机器人的组成系统

合集下载

工业机器人-机器人系统由哪些部分组成?

工业机器人-机器人系统由哪些部分组成?

工业机器人-机器人系统由哪些部分组成?导语:机器人系统是由机器人和作业对象及环境共同构成的,其中包括机械系统、驱动系统、控制系统和感知系统四大部分。

机械系统工业机器人的机械系统包括机身、臂部、手腕、末端操作器和行走机构等部分,每一部分都有若干自由度,从而构成一个多自由度的机械系统。

此外,有的机器人还具备行走机构。

若机器人具备行走机构,则构成行走机器人;若机器人不具备行走及腰转机构,则构成单机器人臂。

末端操作器是直接装在手腕上的一个重要部件,它可以是两手指或多手指的手爪,也可以是喷漆枪、焊枪等作业工具。

工业机器人机械系统的作用相当于人的身体(如骨髓、手、臂和腿等)。

驱动系统驱动系统主要是指驱动机械系统动作的驱动装置。

根据驱动源的不同,驱动系统可分为电气、液压和气压三种以及把它们结合起来应用的综合系统。

该部分的作用相当于人的肌肉。

电气驱动系统在工业机器人中应用得较普遍,可分为步进电动机、直流伺服电动机和交流伺服电动机三种驱动形式。

早期多采用步进电动机驱动,后来发展了直流伺服电动机,交流伺服电动机驱动也逐渐得到应用。

上述驱动单元有的用于直接驱动机构运动:有的通过谐波减速器减速后驱动机构运动,其结构简单紧凑。

液压驱动系统运动平稳,且负载能力大,对于重载搬运和零件加工的机器人,采用液压驱动比较合理。

但液压驱动存在管道复杂、清洁困难等缺点,因此限制了它在装配作业中的应用。

无论电气还是液压驱动的机器人,其手爪的开合都采用气动形式。

气压驱动机器人结构简单、动作迅速、价格低廉,但由于空气具有可压缩性,其工作速度的稳定性较差。

但是,空气的可压缩性可使手爪在抓取或卡紧物体时的顺应性提高,防止受力过大而造成被抓物体或手爪本身的破坏。

气压系统的压力一般为0.7MPa,因而抓取力小,只有几十牛到几百牛大小。

控制系统控制系统的任务是根据机器人的作业指令程序及从传感器反馈回来的信号控制机器人的执行机构,使其完成规定的运动和功能。

工业机器人的系统组成及各部分作用

工业机器人的系统组成及各部分作用

工业机器人的系统组成及各部分作用一、引言工业机器人是一种自动化操作装置,主要用于工业生产中重复性高、作业环境危险的工作。

它的出现不仅提高了生产效率,而且还减少了人力成本和劳动强度。

要了解工业机器人的系统组成及各部分作用,我们需要从整体系统结构、各部分功能和作用等方面进行深入分析。

二、系统组成1. 机械结构机械结构是工业机器人的主体框架,它由基座、臂部、手部等部分组成,用于支撑和连接其他各部分。

其中,基座是机器人的底部支撑,臂部是机器人的动作执行部分,手部是机器人的操作器具,通过各部件的灵活组合,可以完成各种工业操作任务。

2. 控制系统控制系统是工业机器人的大脑,包括传感器、控制器、执行器等组成部分。

传感器用于获取外部环境的信息,控制器用于对机器人的动作进行指令和控制,执行器则是根据控制器的指令完成各项操作任务。

三、各部分作用1. 机械结构机械结构的作用是支撑和连接机器人的各部分,使之能够进行灵活的运动和操作。

通过合理的结构设计,可以实现机器人的高效作业和灵活操作,提高生产效率。

2. 控制系统控制系统的作用是实现机器人的自动化操作,传感器用于获取外部环境信息,控制器通过对信息的处理和分析,指挥执行器完成任务。

这种自动化操作不仅可以提高生产效率,还可以降低人力成本和减少劳动强度,同时也能保证生产过程中的安全性。

四、个人观点和理解通过对工业机器人的系统组成及各部分作用进行全面分析,我们可以深刻理解工业机器人的工作原理和作用。

我认为,工业机器人的出现标志着人类生产方式的进步和自动化水平的提高,它不仅可以大幅度提高生产效率,还可以降低生产成本,实现可持续发展和智能制造。

五、总结与展望通过本文的探讨,我们对工业机器人的系统组成及各部分作用有了更深入的了解。

在未来,随着科技的发展和人工智能技术的应用,工业机器人的性能和作用将会不断提升,我们期待工业机器人能够在更多领域发挥作用,为人类生活和生产带来更多便利。

工业机器人的系统组成及各部分作用是一个复杂而又精密的系统工程,它的实现对于提高整个生产效率和改善生产环境起着至关重要的作用。

机器人系统的组成

机器人系统的组成

机器人系统的组成机器人系统通常由以下几个组成部分构成:1. 机械结构:包括机器人的物理外形和各个部件的机械结构,如关节、链条、连接器、传感器等。

这些结构决定了机器人的动作范围和运动能力。

2. 电气控制系统:包括电机、驱动器、传感器、计算机等电子设备,用于控制机器人的运动和感知环境。

电气控制系统接收来自计算机的指令,并将其转化为机械动作。

3. 计算机控制系统:包括嵌入式系统、单片机、PLC等,用于控制机器人的运动和执行任务。

计算机控制系统负责运算、决策和监控机器人的各种功能。

4. 感知系统:包括各种传感器,如摄像头、激光雷达、红外传感器等,用于感知机器人周围的环境信息。

感知系统可以获取到环境中的物体位置、距离、光照强度等数据,以辅助机器人的决策和动作。

5. 控制算法:包括路径规划、运动控制、动作规划等算法,用于指导和控制机器人的各项动作。

控制算法可以使机器人对特定任务做出适当的反应和行动。

6. 用户界面:通常是一台显示屏或者计算机界面,与机器人进行通信,可以通过界面对机器人进行控制和监控。

用户界面还可以提供机器人的工作状态、故障报警等信息。

这些组成部分相互配合,共同组成一个完整的机器人系统,实现使用者对机器人的控制和监控,并执行各种任务。

另外还有一些可选的组成部分,可以根据具体的机器人应用需求进行选择和配置:1. 操作系统:机器人可能运行一个特定的操作系统,如Linux 或Windows,用于管理和协调机器人系统的各项功能。

2. 数据存储和通信设备:机器人可能需要具备一定的存储和通信能力,以便存储和传输数据。

例如,机器人可以存储感知到的环境信息和任务执行过程中的数据。

3. 电源系统:机器人通常需要电源来驱动各个部件的工作,可以采用电池、电源适配器等不同形式的供电方式。

4. 人机交互接口:机器人可以配备触摸屏、声音识别、手势识别等人机交互设备,以便用户能够与机器人进行沟通和交互。

需要注意的是,不同类型的机器人系统在组成部分上可能会有所不同。

机器人四大系统组成部分

机器人四大系统组成部分

机器人四大系统组成部分机器人是一种具备自主行动和人工智能的机械装置。

它可以执行各种任务,无论是在工业生产中还是在日常生活中。

机器人的功能和性能很大程度上取决于其系统的组成部分。

一个完整的机器人系统通常由以下四大系统组成:感知系统、控制系统、执行系统和智能系统。

一、感知系统感知系统是机器人系统的重要组成部分,它使机器人能够感知和理解外部环境。

感知系统使用各种传感器和感知器件来获取信息,并将其转化为数字信号供控制系统和智能系统使用。

感知系统可以包括视觉传感器、声音传感器、触觉传感器、力传感器等。

视觉传感器能够帮助机器人识别和跟踪对象,通过摄像头获取图像,并将图像转化为数字信号以便机器人进行处理。

声音传感器可以帮助机器人感知声音信号,如语音识别和声音指令等。

触觉传感器可以让机器人感知外部的接触力和压力,从而更好地进行操作。

力传感器可测量机器人施加的力或受到的力,以确保安全和精确度。

感知系统的作用是为机器人提供与环境的交互和理解能力,使其能够做出相应的反应和决策。

二、控制系统控制系统是机器人系统的核心,它负责接收并解释感知系统提供的信息,并针对性地生成控制信号以操纵执行系统。

它基于机器人的操作目标和任务要求,通过算法和规划,将高级指令转化为底层的动作和运动。

控制系统通常包括硬件和软件两个方面。

硬件方面,它包括控制器、运动控制器、逻辑电路等。

软件方面,它包括运动规划算法、决策算法等。

控制系统的设计和优化是确保机器人能够准确执行任务的关键。

三、执行系统执行系统是机器人系统的执行力部分,它将控制系统提供的控制信号转化为机械运动。

执行系统通常由电动机、液压系统或气动系统组成,根据机器人的具体用途和任务要求进行选择。

执行系统的功能是根据控制信号实现机器人的准确运动和操作。

它可以实现机器人的各种机械动作,如移动、抓取、举起等。

四、智能系统智能系统是机器人系统的大脑,它赋予机器人智能和学习能力。

智能系统通过处理和分析感知系统提供的信息,并采取适当的决策和行动。

机器人的组成结构

机器人的组成结构
一般情况下,实现臂部的升降、回转或或俯仰等 运动的驱动装置或传动件都安装在机身上。臂部的运 动愈多,机身的结构和受力愈复杂。机身既可以是固 定式的,也可以是行走式的,即在它的下部装有能行 走的机构,可沿地面或架空轨道运行。
常用的机身结构: 1)升降回转型机身结构 2)俯仰型机身结构 3)直移型机身结构 4)类人机器人机身结构
根据臂部的运动和布局、驱动方式、传动和导向装 置的不同可分为:
1)伸缩型臂部结构 2)转动伸缩型臂部结构 3)驱伸型臂部结构 4)其他专用的机械传动臂部结构
3.机身和臂部的配置形式
机身和臂部的配置形式基本上反映了机器 人的总体布局。由于机器人的运动要求、工作 对象、作业环境和场地等因素的不同,出现了 各种不同的配置形式。目前常用的有如下几种 形式:
36
1. 滑槽杠杆式手部
2.齿轮齿条式手部
4. 斜 楔 杠 杆 式
3.滑块杠杆式手部
5.移动型连杆式手部
6.齿轮齿条式手部
7.内涨斜块式手部
8.连杆杠杆式手部
手指类型:
吸附式取料手
吸式取料手是目前应用较多的一种执行器,特别是用于搬 运机器人。该类执行器可分气吸和磁吸两类。 1)气吸附取料手
连杆(Link):机器人手臂上 被相邻两关节分开的部分。
刚度(Stiffness):机身或臂部在外力作用下抵抗变形的能力。 它是用外力和在外力作用方向上的变形量(位移)之比来度量。
自由度(Degree of freedom) :或者称坐标轴数,是指描述物体 运动所需要的独立坐标数。手指的开、合,以及手指关节的自由 度一般不包括在内。
• 圆柱坐标型机械手有一 个围绕基座轴的旋转运 动和两个在相互垂直方 向上的直线伸缩运动。 它适用于采用油压(或气 压)驱动机构,在操作对 象位于机器人四周的情 况下,操作最为方便。

人形机器人基本组成

人形机器人基本组成

人形机器人基本组成
人形机器人的基本组成通常包括以下部分:
1. 机械结构:包括头部、身体、四肢等部件。

机械结构能够提供机器人的运动和姿态控制能力。

2. 动力系统:通常由电机或液压系统驱动,带动机械结构的运动。

3. 传感器:用于感知环境和获取外界信息。

常见的传感器有触觉传感器、视觉传感器、声音传感器等。

4. 控制器:用于对机械结构进行控制和协调各部分的工作。

控制器通常由计算机系统或微控制器组成。

5. 电力供应:提供机器人所需的电力,通常是通过电池或电源供应的。

6. 水平稳定器:用于保持机器人的平衡和稳定。

7. 操作系统和软件:用于控制机器人动作、处理传感器数据、实现人机交互等功能的软件平台。

8. 外观设计和装饰:为了实现人形机器人的外貌美观和可接近人类的外观特点,还会添加外部装饰和细节设计。

需要注意的是,不同的人形机器人在具体的组成上可能会有所差异,以适应不同的任务和应用场景。

机器人的组成结构及原理

机器人的组成结构及原理

机器人的组成结构及原理机器人作为一种能够替代人力完成各种任务的智能装置,在现代社会中扮演着越来越重要的角色。

为了更好地理解机器人的工作原理和组成结构,本文将从机器人的基本组成部分、传感器及感知技术、中央处理器、执行器和电源系统等方面进行探讨。

一、机器人的基本组成部分机器人的基本组成部分包括机械结构、电子设备及软件系统。

机械结构是机器人最为显著和重要的特征之一,它是机器人的外部框架,用于支撑和连接各个部分。

通常,机械结构由连接杆、关节和整体骨架等组成。

电子设备则是机器人的"大脑",用于控制和操纵机械结构。

软件系统是机器人的指令和运行程序,它决定了机器人的行为和任务执行方式。

二、传感器及感知技术机器人的传感器起到了感知环境和获取信息的关键作用。

传感器可以接收并转换环境中的物理量和信号,进而将其转化为数字信号,以供机器人进行分析和判断。

常见的机器人传感器包括视觉传感器、声音传感器、力传感器、光传感器等。

这些传感器能够帮助机器人感知和识别人类的动作、声音、姿势以及环境中的物体和障碍物等。

感知技术的发展不仅提高了机器人的自主性和智能化水平,还为机器人与人类之间的互动提供了更加精确和准确的基础。

三、中央处理器中央处理器是机器人的控制中枢,类似于人类的大脑。

它能够接收传感器传来的信息,并进行处理和分析。

中央处理器负责决策机器人的行动和执行任务的顺序。

在中央处理器中,通常会嵌入一些算法和软件,用于机器人的导航、路径规划、动作控制等方面。

中央处理器的性能决定了机器人的反应速度和智能水平。

四、执行器执行器是机器人的身体部分,用于执行各种动作和任务。

常见的执行器包括电机、液压装置、气动装置等。

机器人的执行器通过接收中央处理器的指令,将其转化为力、速度或位移等物理功能,从而实现机器人的运动和动作。

不同类型的机器人会采用不同的执行器,比如工业机器人常使用电机来完成各种机械操作。

五、电源系统电源系统为机器人提供所需的电能,以保证它的正常运行和工作。

工业机器人基本组成系统

工业机器人基本组成系统

工业基本组成系统工业基本组成系统一、介绍工业是一种可以自动执行任务的可编程装置,广泛应用于工业生产领域。

它由多个组成系统组合而成,每个系统都有其独特的功能和作用。

本文将详细介绍工业的基本组成系统,并对每个系统进行细化。

二、电源系统1、电源供给装置:用于为提供电力。

2、变压器:将输入的电压变换为所需的工作电压。

3、电池组:储存电能,供应的移动和紧急停机时的备用电力。

三、机械系统1、臂:由多个关节连接而成,用于执行工作任务。

2、工具与末端执行器:安装在机械臂末端,用于完成特定的操作任务,如抓取、焊接等。

3、输送系统:将物料或零件传递给进行后续处理。

4、台座:提供的支撑和稳定。

四、感应与控制系统1、传感器系统:用于感知环境和物体的位置、形状、温度等信息。

2、编码器:用于测量关节和末端执行器的运动位置。

3、稳定平台:用于降低运动时的振动和抖动,保持稳定性。

4、控制器:负责的运动规划和控制。

五、通信与网络系统1、通信接口:与外部设备进行数据交互和通信。

2、传输协议:规定了与其他设备之间的通信方式和协议。

3、网络连接:将连接到局域网或互联网,实现远程监控和控制。

六、软件系统1、操作系统:用于管理和控制的硬件和软件资源。

2、编程界面:提供给程序员编写和调试的控制程序。

3、集成开发环境:用于编写、测试和部署的应用软件。

4、数据库系统:用于存储和管理相关的数据和配置信息。

七、安全系统1、安全传感器:监测工作区域和周围的安全状况,防止意外事故发生。

2、报警系统:在发生告警事件时及时发出警报,并采取相应的保护措施。

3、紧急停机按钮:当发生紧急情况时,按下按钮可立即停止的运动。

八、本文档涉及附件本文档涉及的附件包括:1、工业的技术规格表2、工业的电气接线图3、工业的安全操作手册九、本文涉及的法律名词及注释1、:根据法律的定义,指自动运行、多关节、可编程的装置,用于执行工作任务。

2、电源供给装置:设备或系统,用于提供电能给的运行和工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.工业机器人组成系统工业机器人由主体、驱动系统和控制系统三个基本部分组成。

主体即机座和执行机构,包括腰部、肩部、肘部和手腕部,其中手腕部有3个运动自由度。

驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作。

控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。

工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。

点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。

工业机器人按程序输入方式区分有编程输入型和示教输入型两类。

编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。

示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。

在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。

示教输入程序的工业机器人称为示教再现型工业机器人。

几个问题:(1)巨轮机器人JLRB20KG机器人是点位型还是连续轨迹型?(2)能不能编写一个简单程序,使机器人能够的末端能够走一个圆?(3)能不能控制机器人中每一个电机的输出功率或扭矩?(4)机器人每一个关节从驱动电机到执行机构的传递效率有没有?二.工业机器人的主体机器人本体由机座、腰部、大臂、小臂、手腕、末端执行器和驱动装置组成。

共有六个自由度,依次为腰部回转、大臂俯仰、小臂俯仰、手腕回转、手腕俯仰、手腕侧摆。

机器人采用电机驱动,电机分为步进电机或直流伺服电机。

直流伺服电机能构成闭环控制、精度高、额定转速高、但价格较高,而步进电机驱动具有成本低、控制系统简单。

各部件组成和功能描述如下:(1)基座:基座是机器人的基础部分,起支撑作用。

整个执行机构和驱动装置都安装在基座。

(2)腰部:腰部是机器人手臂的支撑部分,腰部回转部件包括腰部支架、回转轴、支架、谐波减速器、制动器和步进电机等。

(3)大臂:大臂和传动部件(4)小臂:小臂、减速齿轮箱、传动部件、传动轴等,在小臂前端固定驱动手腕三个运动的步进电机。

(5)手腕部件:手腕壳体、传动齿轮和传动轴、机械接口等。

(6)末端执行器:根据抓取物体的形状、材质等选择合理的结构。

目前,在工业机器人中广泛采用的机械传动单元是减速器,与通用减速器相比,机器人关节减速器要求具有传动链短、体积小、功率大、质量轻和易于控制等特点。

常用的减速器主要有:RV减速器和谐波减速器。

RV减速器一般用在腰关节、肩关节和肘关节等重载位置处,而谐波减速器用于手腕的三个关节等轻载位置处。

(1)谐波减速器谐波减速器由固定的刚性齿轮、一个工作时可产生径向弹性变形并带有外齿的柔轮和一个装在柔轮部、呈椭圆形、外圈带有柔性滚动轴承的波发生器等3个基本构件组成。

当波发生器转入柔轮后,迫使柔轮的剖面由原先的圆形变为椭圆形,其长轴两端附近的齿与刚轮的齿完全啮合,而短轴两端附近的齿则与刚轮完全脱开,周长上其他区段的齿处于啮合和脱离的过渡状态。

(2)RV减速器与谐波减速器相比,RV减速器具有较高的疲劳强度和刚度以及较长的寿命,而且回差精度稳定,不想谐波传动,随着使用时间的增长,运动精度就会显著降低,故高精度机器人传动多采用RV减速器,且有逐渐取代谐波减速器的趋势。

RV减速器是由第一级渐开线圆柱齿轮行星减速机构和第二级摆线针轮行星减速机构组成,是一封闭差动轮系。

目前,在工业机器人中常用的驱动电机是交流伺服电机。

交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以,都能输出额定转矩,在额定转速以上为恒功率输出。

交流伺服电机具有较强的过载能力,具有速度过载和转矩过载能力,其最大转矩可达额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。

电机的输出扭矩与功率的关系:T = 9550 P / n 。

T,扭矩,Nm;P,功率,KW;n,转速,r/min;9550是系数。

扭矩、功率、转速之间,有关系。

三.工业机器人的示教器示教器也称示教编程器或示教盒,主要由液晶屏幕和操作按键组成,可由操作者手持移动。

它是机器人的人机交互接口,机器人的所有操作基本上都是通过示教器完成的,如点动机器人,编写、测试和运行机器人程序,设定、查阅机器人状态设置和位置等。

四.工业机器人的技术指标机器人的技术指标反映了机器人的适用围和工作性能,是选择、使用机器人必须考虑的问题。

(1)最大负载:作用于机器人手腕末端,且不会使机器人性能降低的最大载荷(2)定位精度:又称绝对定位精度,是指机器人末端执行器实际到达位置与目标位置之间的差异。

(3)重复定位精度:指机器人重复到达某一目标位置的差异程度;或在相同的位置指令下,机器人连续重复若干次其位置的分散情况。

一般而言,工业机器人的绝对定位精度要比重复定位精度低一到两个数量级,其原因是未考虑机器人本体的制造误差、工件加工误差及工件定位误差情况下使用机器人的运动学模型来确定机器人末端执行器的位置。

(4)最大工作速度。

在各轴联动情况下,机器人手腕中心所能达到的最大线速度。

最大工作速度越高,生产效率就越高。

五.工业机器人的控制系统机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要因素。

机器人控制器是根据指令以及传感信息控制机器人完成一定动作或作业任务的装置。

工业机器人控制技术的主要任务就是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等。

具有编程简单、软件菜单操作、友好的人机交互界面、在线操作提示和使用方便等特点。

其基本功能如下:(1)示教功能。

分为在线示教和离线示教两种方式。

(2)记忆功能。

存储作业顺序、运动路径和方式及与生产工艺有关的信息等。

(3)与外围设备联系功能。

包括输入/输出接口、通信接口、网络接口等。

(4)传感器接口。

位置检测、视觉、触觉、力觉等。

(5)故障诊断安全保护功能。

运行时的状态监视、故障状态下的安全保护和自诊断。

其关键技术包括:(1)开放性模块化的控制系统体系结构:采用分布式CPU计算机结构,分为机器人控制器(RC),运动控制器(MC),光电隔离I/O控制板、传感器处理板和编程示教盒等。

机器人控制器(RC)和编程示教盒通过串口/CAN总线进行通讯。

机器人控制器(RC)的主计算机完成机器人的运动规划、插补和位置伺服以及主控逻辑、数字I/O、传感器处理等功能,而编程示教盒完成信息的显示和按键的输入。

(2)模块化层次化的控制器软件系统:软件系统建立在基于开源的实时多任务操作系统Linux上,采用分层和模块化结构设计,以实现软件系统的开放性。

整个控制器软件系统分为三个层次:硬件驱动层、核心层和应用层。

三个层次分别面对不同的功能需求,对应不同层次的开发,系统中各个层次部由若干个功能相对对立的模块组成,这些功能模块相互协作共同实现该层次所提供的功能。

(3)机器人的故障诊断与安全维护技术:通过各种信息,对机器人故障进行诊断,并进行相应维护,是保证机器人安全性的关键技术。

(4)网络化机器人控制器技术:当前机器人的应用工程由单台机器人工作站向机器人生产线发展,机器人控制器的联网技术变得越来越重要。

控制器上具有串口、现场总线及以太网的联网功能。

可用于机器人控制器之间和机器人控制器同上位机的通讯,便于对机器人生产线进行监控、诊断和管理。

根据计算机结构、控制方式和控制算法的处理方法,机器人控制器又可分为集中式控制和分布式控制。

(1)集中式控制器。

利用一台微型计算机实现系统的全部控制功能。

其优点是硬件成本较低,便于信息的采集和分析,易于实现系统的最优控制,整体性与协调性较好,基于PC的硬件扩展方便。

其缺点是灵活性、可靠性、实时性较差。

(2)分布式控制器。

主要思想是“分散控制,集中管理”,分布式系统常采用两级控制方式,由上位机和下位机组成。

上位机(机器人主控制器)负责整个系统管理以及运动学计算、轨迹规划等,下位机由多CPU组成,每个CPU控制一个关节运动。

上、下位机通过通信总线相互协调工作。

其优点是系统灵活性好、可靠性提高、响应时间短,有利于系统功能的并行执行。

工业机器人的控制系统需要由相应的硬件和软件组成,硬件主要由传感装置、控制装置及关节伺服驱动部分组成,软件包括运动轨迹规划算法和关节伺服控制算法与相应的工作程序。

传感装置分为部传感器和外部传感器,部传感器主要用于检测工业机器人部的各关节的位置、速度和加速度等,而外部传感器是可以使工业机器人感知工作环境和工作对象状态的视觉、力觉、触觉、听觉、滑觉、接近觉、温度觉等传感器。

控制装置用于处理各种感觉信息,执行控制软件,产生控制指令。

关节伺服驱动部分主要根据控制装置的指令,按作业任务的要求驱动各关节运动。

六.工业机器人的运动轨迹与位置控制机器人的作业实质是控制机器人末端执行器的位姿,以实现点位运动或连续路径运。

(1)点位运动(PTP)。

点位运动只关心机器人末端执行器运动的起点和目标点位姿,而不关心这两点之间的运动轨迹。

(2)连续路径运动(CP)。

连续路径运动不仅关系机器人末端执行器达到目标点的精度,而且必须保证机器人能沿所期望的轨迹在一定精度围重复运动。

机器人连续路径运动的实现是以点位运动为基础,通过在相邻两点之间采用满足精度要求的直线或圆弧轨迹插补运算即可实现轨迹的连续化。

机器人再现时,主控制器(上位机)从存储器中逐点取出各示教点空间位姿坐标值,通过对其进行直线或圆弧插补运算,生成相应路径规划,然后把各插补点的位姿坐标值通过运动学逆解运算换成关节角度值,分送机器人各关节或关节控制器。

工业机器人控制方式有不同的分类,如按被控对象不同可分为位置控制、速度控制、加速度控制、力控制、力矩控制、力和位置混合控制等,而位置控制是工业机器人的基本控制任务。

问题:1.要求机器人系统模块化,我们可以给机器人系统中各模块发送指令,并获取各模块的输出。

机器人系统部分非核心模块应该可以关闭或打开,被关闭的模块即使接受到指令也应处非活跃状态。

2.我们可以写自己的模块,并通过个人编写的模块调用系统模块,实现对系统模块的控制。

3.机器人路径规划一般给定起始点和终止点,然后通过插补运算得到路径,但我希望能将路径规划模块化,我可以给路径规划模块实时发送终止点指令,获得规划路径。

将路径送入运动学逆解求解模块获取关节的转动角度,将该转动角度与期望速度和加速度(速度、加速度可以实时调整)相结合控制机器人的操作空间动力学模型。

相关文档
最新文档