平面法向量的一种简单求法和在求角
法向量求法及应用方法

法向量求法及应用方法法向量是指与一些曲面上的每一点的切平面垂直的向量。
在三维空间中,法向量可以方便地描述曲面的几何特征和方向。
一、法向量的求法:1.平面的法向量:平面的法向量可以通过两个不平行的向量叉积得到。
设平面上两个向量为a和b,法向量n=a×b。
2.曲面的法向量:曲面的法向量可以通过曲面的方程求得。
常见的曲面方程包括参数方程、隐函数方程和显函数方程。
对于参数方程和隐函数方程,可以通过求偏导数来得到曲面的切向量,然后再将切向量进行标准化得到法向量。
例如,对于参数方程x=x(u,v),y=y(u,v),z=z(u,v),法向量可以通过求∂(x,y,z)/∂(u,v)的叉积来得到。
而对于隐函数方程F(x,y,z)=0,可以通过对F(x,y,z)进行偏导数得到一个方程组,然后解这个方程组来得到法向量。
二、法向量的应用方法:1.曲面法向量的判定:通过计算曲面的法向量可以判断曲面的朝向和几何特征。
例如,在渲染图形时,可以通过曲面的法向量来决定光线对曲面的照射效果,以实现更真实的光影效果。
2.曲面法向量的插值和平滑:在计算机图形学中,通常需要对曲面进行插值和平滑处理。
曲面的法向量可以帮助我们在曲面上进行平滑采样。
例如,在曲面细分中,通过计算曲面的法向量来过滤掉尖锐的细分结果,使得细分结果更加平滑自然。
3.曲面的切平面和法向量的切线:对于空间曲线上的点,可以通过曲线的参数方程求得曲线的切线向量。
而对于空间曲面上的点,可以通过曲面的法向量和曲面上其中一点的切平面求得曲线的切向量。
切平面上的切向量和曲面的法向量垂直,并且与曲线相切。
4.计算曲面的面积和体积:曲面的法向量可以用来计算曲面的面积和体积。
对于平面,面积等于法向量的模长;对于曲面,可以通过对曲面分割成小区域然后计算每个小区域的法向量,并对法向量进行积分得到曲面的面积或体积。
5.平面和曲面的方程:法向量可以帮助我们确定平面和曲面的方程。
对于平面,通过平面上一点和法向量,可以得到平面的方程;对于曲面,通过曲面上一点和法向量,可以得到曲面的方程。
平面的法向量怎么求

平面的法向量怎么求
1、建立恰当的直角坐标系。
2、设平面法向量n=(x,y,z)
3、在平面内找出两个不共线的向量,记为a=(a1,a2,a3)b=(b1,b2,b3)
4、根据法向量的定义建立方程组:①n·a=0;②n·b=0
5、解方程组,取其中一组解即可。
3、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角和斜线与平面所成的角互余.利用这个原理也可以证明线面平行。
4、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补。
5、点到面的距离:任一斜线(平面为一点与平面内的连线)在法向量方向的射影。
6、如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量)。
7、利用这个原理也可以求异面直线的距离。
平面法向量的求法法向量怎么求

方法指导:如图2-5,若点B为平面α外一点,点A
1
ab
adcb;2、适合右手定则。
cd
二、平面法向量的应用
1、求空间角
为平面α内任一点,平面的法向量为,则点B到平面α的距离公式为d
三、高考真题新解
例1、已知如图3-1,四棱锥P-ABCD的底面为直角梯形,
AB∥DC,DAB90,PA底面ABCD,且PA=AD=DC=
mn0,mn,即平面A1MC平面A1BD1.
(III).设点A到平面A1MC的距离为d,
mMCMA1(a2,
又MA(
2222
a,a)是平面A1MC的法向量, 22
2|mMA|1
a,0,0),A点到平面A1MC的距离为:da.22|m|
四、用空间向量解决立体几何的“三步曲”
(1)、建立空间直角坐标系(利用现有三条两两垂直的直线,注意已有的正、直条件,相关几何知识的综合运用,建立右手系),用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;、通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;、把向量的运算结果“翻译”成相应的几何意义。
3|m||n|
22
面AMC与面BMC所成二面角的大小为arccos().
33
例2、(本题满分12分)如图3-2,在长方体ABCD-A1B1C1D1中,已知AB=AA1=a,BC,M是AD的中点。(Ⅰ)求证:AD∥平面A1BC;
(Ⅱ)求证:平面A1MC⊥平面A1BD1;(Ⅲ)求点A到平面A1MC的距离。
线线、线面、面面间的位置关系与向量运算的关系设直线l,m的方向向量分别为,,平面,的法向量分别为,。
1.平行关系
高中平面法向量的求法

高中平面法向量的求法高中物理中,平面法向量是一个十分重要的概念。
在日常物理学习中,无论是解析几何还是向量的求解,都会涉及到平面法向量的计算。
平面法向量的求法有多种,下面将会对其进行归纳总结,供大家参考学习。
一、什么是平面法向量在空间中,一个平面的正面和反面是分别存在的,通过平面法向量就可以确定平面的朝向。
平面法向量是一个与平面垂直的向量,其长度可以为任意值,但方向必须与平面法线一致。
平面法向量的两端点可以位于平面上的任意两个不同点,因此平面法向量不唯一。
二、平面法向量的求法1.已知平面方程式求平面法向量如果已知平面方程式Ax+By+Cz+D=0,则平面法向量可以由系数A、B、C直接读出,即法向量的坐标为(A,B,C)。
2.已知平面上的三点求平面法向量如果已知平面上的三点P1(x1,y1,z1)、P2(x2,y2,z2)、P3(x3,y3,z3),则可以通过叉乘运算得到平面法向量。
具体步骤如下:1)连接P1和P2两点,得到向量v1=(x2-x1,y2-y1,z2-z1);2)连接P1和P3两点,得到向量v2=(x3-x1,y3-y1,z3-z1);3)通过叉乘得到平面法向量n=v1×v2。
需要注意的是,如果向量v1和v2所在的直线平行,则无法通过叉乘求得平面法向量。
3.已知平面上一点和平面法向量求平面方程式如果已知平面上的一点P(x0,y0,z0)和平面法向量n,平面方程式可以通过点法式直接得到:Ax+By+Cz+D=0,其中A、B、C为平面法向量n 的坐标,D为-Ax0-By0-Cz0。
本文列举了平面法向量的三种求法,希望能够对广大高中生以及学习物理的同学有所帮助。
在平面法向量的学习过程中,重要的是理解其概念以及如何进行计算,而不是死记硬背公式。
只有通过深入理解,我们才能够在学习中游刃有余,事半功倍。
法向量简便求法

法向量简便求法
在三维空间中,我们经常需要求解一个平面的法向量。
平面的法向量是指垂直于该平面的向量,它的方向和大小都可以用来描述该平面的特征。
在计算机图形学、物理学、机器人学等领域中,求解平面的法向量是一个非常常见的问题。
本文将介绍一种简便的方法——以法向量简便求法。
以法向量简便求法的基本思想是:通过平面上的三个点,计算出两个向量,然后求出这两个向量的叉积,即可得到平面的法向量。
这个方法的优点是简单易懂,计算量小,适用于大多数情况。
具体来说,以法向量简便求法的步骤如下:
1. 选取平面上的三个点A、B、C。
2. 计算向量AB和向量AC。
3. 求出向量AB和向量AC的叉积,即:
N = AB × AC
其中,N就是平面的法向量。
需要注意的是,向量的叉积满足右手法则,即如果将右手的四指从向量AB转向向量AC,那么大拇指所指的方向就是向量的叉积N的方向。
以法向量简便求法的优点在于,它不需要求解平面的方程,也不需要进行矩阵运算,计算量非常小。
同时,这个方法也非常容易理解,即使没有深厚的数学基础,也可以轻松掌握。
需要注意的是,如果三个点A、B、C共线,那么向量AB和向量AC就会共线,此时无法求解平面的法向量。
因此,在使用以法向量简便求法时,需要确保所选取的三个点不共线。
以法向量简便求法是一种简单易懂、计算量小的方法,适用于大多数情况。
在实际应用中,我们可以通过这个方法快速求解平面的法向量,从而更好地描述和分析三维空间中的各种问题。
求二面角的方法

求二面角的方法求二面角的方法二面角是一个非常重要的概念,在数学、物理、化学等领域都有广泛的应用。
它是指两个平面或曲面之间的夹角,也可以理解为一个三维图形中相邻两个面之间的夹角。
在这里,我们将介绍几种求二面角的方法。
方法一:向量法向量法是一种比较简单易懂的方法。
首先,我们需要找到两个平面或曲面上的法向量,然后计算它们之间的夹角即可得到二面角。
具体步骤如下:1. 找到两个平面或曲面上的法向量。
2. 计算这两个法向量之间的夹角,可以使用余弦定理或内积公式进行计算。
3. 将得到的结果转换为度数制即可得到二面角。
例如,假设我们要求一个正四棱锥中底面和侧棱所在平面之间的二面角。
首先,我们需要找到底面和侧棱所在平面上的法向量。
底面上任意一点处垂直于底面且指向外部的单位法向量为(0,0,-1),而侧棱所在平面上任意一点处垂直于该平面且指向内部的单位法向量为(1/√2,0,-1/√2)。
然后,我们可以使用余弦定理计算它们之间的夹角,即cosθ=(0×1/√2+0×0+(-1)×(-1/√2))÷(√(0²+0²+1²)×√((1/√2)²+0²+(-1/√2)²)),得到cosθ=1/3。
将其转换为度数制,即θ≈70.53°,即可得到二面角。
方法二:三角形面积法三角形面积法是另一种求解二面角的方法。
它需要先求出相邻两个面所在平面上的三个顶点,然后计算这三个顶点构成的三角形面积,最后根据正弦定理求出二面角。
具体步骤如下:1. 找到相邻两个面所在平面上的三个顶点。
2. 计算这三个顶点构成的三角形的面积。
3. 根据正弦定理计算出二面角。
例如,假设我们要求一个立方体中相邻两个正方形所在平面之间的二面角。
首先,我们需要找到这两个正方形所在平面上的三个顶点。
可以选择其中一个正方形上任意一点作为第一个顶点,然后在该正方形上选择任意两个相邻的点作为第二和第三个顶点。
平面法向量的快速求解方法

平面法向量的快速求解方法
咱先得知道啥是平面法向量。
简单说呢,平面法向量就是跟这个平面垂直的向量。
那咋求它呢?
有一种挺好用的方法哦。
假如说咱们有一个平面,这个平面是由两个不共线的向量确定的,比如说向量a和向量b。
那这个平面的法向量n就可以设成(x,y,z)。
然后呢,根据法向量和这两个向量都垂直的性质来列方程。
啥叫垂直呢?就是它们的点积为0呀。
那就是n·a = 0,n·b = 0。
这就得到了两个方程,像如果向量a =(a1,a2,a3),向量b =(b1,b2,b3),那就有a1x + a2y+ a3z = 0和b1x + b2y + b3z = 0。
这时候咋解呢?宝子们可别慌。
咱们可以给x或者y或者z先随便赋个值。
比如说,咱令x = 1,然后把这个值代入到那两个方程里,就变成了关于y和z的方程组啦。
解这个方程组就能求出y和z的值啦,这样法向量n就求出来了。
还有一种特殊情况呢。
要是这个平面在坐标轴上有特殊的关系,那求法向量就更简单了。
比如说平面平行于某一个坐标轴,那法向量在这个坐标轴方向上的分量就为0。
就像平面平行于x轴,那法向量就是(0,y,z)这种形式,再根据平面上的向量关系求出y和z就好啦。
宝子们,求解平面法向量其实没那么可怕,只要掌握了这些小技巧,就像找到了小捷径一样。
多做几道题,熟练了之后,一看到求平面法向量,心里就有底了,再也不会抓耳挠腮啦。
加油哦,宝子们,数学的小怪兽咱一个个打败!。
课件2:8.7 立体几何中的向量方法(二)——求空间角和距离

【规律方法】
1.平面法向量的求法
若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,
然后用待定系数法求解,一般步骤如下:
设平面的法向量为n=(x,y,z).
(1)找出(求出)平面内的两个不共线的向量a=(a1,b1,c1),b=(a2,b2,c2).
(2)根据法向量的定义建立关于x,y,z的方程组
的距离为 | BO |=| AB || cos〈AB,n〉| =
| AB n | |n|
.
3. (1)常用方法:利用向量求异面直线所成角、线面角、二面角及空间距 离的方法. (2)数学思想:转化与化归、数形结合、函数与方程.
考点1 向量法求异面直线所成的角
【典例1】(1)(2015·上饶模拟)如图所示,已知三棱
考点3 向量法计算与应用二面角的大小 知·考情
利用空间向量计算与应用二面角大小,是高考考查空间角的一个 热点考向,常与线线、线面、面面位置关系等知识综合以解答题第(2) 或(3)问的形式出现.
明·角度 命题角度1:计算二面角的大小 【典例3】(2014·山东高考)如图,在四棱柱 ABCD-A1B1C1D1中,底面ABCD是等腰梯形, ∠DAB=60°,AB=2CD=2,M是线段AB的中点. (1)求证:C1M∥平面A1ADD1. (2)若CD1垂直于平面ABCD且CD1= 3,求平面C1D1M和平面ABCD所成 的角(锐角)的余弦值.
22
所以 AD 0, 3,0 ,AE (0, 3 , 1),AC (m, 3,0). 22
设平面ADE的法向量为n1=(x1,y1,z1), 则n1 AD 0,n1 AE 0, 解得一个n1=(1,0,0). 同理设平面ACE的法向量为n2=(x2,y2,z2), 则 n2 AC 0,n2 AE 0, 解得一个 n2 ( 3,m, 3m).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面法向量的一种简单求法和在求角、距离中的应用
云南李学元
一、法向量的定义:
与平面垂直的向量叫平面的法向量
(根据定义可知:平面的法向量有多个,方向有两种:向上或向下)二、向量的数量积
a·b=∣a︳︳b∣cos<a,b>
cos<a,b>=
若a=(x1,y1,z1)b=(x2,y2,z2),则a·b=
∣a︳=
三、向量积:a×b
a×b的结果仍然是一个向量(使两个向量的起点相同)
方向:右手手指指向a的方向,自然弯向b,则大拇指所指的方向就是向量a×b的方向(即:a×b垂直平面)
大小:等于a,b为邻边的平行四边形的面积。
如图所示:
a×b
b
α a
(由此我们可以通过求两个向量的向量积求平面的法向量)
a×b的坐标计算
设a=(x1, y1, z1)
b=(x2 , y2, z2)
则:a×b =(︳y1y z1z︱,-︱x1x z1z︱,︱x1x y1y︱)其中:二阶行列式︱a b c d︱=ad-bc
习惯上:作a×b时,把a写在上,把b写在下
作b×a时,把b写在上,把a写在下
练习:已知a=(2,1,0)
b =(-1,2,1)
(1)求a×b。
(2)求b×a
解:a×b=
b×a=
注:根据上述分析要求一个平面的法向量,只要在平面内找出两个同起点的向量作向量积即可。
例:如图所示,正方体ABCD-A1B1C1D1中,棱长为2,E、F分别是DD1、DC的中点。
求平面AEF的一个法向量
解:以D为坐标原点建立坐标系
∴A()D1C1
E()A1 B1
F()E
∴AF=()
AE=() D F C
A B
∴平面AEF的法向量n=( )
四、法向量在求角中的应用。
1、用法向量求线面角。
如图
n a a ΘΘ n
Θ=1
2
π-<a,n> Θ=<a,n>- 1
2
π
两种情况下都有:sinΘ=︱cos<a,n>︱因为
2、用法向量求二面角
n1
Θ
(1)
n2
Θ
n1 (2)
n2
如果两个平面的法向量选取合适,则二面角就等于两个平面的法向量的夹角(如第一种情况)。
因此可以用向量的数量积公式的变形直接求出二面角。
例:如图所示,正方体ABCD-A1B1C1D1中,棱长为2,E、F分别是DD1、DC的中点。
求平面AEF和平面ABCD所成的二面角。
解:以D为坐标原点建立坐标系
∴A()D1C1
E()A1 B1
F()E
∴AF=()
AE=() D F C
A B
∴平面AEF的法向量n1=( )
∴A()
B()
AB=()
∴平面ABCD的法向量n2=()
cos< n1,n2>=
平面AEF和平面ABCD所成的二面角是
五、法向量在求距离中的应用。
1、利用法向量求点到面的距离。
如图所示:
A
Θ
B C
设点A到平面α的距离为d=AC=
因为AC垂直于平面α,所以AC可以看作平面α的一个法向
量n,但需注意AC与n的方向相同或相反,
所以〈AB,n〉=Θ(或=π-Θ),故cosΘ= 所以d= = (其中B是平面内的任意一点,n是已知平面的法向量)
2、利用法向量求两异面直线之间的距离
如图所示:
A C a
Θ
b B O
α D
a,b是两条异面直线,AB是两异面直线的公垂线,过直线a 上任意一点C做平面α的垂线于点O,连接BO,所以BO平行于直线a,且AB=CO,在直线b上任意取一点D,连接OD。
设〈CD,CO〉=Θ,因为CO垂直于平面α,所以CO可以看作平面的一个法向量n。
但需注意CO与n的方向相同或相反。
所以〈,n〉=Θ(或=π-Θ),故cosΘ= 所以两异面直线的距离d=AB=CO=
= = (其中C,D分别是两异面直线a,b上的任意一点,n是由直线a的平行线BO与直线b所确定的平面的法向量)
例:如图所示,正方体ABCD-A1B1C1D1中,棱长为2,E、F 分别是DD1、DC的中点。
(1)点G是A1B1上的一点,且B1G =1
4A1B1。
求点G到平
面AEF的距离。
(2)求异面直线A1D与AC的距离
D1C1
A1G B1
E
D F C
A B。