疲劳分析的相关知识(流程)
机械设计中的疲劳分析

机械设计中的疲劳分析在机械设计中,疲劳分析是一个关键的环节。
疲劳是指材料在循环应力加载下发生的逐渐累积的损伤现象,其主要机理是由于循环载荷引起的应力集中、材料本身的缺陷、摩擦、腐蚀等因素导致材料的损坏。
因此,进行疲劳分析可以帮助工程师预测和评估机械零件的寿命,并采取相应的措施来提高机械零件的可靠性和耐久性。
1. 疲劳分析的背景机械零件在使用过程中会受到循环载荷的作用,随着时间的推移,持续循环加载会导致零件疲劳破坏。
因此,为了确保机械零件在设计寿命内不发生疲劳破坏,疲劳分析变得非常重要。
2. 疲劳分析的基本步骤疲劳分析的基本步骤包括以下几个方面:2.1 材料特性的确定疲劳分析的前提是对材料的特性进行准确的测定。
常见的材料特性包括弹性模量、屈服强度、韧性等。
根据工程的具体要求,选择适合的材料参数很关键。
2.2 载荷和边界条件的分析在进行疲劳分析时,需要明确零件所受到的载荷和边界条件。
载荷分析可以通过实际测试、数值模拟等方法进行。
同时,边界条件的确定也是疲劳分析的重要一环,边界条件包括约束和支撑条件等。
2.3 使用应力历程进行分析应力历程是指在给定载荷和边界条件下零件所受到的应力变化情况。
通过计算应力历程,可以得到零件在不同工况下的应力状况,进而评估疲劳寿命。
2.4 使用疲劳曲线进行分析疲劳曲线是描述应力与寿命之间关系的图形表示。
通过将实测的应力历程与疲劳曲线进行比对,可以得到零件在给定工作条件下的疲劳寿命。
3. 疲劳寿命评估通过上述步骤的分析,可以得到零件的疲劳寿命。
疲劳寿命评估对于机械设计的合理性和可靠性至关重要,它关系到机械零件的安全性、稳定性和经济性。
4. 疲劳寿命提高措施为了延长机械零件的疲劳寿命,可以采取以下几个措施:4.1 材料的优化选择通过选用性能更好的材料,如高强度、耐磨、抗腐蚀等材料,可以提高机械零件的疲劳寿命。
4.2 减少应力集中在设计过程中,可以通过改进零件的几何形状,减少应力集中,从而降低疲劳破坏的风险。
疲劳分析方法及应用

疲劳分析方法及应用第一章:疲劳的基本概念1、疲劳疲劳,是固体力学的一个分支,主要研究材料或结构在交变载荷作用下的强度问题,研究材料或结构的应力状态与寿命的关系。
在交变载荷作用下,材料或结构的破坏现象,叫做疲劳破坏。
疲劳破坏时,应力值未超过强度极限,甚至会低于弹性极限。
2、疲劳破坏特征(较静力破坏)a、静力破坏是一次最大载荷作用下的破坏;疲劳破坏是多次反复载荷作用下的破坏,非短期内,而是经历一定的时间。
b、静应力小于屈服极限或强度极限不会发生静力破坏;交变应力在远小于静强度极限、甚至屈服极限下,即可发生疲劳破坏。
c、静力破坏常有明显的塑性变形;疲劳破坏常没有外在宏观的显著的塑性变形。
d、静力破坏断口,呈现粗粒状或纤维状特征;疲劳破坏断口,呈现2个区域特征:平滑区、粗粒状或纤维状。
e、静力破坏的抗力主要取决于材料本身;疲劳破坏的抗力与材料、结构形状尺寸、表面状况、外界环境有关。
3、疲劳破坏过程a、裂纹的产生——裂纹扩展——失稳断裂;由于裂纹失稳断裂是一个很快的过程,对疲劳寿命影响非常小,在疲劳分析中一般不予考虑。
所以一般考虑裂纹产生和裂纹扩展2部分的寿命。
其中裂纹产生阶段占了整个疲劳寿命的极大部分。
4、疲劳分类疲劳前循环次数:高周疲劳:材料所受到交变应力低于材料屈服极限,甚至只有屈服极限的三分之一左右,疲劳前循环次数大于10e5到10e7;低周疲劳:材料所受的交变应力较高,通常接近或超过屈服极限,疲劳破坏前循环次数较少,一般小于10e4到10e5.按应力状态:单轴疲劳:单向循环应力作用下的疲劳,即只承受单向正应力或单向剪应力。
多轴疲劳:多项应力作用下的疲劳,也称复合疲劳,如弯扭复合疲劳、双轴拉伸疲劳、三轴应力疲劳等。
按载荷的幅度与频率恒幅疲劳:交变应力的幅度与频率均固定不变;变幅疲劳:交变应力的幅度变化,频率不变;随机疲劳:应力幅度与频率都随机变化。
按载荷工况与工作环境常规疲劳:在室温、空气介质中疲劳;低温疲劳:低于室温的疲劳;高温疲劳:高于室温的疲劳;机械疲劳:仅有交变应力或应变波动造成的疲劳;热疲劳:温度循环变化产生的热应力所致的疲劳;热—机械疲劳:温度循环与应变循环叠加的疲劳;腐蚀疲劳:腐蚀环境与循环应力(应变)的复合作用下导致的疲劳;接触疲劳:材料在循环接触应力作用下,产生局部永久性积累损伤,经一定的循环次数后,接触表面产生麻点、浅层或深层剥落的失效形式;冲击疲劳:重复冲击载荷导致的疲劳。
★★★疲劳分析

一、绪论疲劳,是固体力学的一个分支,它主要研究材料或结构在交变载荷作用下的强度问题,研究材料或结构的应力状态与寿命的关系。
金属、塑料、木材、混凝土、玻璃、橡胶和复合材料等各种结构材料及其加工成的结构或设备,在载荷的反复作用下,都会产生疲劳问题。
据统计,在三大主要破坏形式(磨损、腐蚀和断裂)之一的断裂失效中,结构破坏的80%以上都是由疲劳引起的。
疲劳破坏在工程结构和机械设备中极为广泛,遍及每一个运动的零部件,不管是脆性材料还是塑性材料,疲劳破坏由于没有明显的宏观塑性变形,破坏十分突然,往往造成灾难性的事故。
因此,对于承受循环载荷的零部件都应进行疲劳强度设计。
疲劳所涉及面之广几乎涵括汽车、铁路、航空航天、海洋工程以及一般机器制造等各个工业领域。
近年来,有限元方法的不断成熟使得CAE分析结果的精度和可靠性有了很大的提高。
现在全球各大汽车公司,在产品的并行开发过程中,广泛地将CAE技术同步应用于车身开发,如刚度、强度、NVH分析、机构运动分析等。
作为车身CAE的一个重要方面——疲劳耐久性CAE分析技术,基于有限元应力应变结果,结合承受载荷的变化历史和材料的性能参数,并应用相应的疲劳损伤理论来预测构件的疲劳寿命。
与基于试验的传统疲劳分析相比,疲劳CAE技术能够提供零部件表面的疲劳寿命分布图,可以在设计阶段判断零部件的疲劳寿命薄弱位置,能够减少试验样机的数量,大大缩短产品的开发周期,降低产品开发成本,提高市场竞争力。
二、疲劳基本概念2.1 疲劳定义疲劳的一词的英文是fatigue,意思是“劳累、疲倦”。
作为专业术语,用来表达材料在循环载荷作用下的损伤和破坏。
国际标准化组织(ISO)在1964年发表的报告《金属疲劳试验的一般原理》中对疲劳所做的定义是:“金属材料在应力或应变的反复作用下所发生的性能变化叫做疲劳;虽然在一般情况下,这个术语特指那些导致开裂或破坏的性能变化”。
这一描述也普遍适用于非金属材料。
2.2 疲劳破坏特点构件的疲劳破坏与静力破坏有着本质的不同,主要具有以下特点:(1) 在交变载荷作用下,构件中的交变应力在远小于材料的强度极限,甚至小于材料的弹性极限时,破坏就可能发生。
ncode疲劳分析流程

ncode疲劳分析流程nCode Fatigue 分析流程概述nCode Fatigue 是一款先进的疲劳分析软件,用于评估材料和结构在循环载荷和环境条件下的疲劳寿命。
其分析流程涉及以下关键步骤:1. 定义材料和几何导入或创建材料模型,包括应力-应变曲线、循环应力-寿命(S-N) 曲线和疲劳裂纹扩展速率 (da/dN) 曲线。
定义几何模型,包括零件几何形状、载荷施加点和约束条件。
2. 载荷和边界条件定义施加到结构上的载荷和边界条件,包括静力载荷、动力载荷和热载荷。
指定载荷时程或载荷谱,代表实际或预测的载荷条件。
3. 有限元分析 (FEA)通过 FEA 求解几何模型,以计算应力、应变和其他应力状态。
FEA 结果提供局部和全局应力分布,这些分布对于疲劳分析至关重要。
4. 疲劳损伤计算基于 FEA 结果和材料模型,计算疲劳损伤。
使用线性累积损伤理论或雨流计数算法考虑循环载荷的影响。
5. 疲劳寿命预测分析疲劳损伤分布,以预测结构的疲劳寿命。
疲劳寿命是由材料特性、结构设计和载荷条件共同决定的。
6. 灵敏度分析执行灵敏度分析以评估设计参数对疲劳寿命的影响。
通过改变材料特性、几何形状或载荷条件,可以确定最敏感的参数。
最佳实践使用准确的材料模型和几何模型。
仔细定义载荷和边界条件,代表真实情况。
校准 FEA 模型,以确保与实验结果一致。
考虑环境因素,如温度和腐蚀。
进行灵敏度分析以确定关键设计参数。
应用nCode Fatigue 可广泛应用于各种行业,包括:航空航天:飞机和发动机部件的疲劳分析汽车:汽车部件和系统的疲劳分析能源:风力涡轮机叶片和发电机部件的疲劳分析医疗设备:植入物和手术器械的疲劳分析通过遵循这些步骤和最佳实践,工程师可以使用 nCode Fatigue 准确评估结构的疲劳寿命,并优化设计以提高耐用性和安全性。
材料的疲劳强度分析

材料的疲劳强度分析疲劳是材料在循环载荷下产生的疲劳变形和疲劳破坏的一种失效形式。
在实际使用中,许多工程材料常处于交变或脉动载荷的作用下,例如机械零件、飞机翼、车轮等。
因此,了解材料的疲劳强度十分重要,可以有效预测材料在长期使用中的寿命和安全性。
材料的疲劳强度是指材料在循环载荷下能够承受的最大应力。
疲劳是一种累积性失效,慢慢积累的微小裂纹会逐渐扩展,最终导致材料断裂。
而裂纹的扩展速度与波动应力的强度、应力幅值以及加载频率有关。
在进行材料的疲劳强度分析时,通常需进行以下几个步骤:一、制备测试样品:根据研究的材料和结构形式,制备出代表性的材料测试样品。
例如,对于金属材料,可以选择制备标准的疲劳试样,如疲劳断裂试样。
二、加载测试样品:将测试样品放置于疲劳试验机中,对其施加循环载荷。
载荷可以是完全反转载荷、不完全反转载荷或只有一方向载荷等。
同时,需记录测试样品所受的载荷幅值、频率等参数。
三、监测实时数据:在加载过程中,需要实时监测样品的应变和应力变化。
这可以通过应变片、应变计或者压电传感器等装置来实现。
实时数据的监测可以帮助研究人员了解材料的疲劳行为。
四、分析测试结果:通过分析实验数据,可以得到材料的疲劳强度曲线。
通常使用S-N曲线表示材料的疲劳寿命,即循环载荷下材料能够承受的应力幅值与寿命的关系。
此外,还可以通过计算疲劳裂纹扩展速率来评估材料的疲劳性能。
五、疲劳寿命预测:利用得到的疲劳强度曲线和实际应力情况,可以用来预测材料的疲劳寿命。
疲劳寿命预测对于工程设计和材料选择非常重要,可以保证工程结构的可靠性和安全性。
综上所述,材料的疲劳强度分析是通过实验测试和数据分析,来评估材料在循环载荷下的疲劳性能和寿命。
准确了解材料的疲劳强度对于工程设计、寿命预测和安全性评估具有重要意义。
通过科学的方法和有效的测试,可以为材料的疲劳强度分析提供可靠的数据支持。
《疲劳分析介绍》课件

疲劳分析方法和工具的选择
提供选择合适的疲劳分析方法和 工具的指导。
疲劳分析在实际生产中的 应用展望
展望疲劳分析在实际生产中的应 用前景和发展方向。
2 疲劳裂纹的产生和扩展
疲劳裂纹是导致材料疲劳失效的主要原因,了解其产生和扩展的机理非常重要。
3 疲劳寿命
通过疲劳寿命评估材料和结构的使用寿命,确保其可靠性。
疲劳分析的方法
应力计算方法
使用数值模拟和有限 元分析等方法计算材 料和结构在循环载荷 下的应力分布。
应变计算方法
利用应变测量和应变 计算等技术评估材料 和结构的应变响应。
损伤积累方法
基于损伤机理和材料 特性,预测材料和结 构在循环载荷下的损 伤积累过程。
生命预测方法
结合实验数据和数值 分析,预测材料和结 构在循环载荷下的寿 命。
疲劳分析工具的使用
常用的工具介绍
介绍常用的疲劳分析工具和 软件,如ANSYS、ABAQUS等。
工具的优缺点比较
评估不同工具的特点和适用 性,选择适合的工具进行疲 劳分析。
工具的使用案例
分享使用疲劳分析工具进行 实际工程案例的经验和教训。
实例分析
1
实际应用例子分析
通过实际案例,详细分析材料和结构在循环载荷下的疲劳行为。
2
案例分析思路和方法
探讨进行疲劳分析的思路和方法,提供实践指导。
分析结果与结论
总结实例分析的结果,并得出相关的结论。
总结
疲劳分析的重要性和必要性
强调疲劳分析在工程领域中的重 要性和必要性。
疲劳分析介绍
疲劳分析是一项重要的工程领域,用于评估材料和结构在循环载荷下的寿命 和可靠性。本课程将介绍疲劳分析的基本概念和方法,以及在实际应用中的 意义。
疲劳分析步骤

现在要求对该轴进行疲劳分析。
使用WORKBENCH和DESIGNLIFE对之进行疲劳分析,分为两步。
第一步是在WORKBENCH中建立有限元模型,并分别施加集中力和集中力偶,通过计算,得到两种情况的米塞斯应力,这相当于两种工况,这样可以得到ANSYS WORKBENCH的结构分析结果文件*.rst.第二步在DESIGNLIFE中进行,首先根据疲劳分析的五框图,构造疲劳分析流程,然后分别设定各个框图的属性,即有限元结果文件,载荷文件,材料文件,疲劳分析选项,然后启动分析,通过后处理以查看轴上各点的疲劳寿命。
1. WORKBENCH中建立有限元模型并进行分析。
(1)使用designmodeler创建几何模型。
(2)设置材料属性。
(3)划分网格。
(4)设置分析选项。
这里设置两个载荷步,其目的只是分开弯曲和扭转这两种工况。
(5)设置固定边界条件(6)施加集中力和集中力偶。
第一个载荷步施加集中力,而第二个载荷步施加集中力偶。
(7)分析。
(8)得到两种情况的米塞斯应力。
左边的云图取自第一个载荷步,它是弯曲产生的应力云图。
右边的云图来自第二个载荷步,它是扭转产生的应力云图。
计算完毕后,保存结果,退出ANSYS WORKBENCH.2. DESIGNLIFE中的疲劳分析。
(1)绘制疲劳分析流程图。
打开designlife,创建分析流程图如下。
该流程图中,左边时输入(左上是有限元结果输入,左下是载荷的时间历程曲线输入),中间是疲劳分析模块(这里是应变寿命疲劳分析),右边是输出(右上是有限元分析结果显示,右下是列表输出危险点的情况)。
(2)关联有限元分析结果文件把可以用的数据中的有限元分析结果拖入到有限元输入框,建立关联。
(3)关联载荷文件把可以用的数据中的载荷时间历程文件拖入到时间序列输入框,建立关联。
(4)进行材料映射(5)进行载荷映射把第一种载荷工况(弯曲工况)与第一个时间序列建立关联。
它表明了该集中力在按照此载荷时间历程发生改变。
应力疲劳与应变疲劳分析流程

应力疲劳与应变疲劳分析流程应力疲劳与应变疲劳分析是一种对材料在长期受到交变载荷作用下的损伤和破坏进行研究的方法。
应力疲劳是指材料在交变载荷作用下,由于周期性应力超过其疲劳极限而引起的疲劳失效。
应变疲劳是指材料在交变载荷作用下,由于周期性应变超过其疲劳极限而引起的疲劳失效。
下面将介绍应力疲劳与应变疲劳分析的流程。
1.材料性能测试:首先需要对材料进行性能测试,确定其力学性能和疲劳性能。
力学性能测试包括拉伸试验、冲击试验等,疲劳性能测试主要包括疲劳寿命试验和疲劳裂纹扩展试验等。
2.应力/应变历程获取:通过实验或模拟计算得到材料在实际工况下的应力或应变历程。
应力或应变历程描述了材料在实际使用中的载荷变化规律,是进行疲劳分析的基础。
3.应力/应变分析:利用实验结果或有限元分析等手段对材料的应力或应变进行分析。
应力分析可以通过应力级数法、极限干扰法等方法,得到材料在不同载荷状态下的应力分布情况。
应变分析可以使用应变分布测试或数值模拟等方法,获得材料在不同应力状态下的应变分布情况。
4.损伤累积分析:根据得到的应力或应变分布情况,对材料的损伤进行累积分析。
损伤累积分析是基于疲劳寿命模型和疲劳裂纹扩展理论进行的,得到材料在不同工况下的疲劳寿命或裂纹扩展速率。
5.疲劳寿命预测:基于损伤累积分析的结果,可以预测材料在实际使用条件下的疲劳寿命。
对于应力疲劳,常用的寿命预测方法有S-N曲线法、评估疲劳损失法等。
对于应变疲劳,常用的寿命预测方法有应变寿命法、塑性应变范围法等。
6.疲劳强度评估:根据疲劳寿命预测的结果,对材料的疲劳强度进行评估。
疲劳强度评估是对材料在实际工况下的耐久性能进行综合评估,可以用于决策材料的选用与设计参数的确定。
总结起来,应力疲劳与应变疲劳分析流程包括材料性能测试、应力/应变历程获取、应力/应变分析、损伤累积分析、疲劳寿命预测和疲劳强度评估等步骤。
这些步骤相互关联,共同构成了对材料在长期受到交变载荷作用下的疲劳损伤和破坏进行分析和预测的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
疲劳分析,从零开始
By ZHANG Chunyu
1 测量应变、应力谱图
(1)衡量应力集中的区域,布置应变片
可以通过模拟(有限元)或试验(原型上涂上一层油漆,待油漆干后施加载荷,油漆剥落的地方应力集中),确定应力集中的区域,然后按左下图在应力集中区域布置三个应变片:
因为材料是各向同性,所以x,y方向并不一定是水平和竖直方向,但两者一定要垂直,中间一个一定要和x,y方向成45°角。
三个应变片也可以重叠在一起(见右上图)。
(2)根据测的应变和材料性能,计算应力
测得的三个应变,分别记为ε
x , ε
y
, ε
xy。
两个主应力(假设只有弹性变
形):
其中,E 为材料的杨氏模量,µ为泊松比。
根据这两个主应力,可以计算出有些方法可能需要的等效应力(主要目的是将多分量的应力状态转化为一个数值,以方便应用材料的疲劳数据),如米塞斯等效应力:
()()
22212212
1σσσσσ++-=m 或最大剪应力:
()212
1σσστ-= 实际测量的是应变-时间谱图,应力(或等效应力)-时间谱图可由上述公式计算。
(3)分解谱图
就是对上面测得的应力(应变)-时间谱图进行分解统计,计算出不同应力(包括幅度和平均值)循环下的次数,以便计算累积的损伤。
最常用的是雨流法(rainflow counting method )。
2 获取材料数据
如果载荷频率不高,可以做一组简单的疲劳测试(正弦应力,拉压或弯曲均可,有国家标准):
得到一条应力-寿命(即循环次数)曲线,即所谓的S-N 曲线:
如果载荷频率较高或温度变化较大,还要测量不同平均应力和不同温度下的S-N
载荷,以便进行插值计算,因为此时平均应力对寿命有影响。
也可以根据不同的经验公式(如Goodman准则,Gerber准则等),以及其他材料性能(如拉伸强度,破坏强度等),由普通的S-N曲线(即平均应力为0)来计算平均应力不为零时对应的疲劳寿命。
如果材料数据极为有限,或者公司很穷很懒不愿做疲劳试验,也可以由材料的强度估算疲劳性能。
如果出现塑性应变,累计损伤一般基于应变-寿命曲线(即E-N曲线),所以需要施加应变载荷。
3 损伤计算
到目前为止,疲劳分析基本上是基于经验公式,还没有完全统一的理论。
损伤累积的计算方法有很多种,最常用的是线性累计损伤(即Miner准则),但其结果不保守,计算得到的寿命偏高。
准确度比较高的累计准则是双线性准则,并且计算比“破坏曲线法”要容易,所以,是一个很好的折衷选择。
4软件开发
很适合使用面向对象语言(如C++)来设计疲劳分析软件或专家系统。
材料,载荷和损伤累计各一个模块,便于扩充。