材料力学性能习题及解答库

合集下载

材料力学性能 习题解答

材料力学性能 习题解答

第8章电学性能习题
一、名词解释
电导率:
电流密度:
电场强度:
离子电导:
电子电导:
霍尔效应:
本征电导:
杂质电导:
压电效应:
本征半导体:
杂质半导体
P型半导体:
n型半导体:
PTC效应:
电解效应
超导体:
二、综合题:
1.金属材料的载流子是什么?无机非金属材料的载流子是什么?为什么通常无机材料的导电性能不如金属材料?
2.离子电导的载流子是什么?如何检验材料是否存在离子电导?离子电导主要发生在什么材料中?
3.何为本征电导、杂质电导?它们与温度的关系如何?离子晶体的电导主要是哪种电导?
4.影响离子晶体电导率的因素有哪些?
5.载流子的迁移率的物理意义是什么?
6.电导率的微观本质是什么?
7.电子电导的载流子是什么?如何检验材料是否存在电子电导?电子电导主要发生在什么材料中?
8.电子的质量和电子的有效质量有何不同?
9.若在半导体硅中掺入第三族元素,形成何种类型半导体?若在半导体硅中掺入有五个价电子的元素,形成何种类型半导体?
10.导体、绝缘体和半导体在能带结构上有何不同?
11.论述影响电子电导的因素。

12.陶瓷材料通常为多晶多相材料,论述影响陶瓷材料电导的主要因素。

13.载流子的散射有哪几种机构?
14.怎样区分n型半导体和P型半导体?。

江大工程材料力学性能习题解答

江大工程材料力学性能习题解答

第一章1、弹性变形的实质是什么?答:金属晶格中原子自平衡位置产生可逆位移的反映。

2、弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里?答:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。

E=Z / &。

弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。

弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。

它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。

特殊表现:金属材料的E是一个对组织不敏感的力学性能指标,温度、加载速率等外在因素对其影响不大,E主要决定于金属原子本性和晶格类型。

3、比例极限、弹性极限、屈服极限有何异同?答:比例极限:应力应变曲线符合线性关系的最高应力(应力与应变成正比关系的最大应力);弹性极限:试样由弹性变形过渡到弹-塑性变形时的应力;屈服极限:开始发生均匀塑性变形时的应力。

4、什么是滞弹性?举例说明滞弹性的应用?答:滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

应用:精密传感元件选择滞弹性低的材料。

5、内耗、循环韧性、包申格效应?答:内耗:金属材料在在弹性区内加载交变载荷(振动)时吸收不可逆变形功的能力;循环韧性:• ••塑性区内•••;包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力(特别是弹性极限在反向加载时几乎降低到零)的现象。

6、什么是屈服强度?如何确定屈服强度?答:屈服强度Z s :开始产生塑性变形时的应力。

对于屈服现象明显的材料,以下屈服点对应的应力为屈服强度;对于屈服现象不明显的材料,以产生0.2%残余变形的应力为其屈服强度。

7、屈服强度的影响因素有哪些?答:内因:①金属本性及晶格类型(位错密度增加,晶格阻力增加,屈服强度随之提高)②晶粒大小和亚结构(细晶强化)③溶质元素(固溶强化)④第二相(弥散强化和沉淀强化);外因:①温度(一般,升高温度,金属材料的屈服强度降低)②应变速率(应变速率硬化)③应力状态(切应力分量越大,越有利于塑性变形,屈服强度则越低)。

材料力学性能》课程习题集

材料力学性能》课程习题集

材料力学性能》课程习题集材料力学性能》课程题集1.解释以下名词:1) 弹性比功:材料在弹性阶段内所吸收的能量与所施加的力之比。

2) 包辛格效应:材料在受到压力时,由于晶格结构的变化而导致的体积变化。

3) 解理面:材料中存在的平面状缺陷,容易引起断裂。

4) 塑性、脆性和韧性:材料的变形能力、断裂形式和抵抗断裂的能力。

5) 解理台阶:材料中解理面上形成的台阶状缺陷。

6) 河流花样:材料中出现的一种特殊断裂形式。

7) 穿晶断裂和沿晶断裂:材料的断裂方式,穿晶断裂为穿过晶粒的断裂,沿晶断裂为沿着晶粒的界面断裂。

2.常用的标准试样有5倍试样和10倍试样,其延伸率分别用σ5和σ10表示,为什么选择这样的表示方法?答:选择这种表示方法是因为延伸率随着应力的增加而逐渐减小,而σ5和σ10则可以表示在不同应力下的延伸率,从而更全面地描述材料的延展性能。

3.某汽车弹簧在未装满载时已变形到最大位置,缺载后可完全恢复到原来状态;另一汽车弹簧使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。

试分析这两种故障的本质及改变措施。

答:第一种故障是弹簧在弹性阶段内发生的变形,可以通过增加弹簧的刚度来解决;第二种故障是弹簧在塑性阶段内发生的变形,需要重新设计弹簧的材料和结构,以提高其抗塑性变形的能力。

4.金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能?答:金属的弹性模量主要取决于其晶格结构和原子键的强度。

它是一个对结构不敏感的力学性能,是因为即使在不同的晶格结构和原子排列方式下,金属的原子键强度也是相似的,从而导致弹性模量的变化不大。

5.今有45、40Cr、35CrMo钢和灰铸铁几种材料,你选择那种材料作为机床机身?为什么?答:选择35CrMo钢作为机床机身材料,因为它具有较高的强度和韧性,能够承受机床的重载和振动,同时具有良好的加工性能和耐磨性。

6.什么是包辛格效应,如何解释,它有什么实际意义?答:包辛格效应是材料在受到压力时,由于晶格结构的变化而导致的体积变化。

材料力学典型例题与详解(经典题目)

材料力学典型例题与详解(经典题目)
G = [σ ]A(l) − F
所以石柱体积为
V3
=
G ρ
=
[σ ]A(l) − ρ
F
= 1×106 Pa ×1.45 m 2 −1000 ×103 N = 18 m3 25 ×103 N/m3
三种情况下所需石料的体积比值为 24∶19.7∶18,或 1.33∶1.09∶1。 讨论:计算结果表明,采用等强度石柱时最节省材料,这是因为这种设计使得各截面的正应 力均达到许用应力,使材料得到充分利用。 3 滑轮结构如图,AB 杆为钢材,截面为圆形,直径 d = 20 mm ,许用应力 [σ ] = 160 MPa ,BC 杆为木材,截面为方形,边长 a = 60 mm ,许用应力 [σ c ] = 12 MPa 。试计算此结构的许用载
= 1.14 m 2
A
2=
F+ρ [σ ] −
A1 l1 ρ l2
=
1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m 1×106 N/m 2 − 25×103 N/m3 × 5 m
= 1.31 m 2
A
3=
F
+ ρA1l1 + ρA2l2 [σ ] − ρ l3
= 1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m + 25×103 N/m3 ×1.31 m 2 × 5 m = 1.49m 2 1×106 N/m 2 − 25 ×103 N/m3 × 5 m
解:1、计算 1-1 截面轴力:从 1-1 截面将杆截成两段,研究上半段。设截面上轴力为 FN1 ,
为压力(见图 b),则 FN1 应与该杆段所受外力平衡。杆段所受外力为杆段的自重,大

材料力学性能课后习题(1)

材料力学性能课后习题(1)

材料⼒学性能课后习题(1)材料⼒学性能课后习题第⼀章1.解释下列名词①滞弹性:⾦属材料在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象称为滞弹性,也就是应变落后于应⼒的现象。

②弹性⽐功:⾦属材料吸收弹性变形功的能⼒,⼀般⽤⾦属开始塑性变形前单位体积吸收的最⼤弹性变形功表⽰。

③循环韧性:⾦属材料在交变载荷下吸收不可逆变形功的能⼒称为循环韧性。

④包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余伸长应⼒增加;反向加载,规定残余伸长应⼒降低的现象。

⑤塑性:⾦属材料断裂前发⽣不可逆永久(塑性)变形的能⼒。

⑥韧性:指⾦属材料断裂前吸收塑性变形功和断裂功的能⼒。

⑦加⼯硬化:⾦属材料在再结晶温度以下塑性变形时,由于晶粒发⽣滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使⾦属的强度和硬度升⾼,塑性和韧性降低的现象。

⑧解理断裂:解理断裂是在正应⼒达到⼀定的数值后沿⼀定的晶体学平⾯产⽣的晶体学断裂。

2.解释下列⼒学性能指标的意义(1)E( 弹性模量);(2)ζp(规定⾮⽐例伸长应⼒)、ζe(弹性极限)、ζs(屈服强度)、ζ0.2(规定残余伸长率为0.2%的应⼒);(3)ζb(抗拉强度);(4)n(加⼯硬化指数);(5)δ(断后伸长率)、ψ(断⾯收缩率)3.⾦属的弹性模量取决于什么?为什么说他是⼀个对结构不敏感的⼒学性能?取决于⾦属原⼦本性和晶格类型。

因为合⾦化、热处理、冷塑性变形对弹性模量的影响较⼩。

4.常⽤的标准试样有5倍和10倍,其延伸率分别⽤δ5和δ10表⽰,说明为什么δ5>δ10。

答:对于韧性⾦属材料,它的塑性变形量⼤于均匀塑性变形量,所以对于它的式样的⽐例,尺⼨越短,它的断后伸长率越⼤。

5.某汽车弹簧,在未装满时已变形到最⼤位置,卸载后可完全恢复到原来状态;另⼀汽车弹簧,使⽤⼀段时间后,发现弹簧⼸形越来越⼩,即产⽣了塑性变形,⽽且塑性变形量越来越⼤。

试分析这两种故障的本质及改变措施。

材料力学性能学习题与解答[教材课后答案]

材料力学性能学习题与解答[教材课后答案]

度越高。
3、计算: 某低碳钢的摆锤系列冲击实验列于下表, 温度(℃) 60 40 35 25 试计算: a. 绘制冲击功-温度关系曲线; 冲击功(J) 75 75 70 60 温度(℃) 10 0 -20 -50 冲击功(J) 40 20 5 1
冲击吸收功—温度曲线 80 70 60 50
Ak
40 30 20 10 0 -6 -5 -4 -3 -2 -1 0 10 20 30 40 50 60 70 0 0 0 0 0 0 t/℃
第三章 冲击韧性和低温脆性 1、名词解释: 冲击韧度 冲击吸收功 低温脆性
解: 冲击韧度:一次冲断时,冲击功与缺口处截面积的比值。 冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功。 低温脆性:当试验温度低于某一温度时,材料由韧性状态转变为脆性状态。 韧脆转变温度:材料在某一温度 t 下由韧变脆,冲击功明显下降。该温度即韧脆转 变温度。 迟屈服:用高于材料屈服极限的载荷以高加载速度作用于体心立方结构材料时,瞬 间并不屈服,需在该应力下保持一段时间后才屈服的现象。
2) 简述扭转实验、弯曲实验的特点?渗碳淬火钢、陶瓷玻璃试样研究其力学 性能常用的方法是什么? 1 扭转实验的应力状态软性系数较拉伸的应力状态软性系数高。可 解: 扭转实验的特点是○
2 扭转实验 对表面强化处理工艺进行研究和对机件的热处理表面质量进行检验。 ○ 3 圆柱试样在扭转时,不产生缩颈现象,塑 时试样截面的应力分布为表面最大。○
韧脆转变温度 迟屈服
2、简答 1) 缺口冲击韧性实验能评定哪些材料的低温脆性?哪些材料不能用此方法 检验和评定?[提示:低中强度的体心立方金属、Zn 等对温度敏感的材料,高强 度钢、铝合金以及面心立方金属、陶瓷材料等不能]
解:缺口冲击韧性实验能评定中、低强度机构钢的低温脆性。面心立方金属及合金如氏 体钢和铝合金不能用此方法检验和评定。

《材料物理性能》习题解答

《材料物理性能》习题解答

《材料物理性能》习题解答材料物理性能习题与解答吴其胜盐城工学院材料工程学院2007,3目录1 材料的力学性能 (2)2 材料的热学性能 (12)3 材料的光学性能 (17)4 材料的电导性能 (20)5 材料的磁学性能 (29)6 材料的功能转换性能 (37)1材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米?解:拉伸前后圆杆相关参数表体积V/mm 3 直径d/mm 圆面积S/mm 2 拉伸前1227.2 2.5 4.909 拉伸后1227.22.44.524 1cm 10cm40cmLoad Load)(0114.0105.310101401000940000cm E A l F l El l ==??===?-σε0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =?==-σ名义应力0851.0100=-=?=A A l lε名义应变)(99510524.445006MPa A F T =?==-σ真应力1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。

解:根据可知:1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。

证:1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理

完整版材料⼒学性能课后习题答案整理材料⼒学性能课后习题答案第⼀章单向静拉伸⼒学性能1、解释下列名词。

1弹性⽐功:⾦属材料吸收弹性变形功的能⼒,⼀般⽤⾦属开始塑性变形前单位体积吸收的最⼤弹性变形功表⽰。

2.滞弹性:⾦属材料在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象称为滞弹性,也就是应变落后于应⼒的现象。

3.循环韧性:⾦属材料在交变载荷下吸收不可逆变形功的能⼒称为循环韧性。

4.包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余伸长应⼒增加;反向加载,规定残余伸长应⼒降低的现象。

5.解理刻⾯:这种⼤致以晶粒⼤⼩为单位的解理⾯称为解理刻⾯。

6.塑性:⾦属材料断裂前发⽣不可逆永久(塑性)变形的能⼒。

脆性:指⾦属材料受⼒时没有发⽣塑性变形⽽直接断裂的能⼒韧性:指⾦属材料断裂前吸收塑性变形功和断裂功的能⼒。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成⼀个⾼度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动⽽相互汇合,同号台阶相互汇合长⼤,当汇合台阶⾼度⾜够⼤时,便成为河流花样。

是解理台阶的⼀种标志。

9.解理⾯:是⾦属材料在⼀定条件下,当外加正应⼒达到⼀定数值后,以极快速率沿⼀定晶体学平⾯产⽣的穿晶断裂,因与⼤理⽯断裂类似,故称此种晶体学平⾯为解理⾯。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有⼀定韧性的⾦属材料当低于某⼀温度点时,冲击吸收功明显下降,断裂⽅式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列⼒学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应⼒ 2.0σ屈服强度 gt δ⾦属材料拉伸时最⼤应⼒下的总伸长率 n 应变硬化指数P153、⾦属的弹性模量主要取决于什么因素?为什么说它是⼀个对组织不敏感的⼒学性能指标?答:主要决定于原⼦本性和晶格类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章习题答案一、解释下列名词1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。

2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。

4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现ζ e 升高或降低的现象。

5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。

6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。

韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶;8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。

9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。

10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。

穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。

11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。

二、说明下列力学指标的意义1、E(G): E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。

2、Z r 、Z 0.2、Z s: Z r :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。

ζ 0.2:表示规定残余伸长率为0.2%时的应力。

Z S:表征材料的屈服点。

3、Z b韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。

4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬化行为的性能指标。

5、3、δ gt、ψ : δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。

Δgt 是最大试验力的总伸长率,指试样拉伸至最大试验力时标距的总伸长与原始标距的百分比,也就是金属材料拉伸时产生的最大均匀塑性变形量。

ψ是断面收缩率,缩颈处横截面积的最大缩减量与原始横截面积的百分比。

三、金属的弹性模量主要取决于什么因素?为什么说它是一个组织不敏感的力学性能指标?金属的弹性模量主要取决于金属原子本性和晶格类型。

合金化、热处理(显微组织)、冷塑性变形对弹性模量的影响较小,温度、加载速率等外在因素对其影响也不大,所以,金属材料的弹性模量是一个对组织不敏感的力学性能指标。

四、今有45、40 C r、35 C r M o钢和灰铸铁几种材料,你选择哪种材料作机床床身?为什么?选择灰铸铁,因为作为机床床身材料必须要求循环韧性高,以保证机器的稳定运转。

灰铸铁中含有不易传送弹性机械振动的石墨,具有很高的循环韧性。

五、试述多晶体金属产生明显屈服的条件,并解释bcc 金属及其合金与fcc 金属及其合金屈服行为不同的原因。

6、试述退火低碳钢、中碳钢及高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?答:从退火低碳钢、中碳钢及高碳钢的拉伸力—伸长曲线图上可以明显看出,三种不同钢种的拉伸力—伸长曲线图有区别,可以看出退火低碳钢的屈服现象最明显,其次是退火中碳钢,而高碳钢几乎看不到屈服现象。

但根据条件屈服强度可以判断出随着碳含量的增加,屈服强度在提高。

这主要是因为随着碳含量的增加,碳原子对基体的强化作用越来越强,阻碍了位错的运动。

7、决定金属屈服强度的因素有哪些?答:影响金属屈服强度的因素分为内在因素和外在因素。

内在因素有金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相粒子;外在因素有温度、应变速率和应力状态。

8、试述3、ψ两种塑性指标评定金属材料塑性的优缺点?答:对于在单一拉伸条件下工作的长形零件,无论其是否产生缩颈,用δ来评定材料的塑性,因为产生缩颈时局部区域的塑性变形量对总伸长实际上没有什么影响。

如果金属材料机件是非长形件,在拉伸时形成缩颈,则用φ作为塑性指标。

因为φ反映了材料断开前的最大塑性变形量,而此时δ则不能显示材料的最大塑性。

①是在复杂应力状态下形成的,冶金因素的变化对材料的塑性的影响在φ上更为突出,所以φ比δ对组织变化更为敏感。

9、试举出几种能显著强化金属而又不降低塑性的方法?答:细晶强化,通过细化晶粒提高金属强度的方法,它既可以显著强化金属,又不降低塑性的方法。

10、试述韧性断裂与脆性断裂的区别。

为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前期丁不发生塑性变形,没有明显征兆,因此脆性断裂在生产中是很危险的。

11、剪切断裂与解理断裂都是穿晶断裂?为什么断裂的性质完全不同?答:剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,其中又分滑断(纯剪切断裂)和微孔聚集型断裂。

纯金属尤其是单晶体金属常产生纯剪切断裂,其断口呈锋利的楔形或刀尖型。

而解理断裂是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂。

12、在什么情况下易出现沿晶断裂?怎样才能减小沿晶断裂的倾向?答:当晶界上有一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续所造成,也可能是杂质元素向晶界偏聚引起的,如应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹等都是沿晶断裂。

要减小沿晶断裂的倾向,则要求防止应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹等出现。

13、何为拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:拉伸断口的三要素:纤维区、放射区和剪切唇;影响宏观拉伸断口性态的因素有试样的形状、尺寸和金属材料的性能以及试验温度、加载速率和腕力状态不同而变化。

14、板材宏观断口的主要特征是什么?如何寻找断裂源?答:板状矩形拉伸试样断口中呈人字纹花样。

根据人字纹花样的放射方向,顺着尖顶指向可以找到裂纹源。

15、试证明,滑移相交产生微裂纹的柯垂耳机理对fee金属而言在能量上是不利的。

16、通常纯铁的Y S= 2J∕m2,E=2*10 MPaa=2.5 × 10_ m 试求其理论断裂强度Z m。

解:由题意可得:Z 崭/2 严C J/2∣'E Y S!2疋105:<2 4σ^m = ! ----- ! = --------------- j0 =4.0^ 10 MPal a。

丿ι2.5"0=0丿17、试述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出理论的局限性。

18、若一薄板物体内部存在一条长 3 mm的裂纹,且a0= 3 × 10「8cm,试求脆性断裂时的断裂5应力。

(设Z m= 0.1E = 2× 10 MPa)19、有一材料E= 2 × 1011N∕怦,Y S = 8N∕m,试计算在7× 107N∕怦的拉应力作用下,该材料中能扩展的裂纹之最小长度?20、 断裂强度Z C 与抗拉强度Z b 有何区别?答:抗拉强度Z b 指材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。

它表示钢材抵抗断裂的能力大小。

断裂强度 Z C 是指在拉伸过程中,材料断裂时所对应的应力值。

21、 铁素体的断裂强度与屈服强度均与晶粒尺寸d 1/2成正比,怎样解释这一现象? 22、 裂纹扩展扩展受哪些因素支配?23、 试分析能量断裂判据与应力断裂判据之间的关系24、 有哪些因素决定韧性断口的宏观形貌?答:韧性断口的宏观形貌决定于第二相质点的大小和密度、基体材料的塑性变形能力和应变硬化指数,以及外加应力的大小和状态等。

1/2 25、 试根据下述方程(Z i d +k y ) k y =2G 丫 s q,讨论下述因素对金属材料韧脆转变的影响:(1)材料成分;(2)杂质;(3)温度;(4)晶粒大小;(5)应力状态;(6)加载速率。

第二章习题及答案1. 解释下列名词:(1 )应力状态软性系数:表征最大切应力 .ma χ与二max 的比值。

(2 )缺口效应:由于缺口的存在,在静载作用下,缺口截面上的应力状态将发生变化,这称为"缺口效应”。

(3) 缺口敏感度:表征缺口试样的抗拉强度σ bn 与光滑试样的抗拉强度 C b 的比值。

(4)布氏硬度:用一定直径的钢球或硬质合金球,以规定的试验力(F )压入式样表面,经 规定保持时间后卸除试验力,测量试样表面的压痕直径 (L )。

布氏硬度值是以试验力除以压 痕球形表面积所得的商。

以 HBS (钢球)表示,单位为 N/mm2(MPa 。

式中:F--压入金属试样表面的试验力, N;D--试验用钢球直径,mm d--压痕平均直径,mm(5)洛氏硬度:在规定的外加载荷下,将钢球或金刚石压头垂直压入试件表面,产生压痕, 测试压痕深度, 利用洛氏硬度计算公式 HR=( K-H )/C 便可计算出洛氏硬度。

简单说就是压痕 越浅,HR 值越大,其计算公式为: HB 0.102F A 0.204F 二D(D _、D 2 _d 2)材料硬度越高。

(6)维氏硬度:是根据压痕单位面积所承受的试验力计算硬度值。

所采用的压头是两相对面间夹角为136°的金刚石四棱锥体,压头的试验力作用下将试样表面压出一个四方锥形的压痕,经一定保持时间后担卸除试验力,测量压痕对角线平均长度d,用以计算压痕表面积。

维氏硬度的值为试验力除以压痕表面积 A 所得的商。

(7)努氏硬度:也一种显微硬度试验方法。

与显微维氏硬度相比有两点不同:一是压头形状不同;二是硬度值不是试验力除以压痕表面积之商值,而是除以压痕投影面积之商值。

(8)肖氏硬度:是将一定质量的带有金刚石圆头或钢球的重锤,从一定高度落于金属试样表面,根据重锤回跳的高度来表征金属硬度值大小,因而也称为回跳硬度。

(9)里氏硬度:是用规定质量的冲击体在弹力作用下以一定速度冲击试样表面,用冲头的回弹速度表征金属的硬度值。

2. 说明下列力学性能指标的意义(1)Z be;指抗压强度;(2)Z bb:指抗弯强度;(3)τs :指材料的扭转屈服点;(4)τb ;指抗扭强度;(5)Z bn:指有缺口试样的抗拉强度;(6)NSR:指缺口敏感度;(7)HBS:用压头为淬火钢球时的布氏硬度值;(8)HBW用压头为硬质合金球时的布氏硬度值;(9) HRA:指用金刚石圆锥压头,主试验力为490.3N测出的洛氏硬度值;(10)HRB:指用钢球压头测出的洛氏硬度;(11)HRC:指用金刚石圆锥压头的洛氏硬度;(12)HV:指维氏硬度试验;(13)HK :指努氏硬度试验;(14)HS:指肖氏硬度;(15)HL :指里氏硬度;3.试综合比较单向拉伸、压缩、弯曲及扭转实验的特点和应用范围。

相关文档
最新文档