初中数学竞赛试题及答案(免费)

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是()A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

全国初中数学竞赛试题和答案解析

全国初中数学竞赛试题和答案解析

中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a ,b ,c 22||()||a a b c a b c -++-++可以化简为( ).(A )2c a - (B )22a b - (C )a - (D )a 1(乙).如果22a =-11123a+++的值为( ).(A )2- (B 2 (C )2 (D )222(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ). (A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ). (A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为( ).(A )23 (B )4 (C )52 (D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正OAB CED整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。

初中数学竞赛专题训练试题及解析(共10套)

初中数学竞赛专题训练试题及解析(共10套)

初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。

当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。

则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案

中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题共5小题,每小题6分,共30分.1甲.如果实数a ,b ,c 在数轴上的位置如图所示,22||()||a a b c a b c ++-+可以化简为 .A 2c a -B 22a b -C a -D a 1乙.如果22a =-+那么11123a+++的值为 .A 2- 2 C2 D 22甲.如果正比例函数y = axa ≠ 0与反比例函数y =xbb ≠0 的图象有两个交点,其中一个交点的坐标为-3,-2,那么另一个交点的坐标为 . A2,3 B3,-2 C -2,3 D3,22乙. 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标x ,y 的个数为 . A10 B9 C7 D53甲.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是 . A1 B214a - C 12 D 143乙.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为 . A 23 B4 C 52 D4.54甲.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是 .OAB CEDA1 B2 C3 D44乙.如果关于x 的方程 20x px q p q --=(,是正整数的正根小于3, 那么这样的方程的个数是 .A 5B 6C 7D 85甲.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是 .A 0pB 1pC 2pD 3p5乙.黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是 . A2012 B101 C100 D99二、填空题共5小题,每小题6分,共30分6甲.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487 ”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 . 6乙.如果a ,b ,c是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 . 7甲.如图,正方形ABCD 的边长为215, E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 .7乙.如图所示,点A 在半径为20的圆O 上,以OA 为一条对角线作矩形OBAC,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 ; 8甲. 如果关于x 的方程x 2+kx +43k 2-3k +92= 0的两个实数根分别为xyO ECABD1x ,2x ,那么2012220111x x 的值为 .8乙.设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 . 9甲. 2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 . 9乙.如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c (,,)均为三角形数,且a ≤b ≤c ,则ac的取值范围是 . 10甲如图,四边形ABCD 内接于⊙O , AB 是直径,AD = DC . 分别延长BA ,CD , 交点为E . 作BF ⊥EC ,并与EC 的延长线 交于点F . 若AE = AO ,BC = 6,则CF 的 长为 .10乙.已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 .三、解答题共4题,每题15分,共60分11甲.已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围. 11乙. 如图所示,在直角坐标系xOy 中,点A 在y 轴负半轴上,点B 、C 分别在x轴正、负半轴上,48,,sin 5AO AB AC C ==∠AB =;点D 在线段AB 上,连结CD 交y 轴于点E,且COE ADE S S ∆∆=;试求图像经过B 、C 、E 三点的二次函数的解析式;12甲. 如图,⊙O 的直径为AB ,1O 过点O ,且与⊙O 内切于点B .C 为⊙O 上的点,OC 与1O 交于点D ,且OD CD >.点E 在OD 上,且DC DE =,BE 的延长线与1O 交于点F ,求证:△BOC∽△1DO F .12乙.如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证: 1OI 是△IBD 的外接圆的切线; 2AB +AD = 2BD .13甲. 已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数. 当a ≥2012时,求a 的最小值. 13乙.给定一个正整数n ,凸n 边形中最多有多少个内角等于150︒ 并说明理由.14甲. 求所有正整数n ,使得存在正整数122012x x x ,, ,,满足122012x x x <<<,且122012122012n x x x +++=. 14乙.将2,3,…,n n ≥2任意分成两组,如果总可以在其中一组中找到数a b c ,, 可以相同,使得b ac =,求n 的最小值.参考解答一、选择题1甲 .C解:由实数a ,b ,c 在数轴上的位置可知0b a c <<<,且b c >,所以22||()||()()()a a b c a b c a a b c a b c -++-++=-+++--+a =-.1乙.B 解:111111122122312a+=+=++-++++1121221=+==+.2甲.D解:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为3,2.2乙.B解:由题设x 2+y 2≤2x +2y , 得0≤22(1)(1)x y -+-≤2. 因为x y ,均为整数,所以有22(1)0(1)0x y ⎧-=⎪⎨-=⎪⎩,; 22(1)0(1)1x y ⎧-=⎪⎨-=⎪⎩,; 22(1)1(1)0x y ⎧-=⎪⎨-=⎪⎩,; 22(1)1(1) 1.x y ⎧-=⎪⎨-=⎪⎩,解得11x y =⎧⎨=⎩,; 12x y =⎧⎨=⎩,; 10x y =⎧⎨=⎩,; 01x y =⎧⎨=⎩,; 00x y =⎧⎨=⎩,; 02x y =⎧⎨=⎩,; 21x y =⎧⎨=⎩,; 20x y =⎧⎨=⎩,; 22.x y =⎧⎨=⎩, 以上共计9对x y (,). 3甲.D解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a a b a b++++++=, 于是 4423421444a b a b ++++-=.3乙.B解:如图,以CD 为边作等边△CDE ,连接AE . 由于AC = BC ,CD = CE ,∠BCD =∠BCA +∠ACD =∠DCE +∠ACD =∠ACE ,所以△BCD ≌△ACE , BD = AE .又因为30ADC ∠=︒,所以90ADE ∠=︒. 在Rt △ADE 中,53AE AD ==,, 于是DE4=,所以CD = DE = 4.4甲.D解:设小倩所有的钱数为x 元、小玲所有的钱数为y 元,x y ,均为非负整数. 由题设可得2(2)2()x n y y n x n +=-⎧⎨+=-⎩,,消去x 得 2y -7n = y +4, 2n =721517215)72(-+=-+-y y y .因为1527y -为正整数,所以2y -7的值分别为1,3,5,15,所以y 的值只能为4,5,6,11.从而n 的值分别为8,3,2,1;x 的值分别为14,7,6,7.4乙.C解:由一元二次方程根与系数关系知,两根的乘积为0q -<,故方程的根为一正一负.由二次函数2y x px q =--的图象知,当3x =时,0y >,所以2330p q -->,即 39p q +<. 由于p q ,都是正整数,所以1p =,1≤q ≤5;或 2p =,1≤q ≤2,此时都有240p q ∆=+>. 于是共有7组p q (,)符合题意.5甲.D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以01239891036363636p p p p ====,,,,因此3p 最大. 5乙.C解:因为1(1)(1)a b ab a b +++=++,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为x ,则1111(11)(1)(1)(1)23100x +=++++, 解得 1101x +=,100x =.二、填空题6甲.7<x ≤19解:前四次操作的结果分别为3x -2,33x -2-2 = 9x -8,39x -8-2 = 27x -26,327x -26-2 = 81x -80.由已知得 27x -26≤487, 81x -80>487.解得 7<x ≤19.容易验证,当7<x ≤19时,32x -≤487 98x -≤487,故x 的取值范围是 7<x ≤19.6乙.7解:在910111=+++++a c c b b a 两边乘以9=++c b a 得 103=++++++a c b c b a b a c 即7=+++++ac b c b a b a c7甲.8解:连接DF ,记正方形ABCD 的边长为2a . 由题设易知△BFN ∽△DAN ,所以21AD AN DN BF NF BN ===, 由此得2AN NF =,所以23AN AF =.在Rt △ABF 中,因为2AB a BF a ==,,所以225AF AB BF a =+=,于是 25cos AB BAF AF ∠==. 由题设可知△ADE ≌△BAF ,所以 AED AFB ∠=∠,0018018090AME BAF AED BAF AFB ∠=-∠-∠=-∠-∠=. 于是 25cos AM AE BAF =⋅∠, 2453MN AN AM AF AM =-=-=,415MND AFD S MN S AF ∆∆==. 又21(2)(2)22AFD S a a a ∆=⋅⋅=,所以2481515MND AFD S S a ∆∆==. 因为15a =所以8MND S ∆=. 7乙.285解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为22201216OB -=,所以161248205OB OC OM BC ⋅⨯===, 22366455CM OC OM BM =-==,. CE BD EM CM DM BM -=---()()643655BM CM =-=-285=. 8甲.32-解:根据题意,关于x 的方程有∆=k 2-4239(3)42k k -+≥0,由此得 k -32≤0.又k -32≥0,所以k -32=0,从而k =3. 此时方程为x 2+3x +49=0,解得x 1=x 2=32-.故2012220111x x =21x =23-.8乙.1610解:()()()953332422222++=-+=+++-n n n n n n n n因此45|(9)n +,所以)5(mod 14≡n ,因此25k ,15±±=或k n240252012⋯⋯=÷所以共有2012-402=1610个数9甲.8解:设平局数为a ,胜负局数为b ,由题设知23130a b +=,由此得0≤b ≤43.又 (1)(2)2m m a b +++=,所以22(1)(2)a b m m +=++. 于是0≤130(1)(2)b m m =-++≤43,87≤(1)(2)m m ++≤130,由此得 8m =,或9m =.当8m =时,405b a ==,;当9m =时,2035b a ==,,5522a b a +>=,不合题设. 故8m =. 9乙.1253≤<-ca解:依题意得:(1)111(2)a b c b c a +>⎧⎪⎨+>⎪⎩,所以a c b ->,代入2得ca c cb a 11111+-<+<,两边乘以a 得 c a a c a +-<1,即a c ac a c -<-,化简得0322<+-c ac a ,两边除以2c 得 23()10a a c c ⎛⎫-+< ⎪⎝⎭所以253253+<<-c a 另一方面:a ≤b ≤c,所以1≤ca综合得1253≤<-c a 另解:可令ak c=,由1得(1)b k c >-,代入2化简得2310k k -+<,解得 353522k -<<,另一方面:a ≤b ≤c,所以1k ≤, 综合得3512k <≤. 10甲.223 解:如图,连接AC ,BD ,OD .由AB 是⊙O 的直径知∠BCA =∠BDA = 90°. 依题设∠BFC = 90°,四边形ABCD 是⊙O 的内接四边形,所以∠BCF =∠BAD ,所以 Rt △BCF ∽Rt △BAD ,因此BC BACF AD=. 因为OD 是⊙O 的半径,AD = CD ,所以OD 垂直平分AC ,OD ∥BC ,于是2DE OEDC OB==. 因此 223DE CD AD CE AD ===,.由△AED ∽△CEB ,知DE EC AE BE ⋅=⋅.因为322BA AE BE BA ==,, 所以 32322BA AD AD BA ⋅=⋅,BA =22AD ,故 AD CF BC BA =⋅=2=. 10乙.12解:依题意得()()b a b a b a n -+=-=22由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数,即4n k =,当1≤n ≤100时,4的倍数共有25个,但要满足题中条件的唯一正整数对a b (,),则: 2k p k p ==或,其中p 是素数,因此,k 只能取下列12个数:2、3、5、7、11、13、17、19、23、4、9、25,从而这样的n 有12个;三、解答题11甲.解: 因为当13x -<<时,恒有0y <,所以23420m m ∆=+-+>()(),即210m +>(),所以1m ≠-.…………3分当1x =-时,y ≤0;当3x =时,y ≤0,即2(1)(3)(1)2m m -++-++≤0,且 233(3)2m m ++++≤0,解得m ≤5-.…………8分设方程()()2320x m x m ++++=的两个实数根分别为12x x ,,由一元二次方程根与系数的关系得()121232x x m x x m +=-+=+,.因为1211910x x +<-,所以121239210x x m x x m ++=-<-+,解得12m <-,或2m >-.因此12m <-.…………15分11乙.解:因为sin ∠ABC =45AO AB =,8AO =, 所以AB = 10.由勾股定理,得262BO AB AO -=. 易知ABO ACO △≌△, 因此 CO = BO = 6. 于是(08)A -,,(60)B ,,(60)C -,. 设点D 的坐标为()m n ,. 由COE ADE S S =△△,得CDB AOB S S =△△.所以1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯. 解得 4n =-.因此D 为AB 的中点,点 D 的坐标为(34)-,.因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△A BC 的重心,所以点E 的坐标为8(0)3-,.也可由直线CD 交y 轴于点E 来求得. 设经过B ,C ,E 三点的二次函数的解析式为(6)(6)y a x x =-+. 将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的二次函数的解析式为228273y x =-.12甲. 证明:连接BD ,因为OB 为1O 的直径,所以90ODB ∠=︒.又因为DC DE =,所以△CBE 是等腰三角形.…………5分设BC 与1O 交于点M ,连接OM ,则90OMB ∠=︒.又因为OC OB =,所以22BOC DOM DBC ∠=∠=∠12DBF DO F =∠=∠.…………10分又因为1BOC DO F ∠∠,分别是等腰△BOC ,等腰△1DO F 的顶角,所以△BOC ∽△1DO F .…………15分12乙.证明:1如图,根据三角形内心的性质和同弧上圆周角相等的性质知:CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠. 所以CID CDI ∠=∠, CI = CD .同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC , 所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线. 2如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由BC CD =,知OC ⊥BD .因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE . 又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==. 故2AB AD BD +=.也可由托勒密定理得:AB CD AD BC AC BD ⋅+⋅=⋅,再将22AC BC CD ==代入即得结论2AB AD BD +=;13甲.解:设a -b = mm 是素数,ab = n 2n 是自然数.因为 a +b 2-4ab = a -b 2, 所以 2a -m 2-4n 2 = m 2,2a -m +2n 2a -m -2n = m 2.…………5分1当1n ≥时,因为2a -m +2n 与2a -m -2n 都是正整数,且2a -m +2n >2a -m -2n m 为素数,所以 2a -m +2n =m 2,2a -m -2n =1.解得 a =2(1)4m +,n =214m -.于是 b = a -m =214m -().…………10分又a ≥2012,即2(1)4m +≥2012.又因为m 是素数,解得m ≥89. 此时,a ≥41)(892+=2025.当2025a =时,89m =,1936b =,1980n =. 此时,a 的最小值为2025.2当0n =时,因为a ≥2012,所以0b =,从而得a 的最小值为2017素数; 综上所述,所求的a 的最小值为2017;……15分13乙.解:设凸n 边形最多有k 个内角等于150°,则每个150°内角的外角都等于30°,而凸n 边形的n 个外角和为360°,所以3601230k ≤=,只有当12n =时, k 才有最大值12. …………5分下面我们讨论12n ≠时的情况: 1当12n >时,显然,k 的值是11;2当3,4,5,6,7n =时,k 的值分别为1,2,3,4,5;3当8,9,10,11n =时,k 的值分别为7,8,9,10. …………10分综上所述,当37n ≤≤时,凸n 边形最多有2n -个内角等于150°;当811n ≤≤时,凸n 边形最多有1n -个内角等于150°;当12n =时,凸n 边形最多有12个内角等于150°;当12n >时,凸n 边形最多有11个内角等于150°;. ……15分14甲.解:由于122012x x x ,, ,都是正整数,且122012x x x <<<,所以1x ≥1,2x ≥2,…,2012x ≥2012.于是 122012122012n x x x =+++≤1220122012122012+++=. …………5分当1n =时,令12201220122201220122012x x x ==⨯=⨯,, ,,则1220121220121x x x +++=. …………10分当1n k =+时,其中1≤k ≤2011,令 1212k x x x k ===,, ,,122012(2012)(1)(2012)(2)(2012)2012k k x k k x k k x k ++=-+=-+=-⨯,,,则1220121220121(2012)2012k k x x x k+++=+-⋅-1k n =+=. 综上,满足条件的所有正整数n 为122012, , , .…………15分14乙.解:当1621n =-时,把23n , , ,分成如下两个数组:{}88162322121+-, , , , , 和{}84521-, , , .在数组{}88162322121+-, , , , , 中,由于38821632221<>-(,),所以其中不存在数a b c ,,,使得b a c =. 在数组{}84521-, , , 中,由于48421>-, 所以其中不存在数a b c ,,,使得b a c =. 所以,162n ≥.下面证明当162n =时,满足题设条件.不妨设2在第一组,若224=也在第一组,则结论已经成立.故不妨设224=在第二组. 同理可设4842=在第一组,8216(2)2=在第二组.此时考虑数8.如果8在第一组,我们取8282a b c ===,,,此时b a c =;如果8在第二组,我们取16482a b c ===,,,此时b a c =. 综上,162n =满足题设条件.所以,n 的最小值为162.注:也可以通过考虑2,4,16,256,65536的分组情况得到n 最小值为65536.。

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。

A. - 2B. 2C. 6D. - 6答案:B。

解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。

2. 把多项式x² - 4x+4分解因式,结果正确的是()。

A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。

解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。

3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。

A. - 4B. - 2C. 0D. 2答案:C。

解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。

在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。

(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。

4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。

解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

全国初中数学联赛试题(含参考答案)

全国初中数学联赛试题(含参考答案)

全国初中数学联合竞赛试题参考答案第一试一、选择题(本题满分42分,每小题7分) 1、设17-=a ,则=--+12612323a a a ( A )A 、24B 、 25C 、1074+D 、1274+ 2、在ABC ∆中,最大角A ∠是最小角C ∠的两倍,且7=AB ,8=AC ,则=BC ( C ) A 、27 B 、10 C 、105 D 、37 3、用[]x 表示不大于x 的最大整数,则方程[]0322=--x x 的解的个数为( C ) A 、1 B 、2 C 、3 D 、 44、设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为 ( B )A 、143 B 、73 C 、21 D 、74 5、如图,在矩形ABCD 中,3=AB ,2=BC ,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则=∠CBE sin ( D )A 、36 B 、32C 、31D 、10106、设n 是大于1909的正整数,使得nn --20091909为完全平方数的n 的个数是 ( B )A 、3B 、 4C 、 5D 、6 二、填空题(本题满分28分,每小题7分)1、已知t 是实数,若a ,b 是关于x 的一元二次方程0122=-+-t x x 的两个非负实根,则()()1122--b a的最小值是____________.答案:3-2、设D 是ABC ∆的边AB 上的一点,作BC DE //交AC 于点E ,作AC DF //交BC 于点F ,已知ADE ∆、DBF ∆的面积分别为m 和n ,则四边形DECF 的面积为______.答案:mn 23、如果实数a ,b 满足条件122=+b a ,2212|21|a b a b a -=+++-,则____=+b a . 答案:1-4、已知a ,b 是正整数,且满足⎪⎪⎭⎫ ⎝⎛+b a 15152是整数,则这样的有序数对(a ,b )共有_对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档