2022年中考数学真题分类汇编:应用题专题(含答案)
2022年中考数学真题分类汇编:不等式与不等式组

2022年中考数学真题分类汇编:不等式与不等式组一、单选题(共14题;共42分)1.(3分)(2022·北部湾)不等式 2x −4<10 的解集是( )A .x <3B .x <7C .x >3D .x >7【答案】B【解析】【解答】解: ∵2x −4<10 ,∴2x <14 , ∴x <7 . 故答案为:B.【分析】根据移项、合并同类项、系数化为1的步骤进行求解. 2.(3分)(2022·山西)不等式组{2x +1≥34x −1<7的解集是( )A .x ≥1B .x <2C .1≤x <2D .x <12【答案】C【解析】【解答】解:2x +1≥3,解得:x ≥1;4x −1<7,解得:x <2; ∴不等式组的解集为:1≤x <2; 故答案为:C .【分析】利用不等式的性质及不等式组的解法求出解集即可。
3.(3分)(2022·娄底)不等式组{3−x ≥12x >−2的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【解答】解:∵ 不等式组{3−x ≥1①2x >−2②中,解①得,x≤2, 解②得,x >-1,∴不等式组的解集为-1<x≤2, 数轴表示如下:故答案为:C.【分析】分别求出两个不等式的解集,根据同大取大,同小取小,大小小大中间找,大大小小无解了,取其公共部分可得不等式组的解集,然后根据解集的在数轴上的表示方法:大向右,小向左,实心等于,空心不等,进行判断.4.(3分)(2022·株洲)不等式4x −1<0的解集是( ).A .x >4B .x <4C .x >14D .x <14【答案】D【解析】【解答】解:4x−1<0移项得:4x<1不等号两边同时除以4,得:x<14故答案为:D.【分析】根据移项、系数化为1的步骤可得不等式的解集.5.(3分)(2022·邵阳)关于x 的不等式组{−13x >23−x12x −1<12(a −2)有且只有三个整数解,则a 的最大值是( ) A .3B .4C .5D .6【答案】C【解析】【解答】解:解不等式−13x >23−x ,−13x +x >23, ∴23x >23, ∴x >1,解不等式12x −1<12(a −2),得12x <12(a −2)+1,∴x <a ,∴不等于组的解集为1<x <a , ∵不等式组有且只有三个整数解, ∴不等式组的整数解应为:2,3,4, ∴4<a≤5, ∴a 的最大值应为5 故答案为:C.【分析】分别求出两个不等式的解集,结合不等式组有且只有三个整数解可得a 的范围,据此可得a 的最大值.6.(3分)(2022·嘉兴)不等式3x +1<2x 的解在数轴上表示正确的是( )A .B .C .D .【答案】B【解析】【解答】解:∵3x +1<2x ,∴x <-1,∴不等式解集表示在数轴如下,.故答案为:B.【分析】先解一元一次不等式,求得解集,再根据“小于朝左拐,无等号画空心点”,将不等式的解集表示在数轴上即可.7.(3分)(2022·衡阳)不等式组{x+2≥12x<x+3的解集在数轴上表示正确的是()A.B.C.D.【答案】A【解析】【解答】解:{x+2≥1①2x<x+3②由①得x≥-1由②得x<3∴不等式组的解集为-1≤x<3,故答案为:A.【分析】分别求出不等式组中的每一个不等式的解集,再确定出不等式组的解集,再观察各选项,可得答案.8.(3分)(2022·武威)不等式3x−2>4的解集是()A.x>−2B.x<−2C.x>2D.x<2【答案】C【解析】【解答】解:3x-2>4,移项得:3x>4+2,合并同类项得:3x>6,系数化为1得:x>2.故答案为:C.【分析】根据移项、合并同类项、系数化为1的步骤进行求解.9.(3分)(2022·滨州)把不等式组{x−3<2xx+1 3≥x−12中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【答案】C【解析】【解答】解:{x−3<2x①x+13≥x−12②解①得x>−3,解②得x≤5,∴不等式组的解集为−3<x≤5,在数轴上表示为:,故答案为:C.【分析】利用不等式的性质及不等式组的解法求解并在数轴上画出解集即可。
2022年中考数学题分类汇编——二次函数应用题(1)

2022年年年年年年年年年年——年年年年年年年年年年1.(2022·辽宁省丹东市)丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?2.(2022·内蒙古自治区鄂尔多斯市)某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?3.(2022·湖北省荆门市)某商场销售一种进价为30元/个的商品,当销售价格x(元/个)满足40<x<80时,其销x+9.同时销售过程中的其它开支为50万元.售量y(万个)与x之间的关系式为y=−110(1)求出商场销售这种商品的净利润z(万元)与销售价格x函数解析式,销售价格x定为多少时净利润最大,最大净利润是多少?(2)若净利润预期不低于17.5万元,试求出销售价格x的取值范围;若还需考虑销售量尽可能大,销售价格x应定为多少元?4.(2022·甘肃省兰州市)掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2m,当水平距离为3m时,实心球行进至最高点3m处.所示,掷出时起点处高度为53(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.图1来源:《2022年兰州市高中阶段学校招生体育考试规则与测试要求》5.(2022·北京市)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x−ℎ)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y= a(x−ℎ)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=−0.04(x−9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1______d2(填“>”“=”或“<”).6.(2022·辽宁省盘锦市)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?7.(2022·辽宁省营口市)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425……每天销售量(本)……80787674……(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?8.(2022·山东省青岛市)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?9.(2022·辽宁省盘锦市)精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:x(天)123 (x)每天的销售量(千克)101214…______设第x天的售价为y元/千克,y关于x的函数关系满足如上图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入−成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?10.(2022·贵州省铜仁市)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?参考答案1.解:(1)设每天的销售数量y(件)与销售单价x(元/件)之间的关系式为y =kx +b ,把(35,90),(40,80)代入得: {35k +b =9040k +b =80, 解得{k =−2b =160,∴y =−2x +160;(2)根据题意得:(x −30)⋅(−2x +160)=1200, 解得x 1=50,x 2=60,∵规定销售单价不低于成本且不高于54元, ∴x =50,答:销售单价应定为50元; (3)设每天获利w 元,w =(x −30)⋅(−2x +160)=−2x2+220x −4800=−2(x −55)2+1250, ∵−2<0,对称轴是直线x =55, 而x ≤54,∴x =54时,w 取最大值,最大值是−2×(54−55)2+1250=1248(元), 答:当销售单价为54元时,每天获利最大,最大利润,1248元.2.解:(1)设第二批每个挂件的进价为x 元,则第一批每个挂件的进价为1.1x 元,根据题意可得,66001.1x +50=8000x,解得x =40.经检验,x =40是原分式方程的解,且符合实际意义, ∴1.1x =44.∴第二批每个挂件的进价为40元.(2)设每个售价定为y 元,每周所获利润为w 元,根据题意可知,w =(y −40)[40+10(60−y)]=−10(y −52)2+1440, ∵−10>0,∴当x ≥52时,y 随x 的增大而减小, ∵40+10(60−y)≤90, ∴y ≥58,∴当y =58时,w 取最大,此时w =−10(58−52)2+1440=1080. ∴当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元.3.解:(1)z =y(x −30)−50=(−110x +9)(x −30)−50=−110x 2+12x −320,当x =−b 2a =−122×(−110)=60时,z 最大,最大利润为−110×602+12×60−320=40;(2)当z =17.5时,17.5=−110x 2+12x −320, 解得x 1=45,x 2=75,∵净利润预期不低于17.5万元,且a <0, ∴45≤x ≤75,∵y =−110x +9.y 随x 的增大而减小, ∴x =45时,销售量最大.4.解:(1)根据题意设y 关于x 的函数表达式为y =a(x −3)2+3,把(0,53)代入解析式得:53=a(0−3)2+3, 解得:a =−427,∴y 关于x 的函数表达式为y =−427(x −3)2+3; (2)该女生在此项考试中是得满分,理由: 令y =0,则−427(x −3)2+3=0, 解得:x 1=7.5,x 2=−1.5(舍去), ∵7.5>6.70,∴该女生在此项考试中是得满分.5.解:(1)根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),∴ℎ=8,k =23.20,即该运动员竖直高度的最大值为23.20m ,根据表格中的数据可知,当x =0时,y =20.00,代入y =a (x −8)2+23.20得: 20.00=a (0−8)2+23.20,解得:a =−0.05, ∴函数关系关系式为:y =−0.05(x −8)2+23.20.(2)设着陆点的纵坐标为t ,则第一次训练时,t =−0.05(x −8)2+23.20, 解得:x =8+√20(23.20−t )或x =8−√20(23.20−t ),∴根据图象可知,第一次训练时着陆点的水平距离d 1=8+√20(23.20−t ), 第二次训练时,t =−0.04(x −9)2+23.24,解得:x =9+√25(23.24−t )或x =9−√25(23.24−t ),∴根据图象可知,第二次训练时着陆点的水平距离d 2=9+√25(23.24−t ), ∵20(23.20−t)<25(23.24−t), ∴√20(23.20−t)<√25(23.24−t), ∴d 1<d 2. 故答案为:<.6.解:(1)设一次函数的关系式为y =kx +b ,由题图可知,函数图象过点(25,50)和点(35,30). 把这两点的坐标代入一次函数y =kx +b , 得{25k +b =5035k +b =30, 解得{k =−2b =100,∴一次函数的关系式为y =−2x +100; (2)根据题意,设当天玩具的销售单价是x 元, 由题意得,(x −10)×(−2x +100)=600, 解得:x 1=40,x 2=20,∴当天玩具的销售单价是40元或20元;(3)根据题意,则w =(x −10)×(−2x +100), 整理得:w =−2(x −30)2+800; ∵−2<0,∴当x =30时,w 有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.7.解:(1)设A 款纪念册每本的进价为a 元,B 款纪念册每本的进价为b 元,根据题意得:{5a +4b =1563a +5b =130,解得{a =20b =14, 答:A 款纪念册每本的进价为20元,B 款纪念册每本的进价为14元;(2)①根据题意,A 款纪念册每本降价m 元,可多售出2m 本A 款纪念册,∵两款纪念册每天销售总数不变,∴B 款纪念册每天的销售量为(80−2m)本;②设B 款纪念册每天的销售量与售价之间满足的一次函数关系是y =kx +b′,根据表格可得:{80=22k +b′78=23k +b′, 解得{k =−2b′=124, ∴y =−2x +124,当y =80−2m 时,x =22+m ,即B 款纪念册每天的销售量为(80−2m)本时,每本售价是(22+m)元,设该店每天所获利润是w 元,由已知可得w =(32−m −20)(40+2m)+(22+m −14)(80−2m)=−4m 2+48m +1120=−4(m −6)2+1264,∵−4<0,∴m =6时,w 取最大值,最大值为1264元,此时A 款纪念册售价为32−m =32−6=26(元),答:当A 款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元. 8.解:(1)根据题意得:y =8.2−0.2(x −1)=−0.2x +8.4,答:这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式为y =−0.2x +8.4;(2)设李大爷每天所获利润是w 元,由题意得:w =[12−0.5(x −1)−(−.02x +8.4)]×10x =−3x 2+41x =−3(x −416)2+168112,∵−3<0,x 为正整数,且|6−416|>|7−416|,∴x =7时,w 取最大值,最大值为−3×(7−416)2+168112=140(元),答:李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元. 9.2x +810.解:(1)根据题意得y=12−2(x−4)=−2x+20(4≤x≤5.5),所以每天销量y(吨)与批发价x(千元/吨)之间的函数关系式y=−2x+20,自变量x的取值范围是4≤x≤5.5;(2)设每天获得的利润为W元,根据题意得w=(−2x+20)(x−2)=−2x2+24x−40=−2(x−6)2+32,∵−2<0,∴当x<6,W随x的增大而增大.∵4≤x≤5.5,∴当x=5.5时,w有最大值,最大值为−2×(5.5−6)2+32=31.5,∴将批发价定为5.5元时,每天获得的利润w元最大,最大利润是31.5元.。
2022最新中考复习数学真题汇编:一元二次方程及应用

一、选择题1.(2022模拟四川省巴中市,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( ) A .()25601+315x =B .()25601315x -= C .()256012315x -=D .()25601+315x = 【答案】 B .2.(2022模拟重庆B 卷,8,4分)已知一元二次方程22530x x -+=,则该方程根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .两个根都是自然数D .无实数根【答案】A【解析】解:△=2(5)--4×2×3=1>0,所以方程有两个不相等的实数根.故选A .3.(2022模拟四川省泸州市)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是【答案】B4.(2022模拟浙江省金华市,5,3分)一元二次方程x ²+4x -3=0的两根为x 1,x 2,则x 1·x 2的值时( )DC BAA.4B.-4C.3D.-3【答案】D5.(2022模拟山东省德州市,7,3分)若一元二次方程x 2+2x +a =0有实数解,则a 的取值范围是A.a <1B. a ≤4C.a ≤1D.a ≥1 【答案】C6.(2022模拟四川省达州市,8,3分)方程21(2)04m x -+=有两个实数根,则m 的取值范围( )A .52m >B .52m ≤且m ≠2C .m ≥3D .m ≤3且m ≠2【答案】B【解析】因为方程有两个实数根,所以22014(2)04m m -≠⎧⎪⎨-⨯-≥⎪⎩,解得52m ≤且2m ≠.故选B .7.(2022模拟四川省凉山州市,7,4分)关于x 的一元二次方程(m ﹣2)x 2+2x +1=0有实数根,则m 的取值范围是( )A.m ≤3B.m <3C.m <3且m ≠2D.m ≤3且m ≠2【答案】D.【解析】∵方程有实数根,∴22﹣4×(m ﹣2)×1≥0且m ﹣2≠0,则m ≤3且m ≠2,故选D.8.(2022模拟广东省广州市,10,3分)已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC 的周长为( )A.10 B.14 C.10或14 D.8或10【答案】B【解析】9.(2022模拟安徽,6,3分)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2022模拟年的快递业务量达到4.5亿件,设2014年与2022模拟年这两年的年平均增长率为x,则下列方程正确的是A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D. 1.4(1+x)+1.4(1+x)2=4.5【答案】C【解析】解:设平均增长率为x,2014年则为1.4(1+x),2022模拟年则为1.4(1+x)2根据题意列方程得1.4(1+x)2=4.5.故选C10.(2022模拟贵州省安顺市,5,3分)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图像不经过第()象限。
2022年中考数学真题分类汇编:三角函数实际问题专题一(含答案)

2022年全国各省市中考数学真题汇编三角函数实际问题专题一1.(2022·湖北省宜昌市)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足53°≤α≤72°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)如图,现有一架长4m的梯子AB斜靠在一竖直的墙AO上.(1)当人安全使用这架梯子时,求梯子顶端A与地面距离的最大值;(2)当梯子底端B距离墙面1.64m时,计算∠ABO等于多少度?并判断此时人是否能安全使用这架梯子?2.(2022·山西省)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√3≈1.73).3.(2022·江苏省泰州市)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB=8m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)4.(2022·湖北省仙桃市)小红同学在数学活动课中测量旗杆的高度.如图,已知测角仪的高度为1.58米,她在A点观测旗杆顶端E的仰角为30°,接着朝旗杆方向前进20米到达C处,在D点观测旗杆顶端E的仰角为60°,求旗杆EF的高度.(结果保留小数点后一位)(参考数据:√3≈1.732)5.(2022·湖北省鄂州市)亚洲第一、中国唯一的航空货运枢纽——鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C处看见飞机A的仰角为45°,同时另一市民乙在斜坡CF上的D处看见飞机A的仰角为30°.若斜坡CF的坡比=1:3,铅垂高度DG=30米(点E、G、C、B在同一水平线上).求:(1)两位市民甲、乙之间的距离CD;(2)此时飞机的高度AB.(结果保留根号)6.(2022·湖南省常德市)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG//BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)7.(2022·湖北省荆州市)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E处,测得顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625).8.(2022·广西壮族自治区贺州市)如图,在小明家附近有一座废旧的烟囱,为了乡村振兴,美化环境,政府计划把这片区域改造为公园.现决定用爆破的方式拆除该烟囱,为确定安全范围,需测量烟囱的高度AB,因为不能直接到达烟囱底部B处,测量人员用高为1.2m的测角器在与烟囱底部B成一直线的C,D两处地面上,分别测得烟囱顶部A的仰角∠B′C′A=60°,∠B′D′A=30°,同时量得CD为60m.问烟囱AB的高度为多少米?(精确到0.1m,参考数据:√2≈1.414,√3≈1.732)9.(2022·四川省宜宾市)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:√3≈1.7,√2≈1.4)10.(2022·河北省)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN//AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.(1)求∠C的大小及AB的长;(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan76°取4,√17取4.1)11.(2022·湖南省娄底市)“体育承载着国家强盛、民族振兴的梦想”.墩墩使用握力器(如实物图所示)锻炼手部肌肉.如图,握力器弹簧的一端固定在点P处,在无外力作用下,弹簧的长度为3cm,即PQ=3cm.开始训练时,将弹簧的端点Q调在点B处,此时弹簧长PB=4cm,弹力大小是100N,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q调到点C处,使弹力大小变为300N,已知∠PBC=120°,求BC的长.注:弹簧的弹力与形变成正比,即F=k⋅Δx,k是劲度系数,Δx是弹簧的形变量,在无外力作用下,弹簧的长度为x0,在外力作用下,弹簧的长度为x,则Δx=x−x0.12.(2022·四川省成都市)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A′OB=108°时(点A′是A的对应点),用眼舒适度较为理想.求此时顶部边缘A′处离桌面的高度A′D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)13.(2022·四川省自贡市)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由.(2)实地测量如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH.(√3≈1.73,结果精确到0.1米)(3)拓展探究公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P 的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米.求PH(用α、β、m表示).14.(2022·浙江省嘉兴市)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)15.(2022·甘肃省武威市)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF//EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.16.(2022·四川省眉山市)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30°,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45°,求此建筑物的高.(结果保留整数.参考数据:√2≈1.41,√3≈1.73)17.(2022·浙江省台州市)如图1,梯子斜靠在竖直的墙上,其示意图如图2.梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)18.(2022·四川省广元市)如图,计划在山顶A的正下方沿直线CD方向开通穿山隧道EF.在点E处测得山顶A的仰角为45°,在距E点80m的C处测得山顶A的仰角为30°,从与F点相距10m的D处测得山顶A的仰角为45°,点C、E、F、D在同一直线上,求隧道EF的长度.参考答案1.解:(1)53°≤α≤72°,当α=72°时,AO取最大值,在Rt△AOB中,sin∠ABO=AOAB,∴AO=AB⋅sin∠ABO=4×sin72°=4×0.95=3.8(米),∴梯子顶端A与地面的距离的最大值为3.8米;(2)在Rt△AOB中,cos∠ABO=BOAB=1.64÷4=0.41,∵cos66°≈0.41,∴∠ABO=66°,∵53°≤α≤72°,∴人能安全使用这架梯子.2.解:延长AB,CD分别与直线OF交于点G和点H,则AG=60m,GH=AC,∠AGO=∠EHO=90°,在Rt△AGO中,∠AOG=70°,∴OG=AGtan70∘≈602.75≈21.8(m),∵∠HFE是△OFE的一个外角,∴∠OEF=∠HFE−∠FOE=30°,∴∠FOE=∠OEF=30°,∴OF=EF=24m,在Rt△EFH中,∠HFE=60°,∴FH=EF⋅cos60°=24×12=12(m),∴AC=GH=OG+OF+FH=21.8+24+12≈58(m),∴楼AB与CD之间的距离AC的长约为58m.3.解:连接MC,过点M作HM⊥NM,由题意得:∠DMC=2∠CMH,∠MCD=∠HMN=90°,AB=MC=8m,AB//MC,∴∠CMN=180°−∠MNB=180°−118°=62°,∴∠CMH=∠HMN−∠CMN=28°,∴∠DMC=2∠CMH=56°,在Rt△CMD中,CD=CM⋅tan56°≈8×1.48≈11.8(米),∴能看到的水平地面上最远处D到他的距离CD约为11.8米.4.解:过点D作DG⊥EF于点G,则A,D,G三点共线,BC=AD=20米,AB=CD=FG=1.58米,设DG=x米,则AG=(20+x)米,在Rt△DEG中,∠EDG=60°,tan60°=EGDG =EGx=√3,解得EG=√3x,在Rt△AEG中,∠EAG=30°,tan30°=EGAG =√3x20+x=√33,解得x=10,∴EG=10√3米,∴EF=EG+FG≈18.9米.∴旗杆EF的高度约为18.9米.5.解:(1)∵斜坡CF的坡比=1:3,DG=30米,∴DGGC =13,∴GC=3DG=90(米),在Rt△DGC中,DC=√DG2+GC2=√302+902=30√10(米),∴两位市民甲、乙之间的距离CD为30√10米;(2)过点D作DH⊥AB,垂足为H,则DG=BH=30米,DH=BG,设BC=x米,在Rt△ABC中,∠ACB=45°,∴AB=BC⋅tan45°=x(米),∴AH=AB−BH=(x−30)米,在Rt△ADH中,∠ADH=30°,∴tan30°=AHDH =x−30x+90=√33,∴x=60+30√3,经检验:x=60√3+90是原方程的根,∴AB=(60√3+90)米,∴此时飞机的高度AB为(60√3+90)米.6.解:如图,过点F作FN⊥BC于点N,交HG于点M,则AB=AH−EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG//BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF⋅sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7−m)米,∴EM=MG⋅tan∠EGM=MG⋅tan36°=0.73m,EM=FM⋅tan∠EFM=FM⋅tan25°=0.47(7−m),∴0.73m=0.47(7−m),解得m≈2.7(米),∴EM=0.47(7−m)≈2.021(米),∴AB=AH−EM+EN≈32−2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离是70米.7.解:延长DF交AB于点G,则∠AGF=90°,DF=CE=6.6米,CD=EF=BG=1.5米,设FG=x米,∴DG=FG+DF=(x+6.6)米,在Rt△AGF中,∠AFG=45°,∴AG=FG⋅tan45°=x(米),在Rt△AGD中,∠ADG=32°,∴tan32°=AGDG =xx+6.6≈0.625,∴x=11,经检验:x=11是原方程的根,∴AB=AG+BG=11+1.5=12.5(米),∴城徽的高AB约为12.5米.8.解:由题意得:BB′=DD′=CC′=1.2米,D′C′=DC=60米,∵∠AC′B′是△AD′C′的一个外角,∴∠D′AC′=∠AC′B′−∠AD′B′=30°,∴∠AD′C′=∠D′AC′=30°,∴D′C′=AC′=60米,在Rt△AC′B′中,∠AC′B′=60°,∴AB′=AC′⋅sin60°=60×√32=30√3(米),∴AB=AB′+BB′=30√3+1.2≈53.2(米),∴烟囱AB的高度约为53.2米.9.解:由已知可得,tan∠BAF=BFAF =724,AB=25米,∠DBE=60°,∠DAC=45°,∠C=90°,设BF=7a米,AF=24a米,∴(7a)2+(24a)2=252,解得a=1,∴AF=24米,BF=7米,∵∠DAC=45°,∠C=90°,∴∠DAC=∠ADC=45°,∴AC=DC,设DE=x米,则DC=(x+7)米,BE=CF=x+7−24=(x−17)米,∵tan∠DBE=DEBE =xx−17,∴tan60°=xx−17,解得x≈40,答:东楼的高度DE约为40米.10.解:(1)∵嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,∴∠CAB=14°,∠CBA=90°,∴∠C=180°−∠CAB−∠CBA=76°,∵tanC=ABBC,BC=1.7m,∴tan76°=AB1.7,∴AB=1.7×tan76°=6.8(m),答:∠C=76°,AB的长为6.8m;(2)图中画出线段DH如图:∵OA=OM,∠BAM=7°,∴∠OMA=∠OAM=7°,∵AB//MN,∴∠AMD=∠BAM=7°,∴∠OMD=14°,∴∠MOD=76°,在Rt△MOD中,tan∠MOD=MD,OD∴tan76°=MD,OD∴MD=4OD,设OD=x m,则MD=4x m,AB=3.4m,在Rt△MOD中,OM=OA=12∴x2+(4x)2=3.42,∵x>0,≈0.82,∴x=√175∴OD=0.82m,∴DH=OH−OD=OA−OD=3.4−0.82=2.58≈2.6(m),答:最大水深约为2.6米.11.解:由题意可得,x0=3cm,100=k(4−3),解得k=100,∴F=100Δx,当F=300时,300=100×(PC−3),解得PC=6cm,由图可得,∠PAB=90°,∠PBC=120°,∴∠APB=30°,∵PB=4cm,∴AB=2cm,PA=√PB2−AB2=2√3(cm),∵PC=5cm,∴AC=√PC2−PA2=2√6(cm),∴BC=AC−AB=(2√6−2)cm,即BC的长是(2√6−2)cm.12.解:∵∠AOB=150°,∴∠AOC=180°−∠AOB=30°,在Rt△ACO中,AC=10cm,∴AO=2AC=20(cm),由题意得:AO=A′O=20cm,∵∠A′OB=108°,∴∠A′OD=180°−∠A′OB=72°,在Rt△A′DO中,A′D=A′O⋅sin72°≈20×0.95=19(cm),∴此时顶部边缘A′处离桌面的高度A′D的长约为19cm.13.解:(1)∵∠COG=90°,∠AON=90°,∴∠POC+∠CON=∠GON+∠CON,∴∠POC=∠GON;(2)由题意可得,KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°,∵tan∠POQ=PQ,OQ∴tan60°=PQ,5解得PQ=5√3,∴PH=PQ+QH=5√3+1.5≈10.2(米),即树高PH 为10.2米;(3)由题意可得,O 1O 2=m ,O 1E =O 2F =DH =1.5米, 由图可得,tanβ=PD O 2D ,tanα=PDO 1D , ∴O 2D =PD tanβ,O 1D =PD tanα, ∵O 1O 2=O 2D −O 1D ,∴m =PD tanβ−PD tanα,∴PD =mtanαtanβtanα−tanβ,∴PH =PD +DH =(mtanαtanβtanα−tanβ+1.5)米.14.解:(1)如图,过点C 作CF ⊥DE 于点F ,∵CD =CE =5cm ,∠DCE =40°.∴∠DCF =20°,∴DF =CD ⋅sin20°≈5×0.34≈1.7(cm), ∴DE =2DF ≈3.4cm ,∴线段DE 的长约为3.4cm ;(2)∵横截面是一个轴对称图形,∴延长CF 交AD 、BE 延长线于点G ,连接AB ,∴DE//AB ,∴∠A =∠GDE ,∵AD ⊥CD ,BE ⊥CE ,∴∠GDF +∠FDC =90°,∵∠DCF +∠FDC =90°,∴∠GDF =∠DCF =20°,∴∠A =20°,∴DG =DF cos20∘≈ 1.70.94≈1.8(cm),∴AG=AD+DG=10+1.8=11.8(cm),∴AB=2AG⋅cos20°≈2×11.8×0.94≈22.2(cm).∴点A,B之间的距离22.2cm.15.解:设BF=x m,由题意得:DE=FG=1.5m,在Rt△CBF中,∠CBF=35°,∴CF=BF⋅tan35°≈0.7x(m),∵AB=8.8m,∴AF=AB+BF=(8.8+x)m,在Rt△ACF中,∠CAF=26.6°,∴tan26.6°=CFAF =0.7x8.8+x≈0.5,∴x=22,经检验:x=22是原方程的根,∴CG=CF+FG=0.7x+1.5=16.9(m),∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.16.解:在Rt△BCD中,∠CBD=45°,设CD为x m,∴BD=CD=x m,∴AD=BD+AB=(60+x)m,在Rt△ACD中,∠CAD=30°,tan∠CAD=tan30°=CDAD =x60+x=√33,解得x=30√3+30≈82.答:此建筑物的高度约为82m.17.解:在Rt△ABC中,AB=3m,∠BAC=75°,sin∠BAC=sin75°=BCAB =BC3≈0.97,解得BC≈2.9.答:求梯子顶部离地竖直高度BC约为2.9m.18.解:过点A作AH⊥DE,垂足为H,设EH=x米,在Rt△AEH中,∠AEH=45°,∴AH=EH⋅tan45°=x(米),∵CE=80米,∴CH=CE+EH=(80+x)米,在Rt△ACH中,∠ACH=30°,∴tan30°=AHCH =x80+x=√33,∴x=40√3+40,经检验:x=40√3+40是原方程的根,∴AH=EH=(40√3+40)米,在Rt△AHD中,∠ADH=45°,∴DH=AHtan45∘=(40√3+40)米,∴EF=EH+DH−DF=(80√3+70)米,∴隧道EF的长度为(80√3+70)米.。
2022年全国中考数学真题分类汇编专题3:整式解析版

2022年全国中考数学真题分类汇编专题3:整式一.选择题(共15小题)1.计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x6【解答】解:(2x2)3=8x6.故选:D.2.下列运算正确的是()A.a2•a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a2【解答】解:a2•a3=a5,故A正确,符合题意;(a2)3=a6,故B错误,不符合题意;(a2b)3=a6b3,故C错误,不符合题意;a6÷a3=a3,故D错误,不符合题意;故选:A.3.计算a2•a()A.a B.3a C.2a2D.a3【解答】解:原式=a1+2=a3.故选:D.4.下列运算正确的是()A.a2•a3=a5B.(a3)2=a5 C.(ab)2=ab2D. a3(a≠0)【解答】解:A.因为a2•a3=a2+3=a5,所以A选项运算正确,故A选项符合题意;B.因为(a3)2=a2×3=a6,所以B选项运算不正确,故B选项不符合题意;C.因为(ab)2=a2b2,所以C选项运算不正确,故C选项不符合题意;D.因为 a6﹣2=a4,所以D选项运算不正确,故D选项不符合题意.故选:A.5.计算a3•a2的结果是()A.a B.a6C.6a D.a5【解答】解:a3•a2=a5.故选:D.6.若24×22=2m,则m的值为()A.8B.6C.5D.2【解答】解:∵24×22=24+2=26=2m,∴m=6,故选:B.7.化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a4【解答】解:(3a2)2=9a4.故选:C.8.计算a3÷a得a,则“?”是()A.0B.1C.2D.3【解答】解:根据同底数幂的除法可得:a3÷a=a2,∴?=2,故选:C.9.计算﹣a2•a的正确结果是()A.﹣a2B.a C.﹣a3D.a3【解答】解:﹣a2•a=﹣a3,故选:C.10.下列运算正确的是()A.3a﹣2a=1B.a3•a5=a8C.a8÷2a2=2a4D.(3ab)2=6a2b2【解答】解:3a﹣2a=a,故选项A错误,不符合题意;a3•a5=a8,故选项B正确,符合题意;a8÷2a2 a6,故选项C错误,不符合题意;(3ab)2=9a2b2,故选项D错误,不符合题意;故选:B.11.下列计算正确的是()A.m2•m3=m6B.﹣(m﹣n)=﹣m+nC.m(m+n)=m2+n D.(m+n)2=m2+n2【解答】解:A选项,原式=m5,故该选项不符合题意;B选项,原式=﹣m+n,故该选项符合题意;C选项,原式=m2+mn,故该选项不符合题意;D选项,原式=m2+2mn+n2,故该选项不符合题意;故选:B.12.下列计算结果正确的是()A.5a﹣3a=2B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项符合题意;故选:D.13.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a7【解答】解:(2a4)3=8a12,故选:B.14.计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.15.对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m ﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z ﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.二.填空题(共10小题)16.计算:a•a3=a4.【解答】解:a3•a,=a3+1,=a4.故答案为:a4.17.单项式3xy的系数为3.【解答】解:单项式3xy的系数为3.故答案为:3.18.若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为y2﹣xy+3.【解答】解:由题意得,这个多项式为:(2xy+3y2﹣5)﹣(3xy+2y2﹣8)=2xy+3y2﹣5﹣3xy﹣2y2+8=y2﹣xy+3.故答案为:y2﹣xy+3.19.已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为 或 ..【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t 或t .故答案为: 或 .20.已知x+y=4,x﹣y=6,则x2﹣y2=24.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.21.计算m•m7的结果等于m8.【解答】解:m•m7=m8.故答案为:m8.22.计算:m4÷m2=m2.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.23.计算:3a3•a2=3a5.【解答】解:原式=3a3+2=3a5.故答案为:3a5.24.计算:(﹣a3)2=a6.【解答】解:(﹣a3)2=a6.25.已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.三.解答题(共8小题)26.下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6.【解答】解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.27.已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.28.先化简,再求值.(a+b)(a﹣b)+b(2a+b),其中a=1,b=﹣2.【解答】解:(a+b)(a﹣b)+b(2a+b)=a2﹣b2+2ab+b2=a2+2ab,将a=1,b=﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.29.先化简,再求值:(1+x)(1﹣x)+x(x+2),其中x .【解答】解:(1+x)(1﹣x)+x(x+2)=1﹣x2+x2+2x=1+2x,当x 时,原式=1 1+1=2.30.先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a 4.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a 4时,原式=4 4.31.先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y .【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y 时,原式=12﹣2 0.33.先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x 1.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x 1时,原式=( 1)2﹣4=﹣2 .。
2022年全国中考数学真题分类汇编专题16:圆(附答案解析)

(结果保留π).
23.一个扇形的面积为 7πcm2,半径为 6cm,则此扇形的圆心角是
度.
24.如图,A、B、C 是⊙O 上的点,OC⊥AB,垂足为点 D,且 D 为 OC 的中点,若 OA=7,
则 BC 的长为
.
25.如图,正六边形 ABCDEF 和正五边形 AHIJK 内接于⊙O,且有公共顶点 A,则∠BOH
AC 于点 E,F.若 AB=2,∠BAD=60°,则图中阴影部分的面积为
.(结果不
取近似值)
第 10 页 共 42 页
第 11 页 共 42 页
2022 年全国中考数学真题分类汇编专题 16:圆
参考答案与试题解析
一.填空题(共 46 小题) 1.如图是一个隧道的横截面,它的形状是以点 O 为圆心的圆的一部分,如果 C 是⊙O 中弦
两点,AC=2,则 昀的长是
.
第 2 页 共 42 页
10.将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中
心 O 重合,且两条直角边分别与量角器边缘所在的弧交于 A、B 两点.若 OA=5 厘米,
则 t的长度为
厘米.(结果保留π)
11.如图,点 A.B,C 在⊙O 上,∠AOB=62°,则∠ACB=
中阴影部分的面积为(结果保留π)
.
31.如图,在⊙O 中,AB 是⊙O 的弦,⊙O 的半径为 3cm.C 为⊙O 上一点,∠ACB=60°,
则 AB 的长为
cm.
第 7 页 共 42 页
32.如图,△ABC 中,∠C=90°,AC=8,BC=6,O 为内心,过点 O 的直线分别与 AC、
AB 边相交于点 D、E.若 DE=CD+BE,则线段 CD 的长为
专题07 一元二次方程-2022年中考数学真题分项汇编(全国通用)(第1期)(解析版)
专题07 一元二次方程一.选择题1.(2022·四川乐山)关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,则这两根之积为( ) A .13 B .23 C .1 D .13- 【答案】D【分析】根据一元二次方程根与系数的关系即可求解. 【详解】解:关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,设另一根为2x ,则223x x +=,213x ∴=-,213xx ∴=-,故选:D 【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键. 2.(2022·天津)方程2430x x ++=的两个根为( )A .121,3x x ==B .121,3x x =-=C .121,3x x ==-D .121,3x x =-=-【答案】D【分析】将243x x ++进行因式分解,243=(1)(3)x x x x ++++,计算出答案.【详解】∵243=(1)(3)x x x x ++++∴(1)(3)=0x x ++∴1213x x =-=-,故选:D .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.3.(2022·湖南怀化)下列一元二次方程有实数解的是( )A .2x 2﹣x +1=0B .x 2﹣2x +2=0C .x 2+3x ﹣2=0D .x 2+2=0 【答案】C【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A 选项中,224(1)42170b ac =-=--⋅⋅=-<△,故方程无实数根;B 选项中,2(2)41240=--⋅⋅=-<△,故方程无实数根;C 选项中,2341(2)170=-⋅⋅-=>△,故方程有两个不相等的实数根;D 选项中,80=-<△,故方程无实数根;故选C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.4.(2022·甘肃武威)用配方法解方程x 2-2x =2时,配方后正确的是( )A .()213x +=B .()216x +=C .()213x -=D .()216x -= 【答案】C 【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【详解】解:x 2-2x =2,x 2-2x +1=2+1,即(x -1)2=3.故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键. 5.(2022·浙江温州)若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( )A .36B .36-C .9D .9- 【答案】C【分析】根据判别式的意义得到2640c ∆=-=,然后解关于c 的一次方程即可.【详解】解:∵方程260x x c ++=有两个相等的实数根∴26410c ∆=-⨯⨯= 解得9c = 故选:C .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的跟与24b ac ∆=-的关系,关键是分清楚以下三种情况:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.6.(2022·四川遂宁)已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( ) A .2022-B .0C .2022D .4044 【答案】B【分析】根据题意有2320220m m +-=,即有32320220m m m +-=,据此即可作答.【详解】∵m 为2320220x x +-=的根据,∴2320220m m +-=,且m ≠0,∴32320220m m m +-=,则有原式=322(32022)(32022)000m m m m m +--+-=-=,故选:B .【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为2320220x x +-=得到2320220m m +-=是解答本题的关键.7.(2022·浙江绍兴)已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( ) A .0,4B .1,5C .1,-5D .-1,5【答案】D【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可. 【详解】抛物线2y x mx =+的对称轴为直线2x =,221m ∴-=⨯,解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键. 8.(2022·重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A .2625(1)400x -=B .2400(1)625x +=C .2625400x =D .2400625x =【答案】B【分析】第一年共植树400棵,第二年植树400(1+x )棵,第三年植树400(1+x )²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x )棵,第三年400(1+x )²棵,根据题意列出方程:2400(1)625x +=.故选:B .【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.9.(2022·山东滨州)一元二次方程22560x x -+=的根的情况为( )A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定【答案】A【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:∵Δ=(−5)2−4×2×6=-23<0,∴方程无实数根.故选:A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10.(2022·四川泸州)已知关于x 的方程()22210x m x m --+=的两实数根为1x ,2x ,若()()12113++=x x ,则m 的值为( )A .3-B .1-C .3-或3D .1-或3【答案】A【分析】利用根与系数的关系以及()22=2140∆--≥m m 求解即可. 【详解】解:由题意可知:1221221x x m x x m+=-⎧⎨⋅=⎩,且()22=2140∆--≥m m ∵()()121212111=3++=⋅+++x x x x x x ,∴()22113+-+=m m ,解得:3m =-或1m =,∵()22=2140∆--≥m m ,即14m ≤,∴3m =-,故选:A 【点睛】本题考查根与系数的关系以及根据方程根的情况确定参数范围,解题的关键是求出14m ≤,再利用根与系数的关系求出3m =-或1m =(舍去).11.(2022·重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( )A .()22001242x +=B .()22001242x -= C .()20012242x += D .()20012242x -= 【答案】A【分析】平均增长率为x ,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件,∴可列方程为:()22001242x +=,故选:A .【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般. 12.(2022·湖南常德)关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是( ) A .4k >B .4k <C .4k <-D .1k > 【答案】A【分析】根据一元二次方程根的判别式小于0即可求解.【详解】解:∵关于x 的一元二次方程240x x k -+=无实数解,∴1640k ∆=-<解得:4k >故选:A .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.13.(2022·新疆)临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x ,则根据题意,可列方程为( ) A .8(12)11.52x +=B .28(1)11.52x ⨯+=C .28(1)11.52x +=D .()28111.52x += 【答案】C【分析】设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,即可得.【详解】解:设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,∴28(1+)=11.52x 故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.14.(2022·新疆)若关于x 的一元二次方程20x x k +-=有两个实数根,则k 的取值范围是( )A .14k >- B .14k ≥- C .14k <- D .14k ≤- 【答案】B 【分析】根据关于x 的一元二次方程x 2+x -k =0有两个实数根,得出Δ=b 2-4ac ≥0,即1+4k ≥0,从而求出k 的取值范围.【详解】解:∵x 2+x -k =0有两个实数根,∴Δ=b 2-4ac ≥0,即1+4k ≥0,解得:k ≥-14,故选:B . 【点睛】本题考查一元二次方程根的判别式,掌握Δ>0⇔方程有两个不相等的实数根;Δ=0⇔方程有两个相等的实数根;Δ<0⇔方程没有实数根是本题的关键.15.(2022·山东泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A .()316210x x -=B .()316210x -=C .()316210x x -=D .36210x =【答案】A【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210,故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16.(2022·河南)一元二次方程210x x +-=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .只有一个实数根【答案】A 【分析】计算一元二次方程根的判别式进而即可求解.【详解】解:241450b ac ∆=-=+=>∴一元二次方程210x x +-=的根的情况是有两个不相等的实数根,故选:A.【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.17.(2022·四川宜宾)已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( ) A .0B .-10C .3D .10【答案】A【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∵mn =-5,m 2+2m -5=0,∵m 2+2m =5,∵22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键.18.(2022·四川宜宾)若关于x 的一元二次方程2210ax x 有两个不相等的实数根,则a 的取值范围是( )A .0a ≠B .1a >-且0a ≠C .1a ≥-且0a ≠D .1a >- 【答案】B【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,∵a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.19.(2022·湖北荆州)关于x 的方程2320x kx --=实数根的情况,下列判断正确的是( ) A .有两个相等实数根 B .有两个不相等实数根 C .没有实数根D .有一个实数根【答案】B【分析】根据根的判别式直接判断即可得出答案.【详解】解:对于关于x 的方程2320x kx --=,∵()22341(2)980k k ∆=--⨯⨯-=+>,∵此方程有两个不相等的实数根.故选B .【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式∵的关系:(1)∵>0⇔方程有两个不相等的实数根;(2)∵=0⇔方程有两个相等的实数根;(3)∵<0⇔方程没有实数根.20.(2022·湖南湘潭·中考真题)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12D 【答案】A 【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∵小正方形与每个直角三角形面积均为1,∵大正方形的面积为5,∵小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0,∵a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2,故选:A . 【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键.二、填空题21.(2022·江苏扬州)请填写一个常数,使得关于x 的方程22+-x x ____________0=有两个不相等的实数根.【答案】0(答案不唯一)【分析】设这个常数为a ,利用一元二次方程根的判别式求出a 的取值范围即可得到答案.【详解】解:设这个常数为a ,∵要使原方程有两个不同的实数根,∴()2=240a ∆-->,∴1a <,∴满足题意的常数可以为0,故答案为:0(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,熟知一元二次方程根的判别式是解题的关键. 22.(2022·云南)方程2x 2+1=3x 的解为________. 【答案】1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∴()()2110x x --=,∴210x -=或10x -=,解得:1211,2x x ==,故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.23.(2022·安徽)若一元二次方程2240x x m -+=有两个相等的实数根,则m =________.【答案】2【分析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求m 的值,【详解】解:由题意可知:2a =,4b =-,c m = 240b ac =-=,∴16420m -⨯⨯=,解得:2m =. 故答案为:2.【点睛】本题考查了利用一元二次方程根的判别式24b ac =-△求参数:方程有两个不相等的实数根时,0>;方程有两个相等的实数根时,0=;方程无实数根时,△<0等知识.会运用根的判别式和准确的计算是解决本题的关键.24.(2022·四川成都)若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【分析】由题意解一元二次方程2640x x -+=得到3x =3x =再根据勾股定理得到直角三角形斜边的长是 【详解】解:一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,∴由公式法解一元二次方程2640x x -+=可得3x ===∴==【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.25.(2022·江西)已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______.【答案】1【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式0=,∴440k -=,解得:1k =.故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.26.(2022·湖北荆州)一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.【答案】1【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解.【详解】解:2430x x -+= 243101x x -++=+2441x x -+=()221x -=∵1k =故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.27.(2022·湖北黄冈)已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____.【答案】3【分析】直接根据一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系求解即可.【详解】解:∵一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,∵x 1•x 2=31=3.故答案为3. 【点睛】此题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握若方程的两根分别为x 1,x 2,则x 1+x 2=-12•c x x b a a =,.28.(2022·江苏宿迁)若关于x 的一元二次方程220x x k -+=有实数根,则实数k 的取值范围是_____.【答案】1k ≤【分析】由关于x 的一元二次方程220x x k -+=有实数根,可得440,k再解不等式可得答案. 【详解】解: 关于x 的一元二次方程220x x k -+=有实数根,∴()22410k ∆=--⨯⨯≥, 即440,k 解得:1k ≤ .故答案为:1k ≤.【点睛】本题考查的是一元二次方程根的判别式的应用,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.29.(2022·湖南娄底)已知实数12,x x 是方程210x x +-=的两根,则12x x =______.【答案】1-【解析】【分析】由一元二次方程根与系数的关系直接可得答案. 【详解】解: 实数12,x x 是方程210x x +-=的两根,1211,1x x 故答案为:1-【点睛】本题考查的是一元二次方程根与系数的关系,掌握“12c x x a=”是解本题的关键. 30.(2022·浙江杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示).【答案】30%【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x 的一元二次方程,解方程即可.【详解】解:设新注册用户数的年平均增长率为x (0x >),则2020年新注册用户数为100(1+x )万,2021年的新注册用户数为100(1+x )2万户,依题意得100(1+x )2=169,解得:x 1=0.3,x 2=-2.3(不合题意舍去),∴x =0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.31.(2022·四川眉山)设1x ,2x 是方程2230x x +-=的两个实数根,则2212x x +的值为________.【答案】10【分析】由根与系数的关系,得到122x x +=-,123x x =-,然后根据完全平方公式变形求值,即可得到答案. 【详解】解:根据题意,∵1x ,2x 是方程2230x x +-=的两个实数根,∴122x x +=-,123x x =-,∴2212122212()2(2)2(3)10x x x x x x =+-=--⨯-=+;故答案为:10.【点睛】本题考查了一元二次方程根与系数的关系,完全平方公式变形求值,解题的关键是掌握得到122x x +=-,123x x =-.32.(2022·湖北荆州·中考真题)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为______cm (玻璃瓶厚度忽略不计).【答案】7.5【分析】如详解中图所示,将题中主视图做出来,用垂径定理、勾股定理计算即可.【详解】如下图所示,设球的半径为r cm ,则OG =EG -r =EF -GF -r =EF -AB -r =32-20-r =(12-r )cm , ∵EG 过圆心,且垂直于AD ,∵G 为AD 的中点,则AG =0.5AD =0.5×12=6cm , 在Rt OAG 中,由勾股定理可得,222OA OG AG =+,即222(12)6r r =-+,解方程得r =7.5,则球的半径为7.5cm .【点睛】本题考查主视图、垂径定理和勾股定理的运用,准确做出立体图形的主视图是解题的关键. 33.(2022·湖南岳阳·中考真题)已知关于x 的一元二次方程220x x m ++=有两个不相等的实数根,则实数m 的取值范围是______. 【答案】1m <【分析】根据判别式的意义得到22410m ∆=-⨯⨯>,然后解不等式求出m 的取值即可. 【详解】解:根据题意得22410m ∆=-⨯⨯>,解得1m <, 所以实数m 的取值范围是1m <.故答案为:1m <.【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.34.(2022·四川宜宾·中考真题)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c +-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边, 直角三角形的内切圆半径为3,小正方形的面积为49,∴()23492a b c a b +-=-=,,∴6a b c +-=①,7a b -=②, 131,22c c a b +-∴==,222a b c +=③, 22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭,解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==,故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c+-是解题的关键. 35.(2022·四川凉山)已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是________. 【答案】6【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案. 【详解】∵a -b 2=4∴24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=-- ∵240b a =-≥ ∴4a ≥ 当a=4时,()213a --取得最小值为6 ∴222a a --的最小值为6 ∵22231422a a a b a --=-+-∴22314a b a -+-的最小值6答案为:6.【点睛】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解. 三、解答题36.(2022·四川凉山)解方程:x 2-2x -3=0 【答案】121,3x x =-=【分析】利用因式分解法解一元二次方程即可得. 【详解】解:2230x x --=, (1)(3)0x x +-=,10x +=或30x -=, 1x =-或3x =,故方程的解为121,3x x =-=.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(配方法、因式分解法、公式法、换元法等)是解题关键.37.(2022·四川南充)已知关于x 的一元二次方程2320x x k ++-=有实数根.(1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 【答案】(1)k 174≤;(2)k =3 【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. 【解析】 (1)解:∵一元二次方程2320x x k ++-=有实数根. ∴∆≥0,即32-4(k -2)≥0,解得k 174≤(2)∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.38.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同. (1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区? 【答案】(1)20% (2)18个【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.【解析】(1)解:设该市改造老旧小区投入资金的年平均增长率为x , 根据题意得:21000(1)1440x +=,解这个方程得,10.2x =,2 2.2x =-, 经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%. (2)设该市在2022年可以改造y 个老旧小区,由题意得:80(115%)1440(120%)y ⨯+≤⨯+,解得181823y ≤. ∵y 为正整数,∴最多可以改造18个小区. 答:该市在2022年最多可以改造18个老旧小区.【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式. 39.(2022·四川凉山)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值. 解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n , ∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= . (2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n mm n+的值. (3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值.【答案】(1)32;12-(2)132-【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t-进行变形求解即可.【解析】 (1)解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∴123322b x x a -+=-=-=,1212c x x a ⋅==-.故答案为:32;12-. (2)∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∴3322b m n a -+=-=-=,12c mn a ==-,∴22n m m n m n mn ++=()22m n mn mn +-=23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=-132=-(3)∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根, ∴3322b s t a -+=-=-=,12c st a ==-,∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭924=+174=∴t s -=或t s -=t s -时,11212t s s t st --===-当t s -=时,11212t s s t st --===-11s t -【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出t s -=t s -=,是解答本题的关键.40.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元? 【答案】(1)4月份再生纸的产量为500吨(2)m 的值20(3)6月份每吨再生纸的利润是1500元【分析】(1)设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可;(2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【解析】(1)解:设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨, 由题意得:()2100800x x +-=,解得:300x =,∴2100500x -=, 答:4月份再生纸的产量为500吨;(2)解:由题意得:500(1%)10001%6600002m m ⎛⎫+⋅+= ⎪⎝⎭,解得:%20%m =或% 3.2m =-(不合题意,舍去) ∴20m =,∴m 的值20;(3)解:设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨, 21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅∴()2120011500y +=答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.41.(2022·湖北随州)已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x .(1)求k 的取值范围;(2)若125x x =,求k 的值. 【答案】(1)34k >(2)2 【分析】(1)利用一元二次方程根的判别式大于0建立不等式,解不等式即可得;(2)先利用一元二次方程的根与系数的关系可得21215x x k =+=,再结合(1)的结论即可得.【解析】(1)解:关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根,∴此方程根的判别式()()2221410k k ∆=+-+>,解得34k >. (2)解:由题意得:21215x x k =+=,解得2k =-或2k =,由(1)已得:34k >,则k 的值为2. 【点睛】本题考查了一元二次方程根的判别式、以及根与系数的关系,熟练掌握一元二次方程的相关知识是解题关键.42.(2022·湖北十堰)已知关于x 的一元二次方程22230x x m --=. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值. 【答案】(1)见解析 (2)1m =±【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.。
中考数学应用题分类及参考答案(精编)
中考数学应用题分类及参考答案(精编)一、方程应用1.为加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.求月平均增长率.2.一带一路给沿线地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,甲志愿者计划完成此项工作的天数?二、一次函数应用4.低碳生活绿色出行的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为_________;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?三、二次函数应用5.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.四、解直角三角形应用6.灯塔是港口城市的标志性建筑之一,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,求灯塔的高度AD(结果精确到1m,参考数据:√ 2≈1.41,√ 3≈1.73)7.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:√ 3,且点A,B,C,D,E 在同一平面内,求小明同学测得古塔AB的高度.8.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,求甲楼的高度.五、方程与不等式应用9.某市为创建文明城市,开展美化绿化城市活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?六、方程与函数应用10.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?七、一次函数与二次函数应用11.某汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数y(辆)有如下关系:(1)观察表格,辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:请求出公司的最大月收益是多少元.八、解直角三角形与方程应用12.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC 的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC长为260m.(1)求该滑雪场的高度h;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.九、解直角三角形与圆应用13.如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sinA=ac ,sinB=bc,可得asinA=bsinB=csinC=2R,即asinA=bsinB=csinC=2R(规定sin90°=1).(1)探究活动:如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:asinA ( )bsinB( )csinC(用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.(2)初步应用:在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.(3)综合应用:如图3,在某次数学活动中,小玲同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度.(结果保留小数点后一位,参考数据:√3≈1.732,sin15°=√6−√24)十、方程、不等式与函数应用14.要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲,乙两种切割方式,如图2.切割,拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒__________个;若使用甲种方式切割的木板材y 张,则使用乙种方式切割的木板材__________张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20-12a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.参考答案1.解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990. 2.解:设每件产品的实际定价是x 元,则原定价为(x+40)元.5000x+40=4000x,解得x =160 ,经检验x =160是原方程的解.3.解:设甲志愿者计划完成此项工作需x 天,故甲的工效都为:1x ,由于甲、乙两人工效相同,则乙的工效为1x ,甲前两个工作日完成了1x ×2,剩余的工作量甲完成了1x (x −2−3),乙在甲工作两个工作日后完成了1x (x −2−3),则2x +2(x−2−3)x=1,解得x=8,经检验,x=8是原方程的解.4.解析:(1)在OA 段,速度=100.5 =20km/h(2)当1.5≤x ≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,y=20x ﹣20,当x=2.5时,解得y=30,乙地离小红家30千米.5(1)证明:∵矩形MEFN 与矩形EBCF 面积相等 ∴ME =BE,AM =GH∵四块矩形花圃的面积相等,即S 矩形AMND =2S 矩形MEFN ∴AM =2ME ∴AE =3BE (2)∵篱笆总长为100m∴2AB+GH+3BC =100即2AB+12AB+3BC=100 ∴AB=40-65 BC 设BC 的长度为xm,矩形区域ABCD 的面积为ym 2则y=BC ·AB=x(40- 65x)=−65x 2+40x ∵x>0,40- 65x>0 ∴0<x<1003∴ y=−65x 2+40x(0<x<1003)6.36m7.(20+10√ 3)m 8.(36﹣10√ 3)m9(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得360x−3601.6x =4解得x=33.75,经检验x=33.75是原分式方程的解,1.6x=1.6×33.75=54(2)设平均每年绿化面积增加a 万平方米,根据题意得54×2+2(54+a)≥360,解得a ≥72,则至少每年平均增加72万平方米. 10(1)y =10x+100(2)由题意得(10x+100)×(55﹣x ﹣35)=1760,整理得x 2﹣10x ﹣24=0,x 1=12,x 2=﹣2(舍去),55﹣x =43,这种消毒液每桶实际售价43元.11(1)设解析式y=kx+b,由题意得{3000k +b =1003200k +b =96,解得{k =−150b =160 ∴y 与x 间的函数关系是y =−150x +160(2)填表如下:(3)W =(−50x +160)(x −150)−(x −3000) =(−150x 2+163x −24000)−(x −3000) =−150x 2+162x −21000=−150(x −4050)2+307050当x=4050时,W 最大=307050,所以,当每辆车的月租金为4050元时,公司获得最大月收益307050元.12(1)过B 作BF ∥AD,过D 过AF ⊥AD,两直线交于F,过B 作BE 垂直地面交地面于E,如图:根据题知∠ABF =∠DAB =30°,AF =12AB =135m,BE:CE =1:2.4 设BE 长t 米,则CE 长2.4t 米. ∵BE 2+CE 2=BC2∴t 2+(2.4t)2=2602,解得t =100m(负值舍去),h =AF+BE =235m(2)设甲种设备每小时的造雪量是xm 3,则乙种设备每小时的造雪量是(x+35)m 3,根据题意得150x=500x+35,解得x =15,经检验,x =15是原方程的解,也符合题意,x+35=50.答:甲种设备每小时的造雪量是15m 3,则乙种设备每小时的造雪量是50m 3. 13(1)探究活动:a sinA = b sinB = csinC理由:如图2,过点C 作直径CD 交⊙O 于点D,连接BD. ∴∠A=∠D,∠DBC=90°∴sinA=sinD,sinD=a 2R ∴asinA = aa 2R=2R同理可证:b sinB =2R,c sinC =2R ∴a sinA = b sinB = csinC =2R (2)初步应用:∵asinA = bsinB =2R ∴8sin60° = bsin45° ∴b=8sin45°sin60°=8√63(3)综合应用:由题意得:∠D =90°,∠A =15°,∠DBC =45°,AB =100 ∴∠ACB =30°设古塔高DC=x,则BC=√2x ,AB sin∠ACB =BCsinA ,100sin30°=√2xsin15°,x=50(√3-1=36.6,古塔CD=36.6m.14(1)要制作200个A,B 两种规格的顶部无盖木盒,制作A 种木盒x 个,故制作B 种木盒(200-x)个;有200张规格为40cm ×40cm 的木板材,使用甲种方式切割的木板材y 张, 故使用乙种方式切割的木板材(200-y)张.(2)使用甲种方式切割的木板材y 张,则可切割出4y 个长、宽均为20cm 的木板,使用乙种方式切割的木板材(200-y)张,则可切割出8(200-y)个长为10cm,宽为20cm 的木板; 设制作A 种木盒x 个,则需要长、宽均为20cm 的木板5x 个,制作B 种木盒(200-x)个,则需要长、宽均为20cm 的木板(200-x)个,需要长为10cm 、宽为20cm 的木板4(200-x)个; 故{4y =5x +(200−x)8(200−y)=4(200−x),解得{x =100y =150 故制作A 种木盒100个,制作B 种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张.(3)用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,总成本为150×5+8×50=1150(元)两种木盒的销售单价均不能低于7元,不超过18元,所以{7≤a ≤187≤20−12a ≤18,解得{7≤a ≤184≤a ≤26,a 的取值范围为7≤a ≤18. 设利润为W,则W=100a+100(20-12a)-1150整理得W=850+50a,当a=18时,W 有最大值,最大值为850+50×18=1750,此时B 种木盒的销售单价定为20-12×18=11(元)即A 种木盒的销售单价定为18元,B 种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.。
2022年中考数学题分类汇编——二次函数应用题(三)含答案
2022年年年年年年年年年年——年年年年年年年年年年1.(2022·湖北省荆州市)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24−x,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?2.(2022·湖北省咸宁市)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉3.(2022·陕西省)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.4.(2022·四川省广元市)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?5.(2022·浙江省宁波市)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?6. (2022·江西省)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为ℎm(ℎ为定值).设运动员从起跳点A 起跳后的高度y(m)与水平距离x(m)之间的函数关系为y =ax 2+bx +c(a ≠0). (1)c 的值为______;(2)①若运动员落地点恰好到达K 点,且此时a =−150,b =910,求基准点K 的高度ℎ;②若a =−150时,运动员落地点要超过K 点,则b 的取值范围为______; (3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K 点,并说明理由.7. (2022·浙江省金华市)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息: ①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y 需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y 需求=ax 2+c ,部分对应值如下表: 售价x(元/千克) … 2.5 3 3.5 4 … 需求量y 需求(吨) … 7.75 7.2 6.55 5.8 …②该蔬莱供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x−1,函数图象见图1.③1~7月份该蔬莱售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函教表达式分别为x售价=12t+2,x成本=14t2−32t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.8.(2022·山东省滨州市)360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.9.(2022·湖北省武汉市)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.运动时间t/s01234运动速度v/cm/s109.598.58运动距离y/cm09.751927.7536小聪探究发现,黑球的运动速度v与运动时间t之间成一次函数关系,运动距离y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.10.(2022·广东省)某种服装,平均每天可销售20件,每件利润是44元,经市场调查发现,该品牌服装在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多销售5件.(1)如果每件降价x元,平均每天销售的服装为y1件,试写出x与y1之间的函数关系(用x表示y1);(2)如果每天该服装销售的利润总金额记为y2(元),求当y2=1600,每件应降价多少元?1.解:(1)根据题意得:w=(x−8)(24−x)−60=−x2+32x−252;(2)①∵该产品第一年利润为4万元,∴4=−x2+32x−252,解得:x=16,答:该产品第一年的售价是16元.②∵第二年产品售价不超过第一年的售价,销售量不超过13万件,∴{x≤1624−x≤13,解得11≤x≤16,设第二年利润是w′万元,w′=(x−6)(24−x)−4=−x2+30x−148,∵抛物线开口向下,对称轴为直线x=15,又11≤x≤16,∴x=11时,w′有最小值,最小值为(11−6)×(24−11)−4=61(万元),答:第二年的利润至少为61万元.2..解:(1)当0<x≤40时,y=30;当40<x≤100时,设函数关系式为y=kx+b,∵线段过点(40,30),(100,15),∴{40k+b=30100k+b=15,∴{k=−1 4b=40,∴y=−14x+40,即y={30(0<x≤40)−14x+40(40<x≤90);(2)∵甲种花卉种植面积不少于30m2,∴x≥30,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴360−x≥3x,∴x≤90,即30≤x≤90;由(1)知,y=30x,∵乙种花卉种植费用为15元/m2.∴w=yx+15(360−x)=30x+15(360−x)=15x+5400,当x=30时,w min=5850;当40<x≤90时,x+40,由(1)知,y=−14(x−50)2+6025,∴w=yx+15(360−x)=−14(90−50)2+6025=5625,∴当x=90时,w min=−14∵5850>5625,∴种植甲种花卉90m2,乙种花卉270m2时,种植的总费用最少,最少为5625元;②当30≤x≤40时,由①知,w=15x+5400,∵种植总费用不超过6000元,∴15x+5400≤6000,∴x≤40,即满足条件的x的范围为30≤x≤40,当40<x≤90时,(x−50)2+6025,由①知,w=−14∵种植总费用不超过6000元,(x−50)2+6025≤6000,∴−14∴x≤40(不符合题意,舍去)或x≥60,即满足条件的x的范围为60≤x≤90,综上,满足条件的x的范围为30≤x≤40或60≤x≤90.3..解:(1)由题意抛物线的顶点P(5,9),∴可以假设抛物线的解析式为y=a(x−5)2+9,,把(0,0)代入,可得a=−925(x−5)2+9;∴抛物线的解析式为y=−925(2)令y=6,得−925(x−5)2+9=6,解得x1=5√33+5,x2=−5√33+5,∴A(5−5√33,6),B(5+5√33,6).4..解:(1)设科技类图书的单价为x元,文学类图书的单价为y元,依题意得:{2x+3y=154 4x+5y=282,解得:{x=38 y=26.答:科技类图书的单价为38元,文学类图书的单价为26元.(2)设科技类图书的购买数量为m本,购买这两种图书的总金额为w元,则文学类图书的购买数量为(100−m)本.①当30≤m≤40时,w=38m+26(100−m)=12m+2600,∵12>0,∴w随m的增大而增大,∴2960≤w≤3080;②当40<m≤50时,w=[38−(m−40)]m+26(100−m)=−(m−26)2+3276,∵−1<0,∴当m>26时,w随m的增大而减小,∴2700≤w<3080;③当50<m≤60时,w=[38−(50−40)]m+26(100−m)=2m+2600,∵2>0,∴w随m的增大而增大,∴2700<w≤2720.综上,当30≤m≤60时,w的最小值为2700.答:社区至少要准备2700元购书款.5..解:(1)∵每平方米种植的株数每增加1株,单株产量减少0.5千克,∴y=4−0.5(x−2)=−0.5x+5,答:y关于x的函数表达式为y=−0.5x+5,(2≤x≤8,且x为整数);(2)设每平方米小番茄产量为W千克,∵−0.5<0,∴当x =5时,W 取最大值,最大值为12.5,答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.6..66 b >9107..解:(1)把(3,7.2),(4,5.8)代入y 需求=ax 2+c ,{9a +c =7.2①16a +c =5.8②, ②−①,得7a =−1.4,解得:a =−15,把a =−15代入①,得c =9,∴a 的值为−15,c 的值为9;(2)设这种蔬菜每千克获利w 元,根据题意,w =x 售价−x 成本=12t +2−(14t 2−32t +3)=−14(t −4)2+3, ∵−14<0,且1≤t ≤7,∴当t =4时,w 有最大值,答:在4月份出售这种蔬菜每千克获利最大;(3)当y 供给=y 需求时,x −1=−15x 2+9, 解得:x 1=5,x 2=−10(舍去),∴此时售价为5元/千克,则y 供给=x −1=5−1=4(吨)=4000(千克),令12t +2=5,解得t =6,∴w =−14(t −4)2+3=−14(6−4)2+3=2,∴总利润为w ⋅y =2×4000=8000(元),答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.8..解:(1)设y =kx +b ,把x =20,y =360,和x =30,y =60代入,可得{20k +b =36030k +b =60,解得:{k =−30b =960, ∴y =−30x +960(10≤x ≤32);(2)设每月所获的利润为W 元,∴W =(−30x +960)(x −10)=−30(x −32)(x −10)=−30(x 2−42x +320)=−30(x −21)2+3630.∴当x =21时,W 有最大值,最大值为3630.9..解:(1)设v =mt +n ,将(0,10),(2,9)代入,得{n =102m +n =9, 解得,{m =−12n =10, ∴v =−12t +10;设y =at 2+bt +c ,将(0,0),(2,19),(4,36)代入,得{c =04a +2b +c =1916a +4b +c =36,解得{a =−14b =10c =0,∴y =−14t 2+10t .(2)令y =64,即−14t 2+10t =64,解得t =8或t =32,当t =8时,v =6;当t =32时,v =−6(舍);(3)设黑白两球的距离为w cm ,根据题意可知,w =70+2t −y =14t 2−8t +70=14(t −16)2+6, ∵14>0,∴当t =16时,w 的最小值为6,∴黑白两球的最小距离为6cm ,大于0,黑球不会碰到白球.10..解:(1)设每件降价x 元,平均每天销售的服装为y 1件, 则x 与y 1之间的函数关系(用x 表示y 1)为:y 1=20+5x(0≤x ≤10);(2)由题意可得:y2=(44−x)(20+5x) =−5x2+200x+880,(0≤x≤10);1600=−5x2+200x+880,解得:x1=4,x2=36(不合题意舍去),答:每件应降价4元.第14页,共1页。
2022年中考数学真题分类汇编:反比例函数1(含答案)
2022年中考数学真题汇编反比例函数一、选择题1.(2022·云南省)反比例函数y=6的图象分别位于()xA. 第一、第三象限B. 第一、第四象限C. 第二、第三象限D. 第二、第四象限2.(2022·浙江省丽水市)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A. R至少2000ΩB. R至多2000ΩC. R至少24.2ΩD. R至多24.2Ω3.(2022·山东省滨州市)在同一平面直角坐标系中,函数y=kx+1与y=-k(k为常数且k≠0)x的图象大致是()A. B. C. D.4.(2022·四川省德阳市)一次函数y=ax+1与反比例函数y=-a在同一坐标系中的大致图x象是()A. B.B.C. D.5. (2022·山东省)已知二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 的图象和反比例函数y =a+b+c x的图象在同一坐标系中大致为( )A.B.C.D.6. (2022·广东省)a ≠0,函数y =ax 与y =-ax 2+a 同一直角坐标系中的大致图象可能是( )A.B.C. D.7. (2022·广东省)在平面直角坐标系xOy 中,矩形OABC 的点A 在函数y =1x (x >0)的图象上,点C 在函数y =-4x (x <0)的图象上,若点B 的横坐标为-72,则点A 的坐标为( ) A. (12,2) B. (√22,√2) C. (2,12)D. (√2,√22)8.(2022·四川省)已知点A(x1、y1),B(x2,y2)在反比例函数y=3−2mx的图象上,当x1<x2<0时,y1>y2,则m的范围为()A. m>23B. m<23C. m>32D. m<32二、填空题(本大题共10小题,共30.0分)9.(2022·四川省凉山彝族自治州)如图,点A在反比例函数y=kx(x>0)的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k=______.10.11.12.13.(2022·山东省滨州市)若点A(1,y1)、B(-2,y2)、C(-3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系为______.14.(2022·湖南省株洲市)如图所示,矩形ABCD顶点A、D在y轴上,顶点C在第一象限,x轴为该矩形的一条对称轴,且矩形ABCD的面积为6.若反比例函数y=kx的图象经过点C,则k的值为______.15.16.(2022·江西省)已知点A在反比例函数y=12x(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB的长为______.17.18.19.(2022·四川省成都市)在平面直角坐标系xOy中,若反比例函数y=k−2x的图象位于第二、四象限,则k的取值范围是______.20.(2022·浙江省湖州市)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图象经过点C的反比例函数的解析式是y=1x,则图象经过点D的反比例函数的解析式是______.21.(2022·安徽省)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=1x 的图象经过点C,y=kx(k≠0)的图象经过点B.若OC=AC,则k=______.22.(2022·浙江省舟山市)如图,在直角坐标系中,△ABC的顶点C与原点O重合,点A在反比例函数y=kx(k>0,x>0)的图象上,点B的坐标为(4,3),AB与y轴平行,若AB=BC,则k=______.23.24.(2022·浙江省绍兴市)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=k(k≠0)x 的图象经过点C和DE的中点F,则k的值是______.25.(2022·浙江省宁波市)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=6√2(x>0)的图象上,BE⊥x轴于点E.若xDC的延长线交x轴于点F,当矩形OABC的面积为9√2时,EF的值为______,点FOE的坐标为______.三、解答题26.(2022·山东省泰安市)如图,点A在第一象限,AC⊥x轴,垂足为C,OA=2√5,tan A=1,2反比例函数y=k的图象经过OA的中点B,与AC交于点D.x27.(1)求k值;28.(2)求△OBD的面积.29.(2022·浙江省金华市)如图,点A在第一象限内,AB⊥x轴于点B,反比例函数y=k(k≠0,x x>0)的图象分别交AO,AB于点C,D.已知点C的坐标为(2,2),BD=1.30.(1)求k的值及点D的坐标.31.(2)已知点P在该反比例函数图象上,且在△ABO的内部(包括边界),直接写出点P的横坐标x的取值范围.32.(2022·湖南省株洲市)如图所示,在平面直角坐标系xOy中,点A、B分别在函数y1=2x (x>0,k>0)的图象上,点C在第二象限内,AC⊥x轴于点P,(x<0)、y2=kxBC⊥y轴于点Q,连接AB、PQ,已知点A的纵坐标为-2.33.(1)求点A的横坐标;34.(2)记四边形APQB的面积为S,若点B的横坐标为2,试用含k的代数式表示S.35. (2022·浙江省宁波市)如图,正比例函数y =-23x 的图象与反比例函数y =kx (k ≠0)的图象都经过点A (a ,2).36. (1)求点A 的坐标和反比例函数表达式.37. (2)若点P (m ,n )在该反比例函数图象上,且它到y 轴距离小于3,请根据图象直接写出n 的取值范围.38. (2022·浙江省温州市)已知反比例函数y =kx (k ≠0)的图象的一支如图所示,它经过点(3,-2).39. (1)求这个反比例函数的表达式,并补画该函数图象的另一支. 40. (2)求当y ≤5,且y ≠0时自变量x 的取值范围.41.(2022·江西省)如图,点A(m,4)在反比例函数y=k(x>0)的图象上,点B在yx轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.42.(1)点B的坐标为______,点D的坐标为______,点C的坐标为______(用含m的式子表示);43.(2)求k的值和直线AC的表达式.44.(2022·甘肃省武威市)如图,B,C是反比例函数y=k(k≠0)在第一象限图象上的点,x过点B的直线y=x-1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD=3.45.(1)求此反比例函数的表达式;46.(2)求△BCE的面积.47.(2022·广东省)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.48.(1)求y1关于x的函数解析式,并画出这个函数的图象;49.(2)若反比例函数y2=k的图象与函数y1的图象相交于点A,且点A的纵坐标为2.x50.①求k的值;51.②结合图象,当y1>y2时,写出x的取值范围.52.(2022·山东省)如图,过C点的直线y=-1x-2与x轴,y轴分别交于点A,B两点,且2BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=k(x>0)的图象于点xD,连接OD,△ODH的面积为6.53.(1)求k值和点D的坐标;54.(2)如图,连接BD,OC,点E在直线y=-1x-2上,且位于第二象限内,若△BDE2的面积是△OCD面积的2倍,求点E的坐标.55.(2022·四川省)如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=k的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.x56.(1)求反比例函数的解析式;时x的取值范围;(2)结合图象,直接写出2x>kx图象上的一点,且满足△OPC与△ABC的面积相等,(3)若点P是反比例函数y=kx求出点P的坐标.参考答案1.A2.A3.A4.B5.D6.D7.A8.D9.610.y2<y3<y111.312.5或2√5或√1013.k<214.y=-3x15.316.3217.618.12(3√32,0)19.解:(1)∵∠ACO=90°,tan A=12,∴AC=2OC,∵OA=2√5,由勾股定理得:(2√5)2=OC2+(2OC)2,∴OC=2,AC=4,∴A(2,4),∵B是OA的中点,∴B(1,2),∴k=1×2=2;(2)当x=2时,y=1,∴D(2,1),∴AD=4-1=3,∵S △OBD =S △OAD -S △ABD=12×3×2-12×3×1 =1.5.20.解:(1)∵点C (2,2)在反比例函数y =k x (k ≠0,x >0)的图象上,∴2=k 2,解得k =4,∵BD =1.∴点D 的纵坐标为1,∵点D 在反比例函数y =4x (k ≠0,x >0)的图象上,∴1=4x ,解得x =4,即点D 的坐标为(4,1);(2)∵点C (2,2),点D (4,1),点P 在该反比例函数图象上,且在△ABO 的内部(包括边界),∴点P 的横坐标x 的取值范围是2≤x ≤4. 21.解:(1)∵点A 在函数y 1=2x (x <0)的图象上,点A 的纵坐标为-2,∴-2=2x ,解得x =-1,∴点A 的横坐标为-1;(2)∵点B 在函数y 2=k x (x >0,k >0)的图象上,点B 的横坐标为2,∴B (2,k 2),∴PC =OQ =k 2,BQ =2,∵A (-1,-2),∴OP =CQ =1,AP =2,∴AC =2+k 2,BC =1+2=3,∴S =S △ABC -S △PQC =12AC •BC -12PC •CQ =12×3×(2+k 2)-12×k 2×1=3+12k . 22.解:(1)把A (a ,2)的坐标代入y =23x ,即2=-23a ,解得a =-3,∴A (-3,2),又∵点A (-3,2)是反比例函数y =k x 的图象上,∴k =-3×2=-6, ∴反比例函数的关系式为y =-6x ;(2)∵点P (m ,n )在该反比例函数图象上,且它到y 轴距离小于3,∴-3<m <0或0<m <3,当m =-3时,n =−6−3=2,当m =3时,n =−63=2,由图象可知,若点P (m ,n )在该反比例函数图象上,且它到y 轴距离小于3,n 的取值范围为n >2或n <-2. 23.解:(1)把点(3,-2)代入y =k x (k ≠0),-2=k 3, 解得:k =-6,∴反比例函数的表达式为y =-6x ,补充其函数图像如下:(2)当y =5时,-6x =5,解得:x =-65,∴当y ≤5,且y ≠0时,x ≤-65或x >0. 24.(0,2) (1,0) (m +1,6)25.解:(1)当y =0时,即x -1=0,∴x =1,即直线y=x-1与x轴交于点A的坐标为(1,0),∴OA=1=AD,又∵CD=3,∴点C的坐标为(2,3),而点C(2,3)在反比例函数y=kx的图象上,∴k=2×3=6,∴反比例函数的图象为y=6x;(2)方程组{y=x−1y=6x的正数解为{x=3y=2,∴点B的坐标为(3,2),当x=2时,y=2-1=1,∴点E的坐标为(2,1),即DE=1,∴EC=3-1=2,∴S△BCE=12×2×(3-2)=1,答:△BCE的面积为1.26.解:(1)由题意y1=|x|.函数图象如图所示:(2)①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同理当点A在第二象限时,k=-4.综上,k的值为4或-4.②观察图象可知:当k>0时,x>2或x<0时,y1>y2.当k<0时,x<-2或x>0时,y1>y2.27.解:(1)设点D 坐标为(m ,n ),由题意得12OH •DH =12mn =6,∴mn =12,∵点D 在y =k x 的图象上,∴k =mn =12,∵直线y =-12x -2的图象与x 轴交于点A , ∴点A 的坐标为(-4,0),∵CD ⊥x 轴,∴CH ∥y 轴,∴AO OH =AB BC =1,∴OH =AO =4,∴点D 的横坐标为4.∵点D 在反比例函数y =12x 的图象上∴点D 坐标为(4,3);(2)由(1)知CD ∥y 轴,∴S △BCD =S △OCD ,∵S △BDE =2S △OCD ,∴S △EDC =3S △BCD ,过点E 作EF ⊥CD ,垂足为点F ,交y 轴于点M , ∵S △EDC =12CD •EF ,S △BCD =12CD •OH ,∴CD •EF =3CD •OH ,∴EF =3OH =12.∴EM =8,∴点E 的横坐标为-8,∵点E 在直线y =-12x -2上,∴点E 的坐标为(-8,2). 28.解:(1)把x =2代入y =2x 中,得y =2×2=4, ∴点A 坐标为(2,4),∵点A 在反比例函数y =kx 的图象上,∴k =2×4=8, ∴反比例函数的解析式为y =8x ;(2)根据对称性可知B (-2,-4), 由图象可知,-2<x <0或x >2时,2x >k x . (3)∵AC ⊥OC ,∴OC =2,∵A 、B 关于原点对称,∴B 点坐标为(-2,-4),∴B 到OC 的距离为4,∴S △ABC =2S △ACO =2×12×2×4=8, ∴S △OPC =8,设P 点坐标为(x ,8x ),则P 到OC 的距离为|8x |,∴12×|8x |×2=8,解得x =1或-1, ∴P 点坐标为(1,8)或(-1,-8).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年全国各省市中考数学真题汇编应用题专题一1.(2022·江苏省无锡市)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?2.(2022·四川省南充市)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表,用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价−进价)(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?3.(2022·山西省)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.4.(2022·福建省)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.5.(2022·黑龙江省哈尔滨市)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B种型号的颜料需用64元.(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?6.(2022·广西壮族自治区桂林市)今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.(1)求在甲,乙两个商店租用的服装每套各多少元?(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.7.(2022·湖南省永州市)受第24届北京冬季奥林匹克运动会的影响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A端以平均(x+2)米/秒的速度滑到B端,用了24秒;第二次从滑雪道A端以平均(x+3)米/秒的速度滑到B端,用了20秒.(1)求x的值;(2)设小勇从滑雪道A端滑到B端的平均速度为v米/秒,所用时间为t秒,请用含t的代数式表示v(不要求写出t的取值范围).8.(2022·贵州省毕节市)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价−进货价)(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?9.(2022·湖北省咸宁市)某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?10.(2022·四川省达州市)某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?11.(2022·湖北省宜昌市)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份%,则5月份再生纸项目月利润达到66万元.求m的每吨再生纸的利润比上月增加m2值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?12.(2022·河南省)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少的价格是菜苗基地的543捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.13.(2022·湖南省常德市)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时.某天,他们以平常的速度行驶了1的路程时遇到了暴雨,立即将车速减少了20千2米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?14.(2022·广东省)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?15.(2022·贵州省黔东南苗族侗族自治州)某快递公司为了加强疫情防控需求,提高工作效率,计划购买A、B两种型号的机器人来搬运货物,已知每台A型机器人比每台B型机器人每天少搬运10吨,且A型机器人每天搬运540吨货物与B型机器人每天搬运600吨货物所需台数相同.(1)求每台A型机器人和每台B型机器人每天分别搬运货物多少吨?(2)每台A型机器人售价1.2万元,每台B型机器人售价2万元,该公司计划采购A、B两种型号的机器人共30台,必须满足每天搬运的货物不低于2830吨,购买金额不超过48万元.请根据以上要求,完成如下问题:①设购买A型机器人m台,购买总金额为w万元,请写出w与m的函数关系式;②请你求出最节省的采购方案,购买总金额最低是多少万元?16.(2022·江苏省无锡市)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?17.(2022·湖南省岳阳市)为迎接湖南省第十四届运动会在岳阳举行,某班组织学生参加全民健身线上跳绳活动,需购买A,B两种跳绳若干.若购买3根A种跳绳和1根B种跳绳共需140元;若购买5根A种跳绳和3根B种跳绳共需300元.(1)求A,B两种跳绳的单价各是多少元?(2)若该班准备购买A,B两种跳绳共46根,总费用不超过1780元,那么至多可以购买B种跳绳多少根?18.(2022·湖南省娄底市)“绿水青山就是金山银山”,科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg.(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶.问这三棵银杏树一年的平均滞尘总量约多少千克?19.(2022·江苏省宿迁市)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为______元;乙超市的购物金额为______元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?20.(2022·江苏省苏州市)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.参考答案1.解:(1)根据题意知:较大矩形的宽为2xm,长为24−x−2x3=(8−x)m,∴(x+2x)×(8−x)=36,解得x=2或x=6,经检验,x=6时,3x=18>10不符合题意,舍去,∴x=6,答:此时x的值为2m;(2)设矩形养殖场的总面积是ym2,∵墙的长度为10,∴0<x≤103,根据题意得:y=(x+2x)×(8−x)=−3x2+24x=−3(x−4)2+48,∵−3<0,∴当x=103时,y取最大值,最大值为−3×(103−4)2+48=1403(m2),答:当x=103时,矩形养殖场的总面积最大,最大值为1403m2.2.解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300−x)件,依题意得:300−x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300−260)x+(100−80)(300−x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300−x=300−100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300−260)×100+(100−80)×12×200+(100−y−80)×12×200≥8000×90%, 解得:y ≤8.答:每件真丝围巾最多降价8元.3.解:设这款电动汽车平均每公里的充电费用为x 元,根据题意,得200x=200x+0.6×4,解得x =0.2,经检验,x =0.2是原方程的根,答:这款电动汽车平均每公里的充电费用为0.2元.4.解:(1)设购买绿萝x 盆,吊兰y 盆,依题意得:{x +y =469x +6y =390,解得:{x =38y =8.∵8×2=16,16<38, ∴{x =38y =8符合题意. 答:购买绿萝38盆,吊兰8盆.(2)设购买绿萝m 盆,则购买吊兰(46−m)盆, 依题意得:m ≥2(46−m), 解得:m ≥923.设购买两种绿植的总费用为w 元,则w =9m +6(46−m)=3m +276, ∵3>0,∴w 随m 的增大而增大, 又∵m ≥923,且m 为整数,∴当m =31时,w 取得最小值,最小值=3×31+276=369. 答:购买两种绿植总费用的最小值为369元.5.解:(1)设每盒A 种型号的颜料x 元,每盒B 种型号的颜料y 元,依题意得:{x +2y =562x +y =64,解得:{x =24y =16.答:每盒A 种型号的颜料24元,每盒B 种型号的颜料16元.(2)设该中学可以购买m 盒A 种型号的颜料,则可以购买(200−m)盒B 种型号的颜料, 依题意得:24m +16(200−m)≤3920,解得:m ≤90.答:该中学最多可以购买90盒A 种型号的颜料.6.解:(1)设乙商店租用服装每套x 元,则甲商店租用服装每套(x +10)元,由题意可得:500x+10=400x ,解得:x =40,经检验,x =40是该分式方程的解,并符合题意,∴x +10=50,∴甲,乙两个商店租用的服装每套各50元,40元.(2)该参赛队伍准备租用20套服装时,甲商店的费用为:50×20×0.9=900(元),乙商店的费用为:40×20=800(元),∵900>800,∴乙商店租用服装的费用较少. 7.解:(1)由题意得:24(x +2)=20(x +3),解得:x =3,答:x 的值为3;(2)从滑雪道A 端滑到B 端的路程为:24×(3+2)=120(米),∵小勇从滑雪道A 端滑到B 端的平均速度为v 米/秒,所用时间为t 秒,∴v =120t .8.解:(1)设购进A 款钥匙扣x 件,B 款钥匙扣y 件,依题意得:{x +y =3030x +25y =850, 解得:{x =20y =10. 答:购进A 款钥匙扣20件,B 款钥匙扣10件.(2)设购进m 件A 款钥匙扣,则购进(80−m)件B 款钥匙扣,依题意得:30m +25(80−m)≤2200,解得:m ≤40.设再次购进的A 、B 两款冰墩墩钥匙扣全部售出后获得的总利润为w 元,则w =(45−30)m +(37−25)(80−m)=3m +960.∵3>0,∴w 随m 的增大而增大,∴当m =40时,w 取得最大值,最大值=3×40+960=1080,此时80−m =80−40=40.答:当购进40件A 款钥匙扣,40件B 款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.(3)设B 款钥匙扣的售价定为a 元,则每件的销售利润为(a −25)元,平均每天可售出4+2(37−a)=(78−2a)件,依题意得:(a −25)(78−2a)=90,整理得:a 2−64a +1020=0,解得:a 1=30,a 2=34.答:将销售价定为每件30元或34元时,才能使B 款钥匙扣平均每天销售利润为90元. 9.解:(1)设购买一份甲种快餐需要x 元,购买一份乙种快餐需要y 元,依题意得:{x +2y =702x +3y =120, 解得:{x =30y =20. 答:购买一份甲种快餐需要30元,购买一份乙种快餐需要20元.(2)设购买乙种快餐m 份,则购买甲种快餐(55−m)份,依题意得:30(55−m)+20m ≤1280,解得:m ≥37.答:至少买乙种快餐37份.10.(1)解:设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据题意可得:2×4000x =8800x+4,解得:x =40,经检验x =40是方程的解,x +4=40+4=44,答:该商场购进第一批、第二批T 恤衫每件的进价分别是40元和44元;(2)解:400040+880044=300(件),设每件T 恤衫的标价至少是y 元,根据题意可得:(300−40)y +40×0.7y ≥(4000+8800)×(1+80%),解得:y ≥80,答:每件T 恤衫的标价至少是80元.11.解:(1)设3月份再生纸的产量为x 吨,则4月份再生纸的产量为(2x −100)吨, 依题意得:x +2x −100=800,解得:x =300,∴2x −100=2×300−100=500.答:4月份再生纸的产量为500吨.(2)依题意得:1000(1+m 2%)×500(1+m%)=660000,整理得:m 2−300m +6400=0,解得:m 1=20,m 2=−320(不合题意,舍去).答:m 的值为20.(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨, 依题意得:1200(1+y)2⋅a(1+y)=(1+25%)×1200(1+y)⋅a ,∴1200(1+y)2=1500.答:6月份每吨再生纸的利润是1500元.12.解:(1)设菜苗基地每捆A 种菜苗的价格是x 元,根据题意得:300x =30054x +3,解得x =20,经检验,x =20是原方程的解,答:菜苗基地每捆A 种菜苗的价格是20元;(2)设购买A 种菜苗m 捆,则购买B 种菜苗(100−m)捆,∵A 种菜苗的捆数不超过B 种菜苗的捆数,∴m ≤100−m ,解得m ≤50,设本次购买花费w 元,∴w =20×0.9m +30×0.9(100−m)=−9m +2700,∵−9<0,∴w 随m 的增大而减小,∴m =50时,w 取最小值,最小值为−9×50+2700=2250(元),答:本次购买最少花费2250元.13.解:设平常的速度是x 千米/小时,根据题意,得(1−12)⋅4x x−20+2=5,解得x =60,经检验,x =60是原方程的根,4×60=240(千米),答:小强家到他奶奶家的距离是240千米.14.解:设学生有x 人,该书单价y 元,根据题意得:{8x −y =3y −7x =4, 解得:{x =7y =53. 答:学生有7人,该书单价53元.15.解:(1)设每台A 型机器人每天搬运货物x 吨,则每台B 型机器人每天搬运货物(x +10)吨,由题意得:540x =600x+10,解得:x =90,当x =90时,x(x +10)≠0,∴x =10是分式方程的根,∴x +10=90+10=100(吨),答:每台A 型机器人每天搬运货物90吨,则每台B 型机器人每天搬运货物100吨;(2)①由题意得:w =1.2m +2(30−m)=−0.8m +60;②由题意得:{90m +100(30−m)≥28301.2m +2(30−m)≤48, 解得:15≤m ≤17,∵−0.8<0,∴w 随m 的增大而减小,∴当m =17时,w 最小,此时w =−0.8×17+60=46.4,∴购买A 型机器人17台,B 型机器人13台时,购买总金额最低是46.4万元.16.解:(1)根据题意知:较大矩形的宽为2xm ,长为24−x−2x 3=(8−x) m ,∴(x +2x)×(8−x)=36,解得x =2或x =6, 经检验,x =6时,3x =18>10不符合题意,舍去,∴x =6,答:此时x 的值为2m ;(2)设矩形养殖场的总面积是ym 2,∵墙的长度为10,∴0<x ≤103,根据题意得:y =(x +2x)×(8−x)=−3x 2+24x =−3(x −4)2+48,∵−3<0,∴当x =103时,y 取最大值,最大值为−3×(103−4)2+48=1403(m 2), 答:当x =103时,矩形养殖场的总面积最大,最大值为1403m 2.17.解:(1)设A 种跳绳的单价为x 元,B 种跳绳的单价为y 元.根据题意得:{3x +y =1405x +3y =300, 解得:{x =30y =50, 答:A 种跳绳的单价为30元,B 种跳绳的单价为50元.(2)设购买B 种跳绳a 根,则购买A 种跳绳(46−a)根,由题意得:30(46−a)+50a ≤1780,解得:a ≤20,答:至多可以购买B 种跳绳20根.18.解:(1)设一片银杏树叶一年的平均滞尘量为x mg ,一片国槐树叶一年的平均滞尘量为y mg ,由题意得:{x +y =62x =2y −4, 解得:{x =40y =22, 答:一片银杏树叶一年的平均滞尘量为40mg ,一片国槐树叶一年的平均滞尘量为22mg ;(2)50000×40=2000000(mg)=2kg ,答:这三棵银杏树一年的平均滞尘总量约2千克.19.300 24020.解:(1)设甲两种水果的进价为每千克a 元,乙两种水果的进价为每千克b 元.由题意,得{60a +40b =152030a +50b =1360, 解得{a =12b =20, 答:甲两种水果的进价为每千克12元,乙两种水果的进价为每千克20元.(2)设第三次购进x 千克甲种水果,则购进(200−x)千克乙种水果.由题意,得12x +20(200−x)≤3360,解得x ≥80.设获得的利润为w 元,由题意,得w=(17−12)×(x−m)+(30−20)×(200−x−3m)=−5x−35m+ 2000,∵−5<0,∴w随x的增大而减小,∴x=80时,w的值最大,最大值为−35m+1600,由题意,得−35m+1600≥800,解得m≤160,7∴m的最大整数值为22.。