒;②当BE =CQ =6,BP =CP 时,△BPE 与△CQP 全等,此时,3t =8﹣3t ,解得t =43, ∴点Q 的运动速度为6÷43=92厘米/秒; 故答案为3或92.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的理解能力和计算能力.14.如图,在△ABC 中,E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S=36,则S 1-S 2=_______.【答案】6【分析】ADF BEF ABD ABE S S S S -=-△△△△,所以求出ABD △的面积和ABE △的面积即可,而2EC BE =,点D 是AC 的中点,且36ABC S ∆=,则有1182ABD ABC S S ∆∆==,1123ABE ABC S S ∆∆==,由此即可求出12S S -的值. 【详解】 解:点D 是AC 的中点,即:12AD AC =, 36ABC S ∆=,11361822ABD ABC S S ∴==⨯=△△. 2EC BE =,36ABC S ∆=, 11361233ABE ABC S S ∴==⨯=△△, ()()ABD ABE ADF ABF ABF BEF ADF BEF S S S S S S S S -=+-+=-△△△△△△△△,即18126ADF BEF ABD ABE S S S S -=-=-=△△△△,即126S S -=.故答案为:6.【点睛】本题考查了三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.三、解答题(本大题共4小题,15题,16题7分,17,18题8分,共30分。
北京市中学生数学竞赛初二年级竞赛试题

一、 〔 分 25 分,每小 只有一个正确答案,答 得5 分〕1.当 m1,代数式21 5m m 9 mm 3的 是〔〕6 m 2 9 m 2 m 3 m 3A. -1B.1C.1222.一个正八 形中最 的 角 等于a ,最短的 角 等b , 个正八 形的面 〔〕A. a 2 b 2B. a 2b 2C.abD. ab3. 111 1 16 11 26 26 1 1的 是〔 〕.6 11 16 2121 31 31 36A.1B.1C.1D.1183633664.假定 n 是正整数, 1×2×3×⋯× n=n! ,比方 1!=1,4!=1×2×3×4=24,等等,假定 M=1! ×2!×3!×4!×5!×6!×7!×8!×9!,M 的 数中是完整平方数的共有〔 〕A.504 个B.672 个C.864 个D.936 个5.将 2021 表示成两个整数的平方差的形式, 不一样的表示方法有〔〕A.16 种B.14 种C.12 种种二、填空 〔 分 35 分,每小 7 分〕1.213.9 213.9 的 等于.2.平行四 形 ABCD 中,AD= a ,CD=b , 点 B 分 作 AD 上的高h a 和 CD 上的高 h b , h a a , h b b , 角 AC=20厘米,平行四 形 ABCD的面 平方厘米 .3. 0 a 11232829,而且a a a a a18 ,3030303030那么10a等于.〔此中x表示不超出 x 的最大整数〕4.△ ABC 中,∠A,∠B,∠C 的外角度数之比为α∶β∶γ〔α,β,γ均为正数〕,那么∠ A ∶∠ B∶∠ C 等于〔.用含α,β,γ的式子之比表示〕5.当1x 2 时,经化简x 2 x 1x 2 x 1 等于.三、〔总分值 10 分〕a b c 0 ,a2b2c21.(1〕求ab bc ca的值(2〕求a4b4c4的值四、〔总分值 15 分〕以下列图,六边形ABCDEF 中, AB=BC=CD=DE=EF=FA ,而且∠ A+ ∠C+∠E=∠B+∠ D+∠ F,求证∠ A=∠ D,∠ B=∠E,∠ C=∠ F.五、〔总分值 15 分〕BCA DF E〔1〕证明:由 2021 个 1 和随意个 0 构成的自然数不是完整平方数;〔2〕试说明,存在最左侧 2021 位都是 1 的形如1111的自然数2021个1〔此中 * 代表阿拉伯数码〕是完整平方数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市初中历年竞赛试题分类解析(一)绝对值【竞赛热点】1、 利用绝对值的几何意义求代数式的取值范围2、 利用绝对值的非负性解特殊方程3、 利用绝对值的定义去绝对值符号【知识梳理】绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续算术根的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:1.去绝对值的符号法则:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值基本性质 ①非负性:0≥a ;②b a ab ⋅=;③)0(≠=b ba b a ;④222a a a ==. 3.绝对值的几何意义从数轴上看,a 表示数a 的点到原点的距离(长度,非负);b a -表示数a 、数b 的两点间的距离.【试题汇编】1、代数意义1、(2010•第2题)已知:三个数a b c 、、的积为负数,和为正数,且a b c ab ac bc x a b c ab ac bc=+++++,则x 的值为( ) A .1 B .-1 C .0 D .与a ,b ,c 的值有关2、(2008•第9题)若x x =--2)1(1,则x 的取值范围是_____________。
3、(2007•第1题)已知|a |=3,|b |=,31且ab <0,则ba 的值是( ) A. 9 B. 91- C.-9 D. 914、(2007•第11题)已知实数a 满足|2006-a |+2007-a =a ,那么a -20062的值是 ;5、(2007•第13题)已知对所有的实数x ,都有211--≥-++x m x x 恒成立,则m 可以取得的最大值为6、(2005•第2题)方程1735=--+x x 的解的个数有( )个A. 1 B . 2 C. 3 D.无数7、(2004•第9题)已知0)1(42=++-y x ,则20063y x =________________。
8、(2004•第10题)当0<a 时,化简a a a -的结果是________________。
2、几何意义:1、(2008•第1题)已知数轴上有A 、B 、C 三个点,它们所表示的数分别是a 、b 、c ,且满足c a c b b a -=-+-,则A 、B 、C 三点在数轴上的位置是 ( )A. A 在B 、C 之间B. B 在A 、C 之间C. C 在A 、B 之间D. 无法确定2、(2006•第9题)若实数x 满足572=-+-x x ,则x 的取值范围是____________。
3、(2001•第11题)设x x a +-=3,x 为任意实数,则a 的范围是( )A. 3<aB. 3>aC. 3≤a D . 3≥a(二)不等式(组)【竞赛热点】1、 含有字母系数的不等式2、 由已知不等式来判断或解不等式3、 建立不等式的模型,或利用不等式解决实际问题【知识梳理】现实世界既包含大量的相等关系,又存在许多不等关系,许多现实问题是很难确定(有时也不需确定)具体的数值,但可以求出或确定这一问题中某个量的变化范围或趋势,从而对所研究问题的全貌有一个比较清晰的认识.不等式(组)是探求不等关系的基本工具,不等式(组)与方程(组)在相关概念、解法上有着相似点,又有不同之处,主要体现在:等式、不等式两者都乘以(或除以)同一个数时,等式仅需考虑这个数是否为零,而不等式不但要考虑这个数是否为零,而且还需注意这个数的正负性;解方程组时,我们可以“统一思想”,即可以对几个方程进行“代人”或“加减”式的加工,解不等式组时,我们只能“分而治之”,即只能分别求出每个不等式的解集,然后再求公共部分,才能得出不等式组的解集。
一般考察如下内容:1、 考查不等式的性质:不等号的是否改变方向2、 重点考查学生的技巧,如代值,或变成同分母或同分子的情形不等式(组)的应用主要表现在:作差或作商比较数的大小;求代数式的取值范围;求代数式的最值,列不等式(组)解应用题。
列不等式(组)解应用题与列方程解应用题的步骤相仿,一般步骤是:1、弄清题意和题中的数量关系,用字母表示未知数;2、找出能够表示题目全部含义的一个或几个不等关系;3、列出不等式(组);4、解这个不等式(组),求出解集并作答。
【试题汇编】1、(2009•第2题)设a 、b 、c 均为正数,若c a b c b a b a c +<+<+,则a 、b 、c 三个数的大小关系是( )A . c <a <b B. b <c <a C. a <b <c D. c <b <a2、(2009•初二第10题)如果关于x 的不等式组3020x m x n -≥⎧⎨-<⎩的整数解仅为1、2、3,那么适合这个不等式组的整数对(m ,n )共有___________对。
3、(2008•第11题)一次函数)0()(),()()(≠≠+=++-=a b a b ax x g b a x b a x f 且,若使0)(>x f 的实数的取值范围是21<x ,则使0)(>x g 的实数x 的取值范围是________。
4、(2008•第2题)若a 为正数,且23(1)2a a -比大,则a 的取值范围是 ( ) A. 210<<a B. 310<<a C. 410<<a D. 510<<a5、(2006•第1题)已知5,3,2≤-≥≤c b a ,且10,a b c a b c -+=++=则( )A . 10 B. 8 C. 6 D. 46、(2006•第8题)若x 、y 、z 是正实数,且xyz =1,则代数式(x +1)(y +1)(z +1)的最小值是( )A. 64B. 8C. 28D.27、(2010•初二第15题)关于x ,y 的方程组:21232x y k x y k +=-⎧⎨-=+⎩的解x ,y 满足:2317x y x y +≥⎧⎨-≤⎩,求k 的取值范围。
8、(2010•初二第17题)某粮油公司要把240吨大米运往A 、B 两地,先用大、小两种货车共20辆,恰好能一次性装完这批大米,且每辆车都是满载,已知这两种货车的满载重量分别为15吨/辆和10吨/辆,运往A 地的运费为:大车630元/辆,小车420元/辆;运往B 地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A 地,其余货车前往B 地,且运往A 地的大米不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费.9、(2008·第15题)有一批货,如果月初售出,可获利润10000元,并可将本利和再去投资,到月末获利润2.5%,如果月末售出这批货,可获利润12000元,但要付500元保管费,请你用所学知识分析,这批货在月初还是月末售出好?(三)一次方程(组)、分式方程【竞赛热点】1、一次方程组2、换元法解方程3、绝对值方程【知识梳理】1、解一些复杂的方程组(如未知数系数较大、方程个数较多等),需要观察方程组下系数特点,着眼于整体上解决问题,常用到整体叠加、整体叠乘、设元引参、对称处理、换元转化等方法技巧.2、可以通过换元,把复杂的式子简单化3、可构造函数将方程化归为函数问题解决;【试题汇编】1、(2009•第10题)已知k ac b b c a c b a =+=+=+,则k =_______________。
2、方程1111=+--x x x 的解是( ) A . 21,1- B. 21,1- C. 1 D. 21-3、(2008•第16题)已知x 、y 满足:,1215,5310-=--+-=-++yx y x y x y x 试求代数式111(4)(4)(5)(5)(6)(6)x y x y x y +++++++++……+)100)(100(1++y x 的值。
4、(2008•第12题)已知方程组⎪⎩⎪⎨⎧+=+=b x y x y 211,当b 时,方程组只有一组解。
5、(2004•第8题)已知4名运动员体重(以千克为单位)都是整数,他们两两合秤称体重,共称5次,称得重量分别为99、113、125、130、144,其中有两人没合称过,那么这两人体重较大的是( )千克A. 78B. 66C. 52D. 476、(2010•第18题)某班进行一次智力竞赛,共a ,b ,c 三题,每题或者得满分或者得0分,其中题a 满分 20分,题b 题c 满分均为40分,竞赛结果,每个学生至少答对一题,三题全对有3人,答对其中两题的有14人,答对题a 的人数与答对题b 的人数之和为45,答对题a 的人数与答对题c 的人数之和为35人,答对题b 的人数与答对题c 的人数之和为40人,问该班共有多少人,平均成绩是多少?(四)不定方程(组)【竞赛热点】1、求不定方程的整数解2、由已知条件构造不定方程【知识梳理】不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是解往往有无穷多个,不能惟一确定.对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,加上条件限制后,解就可确定.二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常转化为二元一次不定方程问题加以解决,与之相关的性质有:设d c b a 、、、为整数,则不定方程c by ax =+有如下两个重要命题:(1)若(a ,b )=d ,且d |c ,则不定方程c by ax =+没有整数解;(2)若00y x ,是方程c by ax =+且(a ,b )=1的一组整数解(称特解),则为整数)t aty y bt x x (00⎩⎨⎧-=+=是方程的全部整数解(称通解).解不定方程(组),没有现成的模式、固定的方法可循,需要依据方程(组)的特点进行恰当的变形,并灵活运用以下知识与方法;奇数偶数,整数的整除性、分离整系数、因数分解。
配方利用非负数性质、穷举,乘法公式,不等式分析等.【试题汇编】1、(2008•第6题)若x 、y 是正整数,且满足20111=-y x ,则y 的最大值是 ( ) A. 20 B. 40 C. 380 D. 4002、(2009•第7题)如图:三个天平的托盘中形状相同的物体质量相等,图(1),图(2)所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则要在它的右盘中放置( )球A . 3个 B. 4个 C. 5个 D. 6个3、(2005•第6题)在等式)(1)(161+=的括号填入适当的正整数,使等式成立,不同的填法种数有( )A. 2B. 3C. 4D. 5(五)二次方程、一元二次方程【竞赛热点】1、 多元二次方程(未知数的个数大于方程的个数)的解法2、 构造一元二次方程求解3、 求字母系数和取值范围或有关方程的根的代数式的值【知识梳理】1、 换元法,将多个未知数用一个字母表示,或用配方法,利用非负性来解题2、判别式的应用:利用判别式,判定方程实根的个数、根的特性;运用判别式,建立等式、不等式,求方程中参数或参数的取值范围;通过判别式,证明与方程相关的代数问题;借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题。