5、材料力学性能__第五章详解
材料力学性能 第五章 缺口试样的力学性能.

§5.1 缺口顶端应力、应变状态
1 应力集中
缺口产生的影响,最显而 易见的,是应力集中。由于缺 口部分不能承受外力,这一部 分外力要由缺口前方的部分材 料来承担,因而缺口根部的应 力最大,离开缺口根部,应力 逐渐减小,一直减小到某一恒 定数值,这时缺口的影响便消 失了。
定义: G u ( 2a2 ) 2a (2a) (2a) E E
G是弹性应变能的释放率或者裂纹扩展力。
《材料力学性能》 第六章 断裂韧性基础
恒位移条件: 裂纹扩展释 放出的弹性 能是三角形 OAC的面积。
恒载荷条件: 外力做的功一 半用于弹性能 的增加,一半 用于裂纹扩展 裂纹扩展释所 需的弹性能是 三角形OAC的 面积。
事故2:美发射北极星导弹,固体燃料发动机壳体发射点火 后不久发生了爆炸。
?
传统的力学设计无法解释
?
?
《材料力学性能》 第六章 断裂韧性基础
传统力学设计准则: σ <[σ ],
而[σ ],对塑性材料[σ ]=σ s/n, 对脆性材料[σ ]=σ b/n,其中n为安全系数。
传统力学设计的缺陷:把材料看成均匀的,没有缺陷的,没有裂纹的理想固
1
1
f
2E
s a
p
2
2E a
p
(1
s p
)
2
因为: p s
s 0 p
1
f
2E a
p
2
《材料力学性能》 第六章 断裂韧性基础
§6.2 裂纹扩展的能量判据
完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E弹性模量G切变模量r规定残余伸长应力0.2屈服强度gt金属材料拉伸时最大应力下的总伸长率n应变硬化指数P153、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
材料力学性能第五章_金属的疲劳

飞机舷窗
高速列车
5.1.3 疲劳宏观断口特征
疲劳断口保留了整个断裂过程的所有痕迹,记载着很多 断裂信息,具有明显的形貌特征,而这些特征又受材料 性质、应力状态、应力大小及环境因素的影响,因此对 疲劳断口的分析是研究疲劳过程、分析疲劳失效原因的 一种重要方法。 疲劳断裂经历了裂纹萌生和扩展过程。由于应力水平较 低,因此具有较明显的裂纹萌生和稳态扩展阶段,相应
疲劳破坏属低应力循环延时断裂,对于疲劳寿命 的预测就显得十分重要和必要。
对缺口、裂纹及组织等缺陷十分敏感,即对缺陷 具有高度的选择性。因为缺口或裂纹会引起应力 集中,加大对材料的损伤作用;组织缺陷(夹杂、 疏松、白点、脱碳等),将降低材料的局部强度, 二者综合更加速疲劳破坏的起始与发展。
18
应力σmax/10MPa
40
20
灰铸铁
0 103 104
105
106
107
循环周次/次
108
109
41
图 几种材料的疲劳曲线
疲劳极限
有水平段(碳钢、合金结构钢、球铁等) 经过无限次应力循环也不发生疲劳断裂,将对应
的应力称为疲劳极限,记为σ-1(对称循环)
无水平段(铝合金、不锈钢、高强度钢等) 只是随应力降低,循环周次不断增大。此时,根 据材料的使用要求规定某一循环周次下不发生断 裂的应力作为条件疲劳极限。 例:高强度钢、铝合金和不锈钢:N=108周次 钛合金:N=107周次
大小:瞬断区大小与机件承受名义应力及材料性质 有关,高名义应力或低韧性材科,瞬断区大;反之。 瞬断区则小。
材料力学性能-第五章-其它疲劳类型(2)

图5-61 深层剥落在过渡区产生
2022年1月14日 星期五
第五章 金属的疲劳
3.影响接触疲劳抗力的因素:从接触疲劳破坏 过程来看,接触疲劳裂纹的形成取决于滚动接 触机件中最大综合切应力与材料屈服强度的相 对关系:当机件表面切应力超过材料屈服强度、 继而又达到抗剪强度时,裂纹就自表面产生而 形成麻点剥落;如果在0.786b亚表层处最大综 合切应力超过材料屈服强度和抗剪强度,裂纹 就产生于亚表层,形成浅层剥落;
根据剥落裂纹起始位置及形态不同,接触疲劳 破坏分为三类。 麻点剥落(点蚀):深度在0.1~0.2mm以下的小块 剥落,呈针状或痘状凹坑,截面呈不对称的V型。 浅层剥落:深度一般为0.2~0.4mm,剥落块底部大 致和表面平行,裂纹走向与表面成锐角和垂直。 深层剥落(表面压碎):与表面强化层深度相当, 裂纹走向与表面垂直。
2022年1月14日 星期五
第五章 金属的疲劳
麻
深
点
层
剥
剥
落
落
图5-50 齿轮的接触疲劳损伤
2022年1月14日 星期五
第五章 金属的疲劳
和一般疲劳一样,接触疲劳也有裂纹形成 和扩展两个阶段,只不过裂纹形成过程时间长, 而扩展只占总破坏的很小一部分。接触疲劳曲 线(最大接触压应力-循环周次曲线)也有两 种:一种有明显的接触疲劳极限;另一种对于 硬度较高的钢,最大接触压应力随循环周次增 加连续下降,无明显的接触疲劳极限。
2022年1月14日 星期五
第五章 金属的疲劳
在过渡区产生塑性变形 硬化区
形成大块剥落
在过渡区产生裂纹
图5-60 深层剥落过程示意图
2022年1月14日 星期五
第五章 金属的疲劳
深层剥落裂纹产生 的力学条件见图5-61。 若表面硬化机件心部强 度太低,硬化层深不合 理,梯度太陡或过渡区 存在不利的应力分布都 易造成深层剥落。
《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
材料力学性能-第五章-其它疲劳类型(1)

第五章 金属的疲劳
不论是循环硬化材料还是循环软化
材料,应力-应变回线只有在循环周次
达到一定值后才是闭合的—达到稳定状
态。对于每一个固定的应变幅,都能得
到相应的稳定的滞后回线,将不同应变
幅的稳定滞后回线的顶点连接起来,就
得到图5-47所示的循环应力-应变曲线。
2021年10月21日 星期四
第五章 金属的疲劳
时控制材料疲劳行为的已不是名义应力,而是塑
性变形区的循环塑性应变,所以,低周疲劳实质
上是循环塑性应变控制下的疲劳。
2021年10月21日 星期四
第五章 金属的疲劳
由于塑性变形的存在,应力
B
应变之间不再呈直线关系,
A
循环稳定后形成如图5-44所 示的封闭回线。
E
C
O
开始加载:O A B;
卸载:B C; 反向加载:C D; 反向卸载:D E; 再次拉伸:E B;
从而产生循环硬化。在冷加工后的金属中,充
满位错缠结和障碍,这些障碍在循环加载中被
破坏,或在一些沉淀强化不稳定的合金中,由
于沉淀结构在循环加载中被破坏均可导致循环
软化。
2021年10月21日 星期四
第五章 金属的疲劳
二、低周疲劳的应变-寿命(-N)曲线
低周疲劳时总应变幅t包括弹性应变幅e和
塑性应变幅p,即t=e+p。Manson和Coffin
2021年10月21日 星期四
第五章 金属的疲劳
在双对数坐标图上,上式等号右端两项是两条
直线,分别代表弹性应变幅-寿命线和塑性应变幅
寿命线,两条直线叠加成总应变幅-寿命线,如图5-
48所示。
直线交点对应的寿命称为过渡寿 命。交点左侧塑性应变幅起主导作 用,材料疲劳寿命由塑性控制;交 点右侧弹性应变幅起主导作用,材 料疲劳寿命由强度决定。因此,在 选择材料和确定工艺时,要弄清机 件承受哪一类疲劳。
材料力学第五章弯曲内力

CA和DB段:q=0,Q图为水平线, M图为斜直线。
AD段:q<0, Q图为向下斜直线, M图为上凸抛物线。
3、先确定各分段点的Q 、M 值,用相应形状的线条连接。
32
§5-6 纯弯曲时的正应力
• 纯弯曲(Pure Bending):某段梁的 内力只有弯矩没有剪力时,该段 梁的变形称为纯弯曲。
如图(b)示。
qL A
x1Q1
图(a) M1
图(b)
Y qL Q1 0 Q1 qL
mA(Fi) qLx1 M1 0 M1 qLx1
17
2--2截面处截取的分离体如图(c) qL
Y qL Q2 q(x2 a) 0 Q2 qx2 a qL
剪力等于梁保留一侧横向外
②写出内力方程
Q(x)
P
Q( x ) YO P
M(x) PL
x
M( x ) YOx MO
P( x L ) x
③根据方程画内力图
20
F
a
b
A
C
x1 x2
FAY
l
FS Fb / l
Fa / l
Fab/ l
M
[例]图示简支梁C点受集中力作用。
试写出剪力和弯矩方程,并画 B 出剪力图和弯矩图。
4. 标值、单位、正负号、纵标线
31
例 外伸梁AB承受荷载如图所示,作该梁的Q---M图。
3kN
6kN m 2kN/m
A C
B D
1m
4m
FA
Q 4.2
(kN) +
E
_
3
x=3.1m
1m
FB
_
3.8
材料力学第五章

F l a x
l
材料力学
第五章 梁的剪力图与弯矩图
梁的横截面上位于横截面 内的内力FS是与横截面左右两 侧的两段梁在与梁轴相垂直方 向的错动(剪切)相对应,故称 为剪力;梁的横截面上作用在 纵向平面内的内力偶矩是与梁 的弯曲相对应,故称为弯矩。
材料力学
第五章 梁的剪力图与弯矩图
为使无论取横截面左边或右边为分离体,求得同一横
截面上的剪力和弯矩其正负号相同,剪力和弯矩的正负号
要以其所在横截面处梁的微段的变形情况确定,如下图。
材料力学
第五章 梁的剪力图与弯矩图
综上所述可知: (1) 横截面上的剪力——使截开部分梁产生顺时针方向
转动为正;产生逆时针方向转动为负。
(2) 横截面上的弯矩——作用在左侧面上使截开部分 逆时针方向转动,或者作用在右侧截面上使截开部分顺时 针方向转动者为正;反之为负。
图d,e所示梁及其约束力不能单独利用平衡方程确定, 称为超静定梁。
材料力学
第五章 梁的剪力图与弯矩图
§5.2 梁的内力及其与外力的相互关系
Ⅰ. 梁的剪力和弯矩(梁的横截面上的两种内力)
图a所示跨度为l的简支梁其
约束力为:
FA
Fl
l
a,
FB
Fa l
梁的左段内任一横截面m-
m上的内力,由m-m左边分离
杆件:某一方向尺寸远大于其它方向尺寸的构件。 直杆:杆件的轴线为直线。 杆的可能变形为:
轴向拉压—内力为轴力。如拉、撑、活塞杆、钢缆、柱。
扭转 —内力为扭矩。如各种传动轴等。
(轴)
弯曲 —内力为弯矩。如桥梁、房梁、地板等。(梁)
材料力学
梁的分类
F
q
第五章 梁的剪力图与弯矩图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
σm=0,r=-1。
(2)不对称循环:
σm≠0,-1<r<1。
(3)脉动循环:
σm=σα>0,r=0 或 σm=σα<0,r=∞。
(4)波动循环(重复载荷):
σm>σα,0<r<1。
(5)随机变动应力: 循环应力呈随机变化。
二、疲劳现象及特点
一、疲劳曲线和对称循环疲劳极限
2、疲劳S-N曲线
其他不对称循环应力,也可作出相应的疲劳曲线,
它们统称为S-N曲线,
按应力高低和断裂寿命分, 有高周疲劳(低应力疲劳,σ<σs) 和低周疲劳(高应力疲劳或应变疲劳)。
三、疲劳宏观断口特征
1、典型疲劳断口具有3个特征区 —疲劳源、疲劳裂纹扩展区、瞬断区。 2、疲劳源: (1)多出现在机件表面, 常和缺口、裂纹等缺陷及内部冶金缺陷(夹杂、白点等)有关。 (2)疲劳源区比较光亮,该区表面硬度有所提高。 (3)疲劳源可以是一个,也可以是多个。
一、疲劳曲线和对称循环疲劳极限
1、旋转弯曲疲劳试验: (1)四点弯曲, 对称循环 (σm=0,r=-1)。 (2)测定方法: ①试样(若干--1,2,3, …n ) 旋转弯曲疲劳试验机; ②选择最大循环应力σmax (0.67σb~0.4σb) (σ1,σ2,σ3 …~σn ); ③对每个试样进行循环加载试验,直至断裂; ④测定应力循环数N (N1,N2,N3…~Nn); ⑤得到 (σ1,N1),(σ2,N2)…… ⑥绘制σ(σmax)-N(lg N)曲线。
断口上显示出疲劳源、疲劳裂纹扩展区与瞬时断裂区的特征。
二、疲劳现象及特点
2.疲劳破坏的特点:
(1)一种潜藏的突发性破坏,呈脆性断裂。
(2)疲劳破坏属低应力循环延时断裂。 (3)对缺陷具有高度的选择性。 (4)可按不同方法对疲劳形式分类。 按应力状态分,
有弯曲疲劳、扭转疲劳、拉压疲劳、接触疲劳及复合疲劳。
金属疲劳现象及特点
疲劳曲线及基本疲劳力学性能
§5.3
疲劳裂纹扩展速率及疲劳门槛值
疲劳过程及机理(简述)
§5.4
Байду номын сангаас§5.5
影响疲劳强度的主要因素(自学)
§5.6 低周疲劳(自学)
§5.1 金属疲劳现象及特点
一、变动载荷和循环应力
二、疲劳现象及特点
三、疲劳宏观断口特征
一、变动载荷和循环应力
1、疲劳: 变动载荷和应变→长期作用 →累积损伤→断裂。 2、变动载荷: 载荷大小,甚至方向随时间而变化的载荷。 3、变动应力: 变动载荷在单位面积上的平均值。 4、变动应力分类: 规则周期变动应力(或称循环应力); 无规则随机变动应力。 5、循环应力: 周期性变化的应力。 有正弦波、矩形波和三角波等。 最常见的为正弦波。
1、疲劳破坏的概念: (1)疲劳的破坏过程: 变动应力→薄弱区域的组织 →逐渐发生变化和损伤累积、开裂 →裂纹扩展→突然断裂。 (2)疲劳破坏: 循环应力引起的延时断裂, 其断裂应力水平往往低于材料的抗拉强度,甚至低于其屈服强度。 (3)疲劳寿命: 机件疲劳失效前的工作时间。
(4)疲劳断裂:经历了裂纹萌生和扩展过程。
二、疲劳图和不对称循环疲劳极限
三、抗疲劳过载能力
四、疲劳缺口敏感度
一、疲劳曲线和对称循环疲劳极限
1850-1860,维勒(Wöhler)先生用试验方法研究了车轴的断裂事 故,提出了疲劳曲线【应力-寿命图(S-N)】和疲劳极限概念。 车轴工作状态是旋转弯曲,因此属于旋转弯曲疲劳。 【按应力状态分, 有弯曲疲劳、扭转疲劳、拉压疲劳、接触疲劳及复合疲劳。】
蠕变疲劳—循环载荷与高温联合作 用下的疲劳。
疲劳破坏表现的形式:
热机械疲劳—循环受载部件的温度 变动时材料的疲劳。
腐蚀疲劳、接触疲劳、微动疲劳、 电致疲劳等等。
前言
1、变动载荷 → 疲劳断裂。
2、研究疲劳的一般规律、 疲劳破坏过程及机理、 疲劳力学性能及其影响因素等。
第五章
§5.1
§5.2
材料的疲劳性能
三、疲劳宏观断口特征
3、疲劳区: (1)断口较光滑并分布有贝纹线(或海滩花样), 有时还有裂纹扩展台阶。 (2)断口光滑是疲劳源区的延续, 其程度随裂纹向前扩展逐渐减弱; (3)贝纹线是疲劳区的最典型特征, 一般认为是因载荷变动引起的。 每组贝纹线好像一簇以疲劳源为圆心的平行弧线,
凹侧指向疲劳源,凸侧指向裂纹扩展方向。
一、变动载荷和循环应力
6、表征应力循环特征的参量 ①最大循环应力σmax, 最小循环应力σmin; ②平均应力
σm=(σmax+σmin)/2;
③应力幅σα或应力范围Δσ: σα=Δσ/2= (σmax-σmin)/2; ④应力比 r=σmin/σmax。
⑤载荷谱:
载荷-时间历程曲线
一、变动载荷和循环应力
三、疲劳宏观断口特征
4、瞬断区: (1)KⅠ≥KⅠc时,裂纹就失稳快速扩展,导致机件瞬时断裂. 断口粗糙,脆性断口呈结晶状; 韧性断口在心部平面应变区呈放射状或人字纹状, 边缘平面应力区则有剪切唇区存在。 (2)瞬断区一般应在疲劳源对侧。
§5.2
疲劳曲线及基本疲劳力学性能
一、疲劳曲线和对称循环疲劳极限
• 1961年,Paris提出了疲劳裂纹扩展速率的概念。
• 1974年美国军方采用了损伤容损设计方法。 • 目前,材料的疲劳研究方兴未艾,断裂力学、损伤力学和材料物 理学结合,已从宏观、细观和微观领域对疲劳问题进行着广泛的 研究。
前言
材料的疲劳问题研究从近150多年开始一直受到人们的关注,原因 之一就是工程中的零件或构件的破坏80%以上是由于疲劳引起。 机械疲劳—外加应力/应变波动造 成的。
材料的力学性能
材料与化工学院
前言
• 1850-1860,Wöhler先生用试验方法研究了车轴的断裂事故,提 出了应力-寿命图(S-N)和疲劳极限概念。
• 1870-1890,Gerber研究了平均应力对寿命的影响,Goodman提出 了完整的平均应力影响理论。
• 1920,Griffith用能量法研究了含裂纹体的有关材料强度理论, 初步奠定了事隔20年后由Irwin发展起来的断裂力学理论基础。 • 1945年,由Miner提出的线性累计损伤理论问世。 • 1960年,Manson-Coffin提出了塑性应变与疲劳寿命的关系。