最新人教版八年级数学下册期中考试试题及答案
人教版八年级下册数学期中考试试题(带答案)

人教版八年级下册数学期中考试试卷一、单选题有意义,则x 的取值可以是A.0B.1C.2D.42.下列计算中,正确的是+=B.2=C.=D.2=3.在Rt △ABC 中,∠B =90°,∠C =30°,AC =2.则BC 的长为A.1B.24.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.1B.2C.3D.45.下列计算正确的是1=±9==1=6.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A.8米B.10米C.12米D.14米7.已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为A.22B.25C.42D.2108.E为矩形ABCD的边CD上的一点,AB=AE=4,BC=2,则∠BEC是A.15°B.30°C.60°D.75°9.如图,在平面直角坐标系中,菱形ABCD的顶点A,B的坐标分别是(0,0),(2,0),∠α=60°,则顶点C在第一象限的坐标是A.(2,2)B.3C.(3,2)D.3310.数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么2()a b 的值为()A.49B.25C.13D.1二、填空题11.比较大小:、“<”或“=”).12.计算:22-=___.13.如图所示,在Rt ABC ∆中,90ACB ∠=︒,CM 是斜边AB 上的中线,E F 、分别为MB BC 、的中点,若1EF =,则AB =_____.14.如图,在平面直角坐标系中,点A,B 的坐标分别为(﹣6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C,则点C 的坐标为__15.如图,在Rt△ABC 中,∠B =90°,AB =8,BC =6,AC 的垂直平分线DE 分别交AB ,AC 于D ,E 两点,则CD 的长为___.16.实数a、b=______.17.如图,在矩形ABCD中,AD=6,对角线AC,BD相交于O,AE⊥BD于E,且AE平分∠BAC,则AB的长为_________三、解答题18.计算:(﹣3)02﹣2×219.如图,ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.20.图1,图2均为正方形网格,每个小正方形的边长均为l,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)画一个直角三角形,且三边长为,2,5;(2)画一个边长为整数的等腰三角形,且面积等于l221.已知2a =bc 、3110b c -=.(1)求b c 、的值;(2)试问以a b c 、、为边能否构成三角形?若能,求出三角形的面积;若不能,说明理由22.在正方形ABCD 中,对角线BD 所在的直线上有两点E、F 满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF 的形状,并说明理由.23.已知:如图,点E,F 分别在□ABCD 的AB,DC 边上,且AE=CF,联结DE,BF.求证:四边形DEBF是平行四边形.24.如图,四边形ACFD是一个边长为b的正方形,延长FC到B,使BC=a,连接AB,使AB=C;E是边DF上的点且DE=a.(1)判断△ABE的形状,并证明你的结论;(2)用含b的式子表示四边形ABFE的面积;(3)求证:a2+b2=c2.25.如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A 运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形,请说明理由;(2)当t为何值时,四边形AQCP是菱形,请说明理由;(3)直接写出(2)中菱形AQCP的周长和面积,周长是cm,面积是cm ².参考答案1.D2.C3.C4.D5.D6.B7.C8.D9.B10.A11.<12.313.414.(4,0)15.6.2516.2b-17.18.10【详解】解:原式=19++=10.19.见解析.【详解】四边形ABCD 是平行四边形,AB CD ∴ ,FAE CDE ∠∠∴=,E 是AD 的中点,AE DE ∴=,又FEA CED ∠∠= ,()ΔFAE ΔCDE ASA ∴≌,CD FA ∴=,又CD AF ,∴四边形ACDF 是平行四边形.20.(1)见解析;(2)见解析【详解】试题分析:根据格点的特征结合勾股定理、等腰三角形的性质依次分析即可.解:(1)如图所示:(2)如图所示:考点:基本作图点评:基本作图是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.21.11;(2)能;三角形的面积为322.【详解】解:(1)∵b,c 3110b c -+=,11=0,11;(2)能.∵22a ==11,211,所以以a b c 、、为边能构成三角形.22+3211)2,∴a 2+b 2=c 2,∴此三角形是直角三角形.∴三角形的面积=12232222.(1)证明见解析(2)菱形【详解】分析:(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF 是菱形,根据对角线垂直的平行四边形是菱形即可判断;详证明:(1)∵四边形ABCD 是正方形,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE 与△ADF 中AB ADABE ADF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE≌△ADF.(2)如图,连接AC,四边形AECF 是菱形.理由:在正方形ABCD 中,OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.点睛:本题考查正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识.23.见解析【详解】∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,即EB∥DF.∵AE=CF,∴AB-AE=CD-CF,即EB=DF.∴四边形DEBF是平行四边形.24.(1)△ABE是等腰直角三角形,证明见解析;(2)b2;(3)证明见解析.【分析】(1)由题意可以得到△ADE≌△ACB,从而得到△ABE是等腰直角三角形;(2)由(1)可得四边形ABFE的面积=正方形ACFD的面积=b2;(3)由(2)可得正方形ACFD的面积=△ABE的面积+△BEF的面积,把a、b、c代入上式即可整理得a2+b2=c2.【详解】解:(1)△ABE是等腰直角三角形,理由如下:∵四边形ACFD 是正方形,∴AC =AD ,∠D =∠DAC =∠ACB =90°,∵CB =a =DE ,∴△ADE ≌△ACB ,∴AB =AE ,∠BAC =∠EAD ,∴∠BAE =90°,∴△ABE 是等腰直角三角形.(2)∵△ADE ≌△ACB ,∴四边形ABFE 的面积=正方形ACFD 的面积=b 2.(3)证明:∵四边形ABFE 的面积=△ABE 的面积+△BEF 的面积,∴正方形ACFD 的面积=△ABE 的面积+△BEF 的面积,∴()()221122b c b a b a =++-,∴22222b c b a =+-,∴a 2+b 2=c 2.25.(1)当t=3s 时,四边形ABQP 为矩形;理由见解析;(2)当t=94s 时,四边形为菱形;理由见解析;(3)15,454.【详解】解:(1)由已知可得,BQ=DP=t,AP=CQ=6﹣t在矩形中,∠B=90°,AD∥BC,当BQ=AP 时,四边形ABQP 为矩形,∴t=6﹣t,得t=3故当t=3s 时,四边形ABQP 为矩形.(2)∵DP=BQ∴AP=QC∵AP∥QC∴四边形为平行四边形∴当AQ=CQ时,四边形AQCP为菱形时,四边形AQCP为菱形,解得t=94,故当t=94s时,四边形为菱形.(3)当t=94时,AQ=154,CQ=154,则周长为:4AQ=4×154=15(cm),面积为:CQ•AB=154×3=454(cm2),故填:15,454。
2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
完整版)人教版八年级下数学期中考试题及答案

完整版)人教版八年级下数学期中考试题及答案花贴到3.5米高的墙上,梯子底部距离墙面的水平距离至少为()米。
答案:2.612.已知函数y=2x+1,若x的值增加2,则y的值增加()。
答案:413.如图,已知三角形ABC中,∠B=90°,AB=3,BC=4,则AC的长度为()。
答案:514.已知函数y=-x²+4x+3,它的最大值为()。
答案:715.如图,已知ABCD是一个正方形,E、F、G、H分别是AB、BC、CD、DA的中点,连接EH、FG,则EH的长度为()。
答案:$\frac{1}{2}$16.已知函数y=3x-2,若x的值减少1,则y的值减少()。
答案:317.如图,已知三角形ABC中,AB=AC,∠B=60°,则∠C的度数为()。
答案:6018.已知函数y=x²-4x+5,它的最小值为()。
答案:119.如图,已知平行四边形ABCD中,∠DAB=110°,∠BCD=70°,则∠BAD的度数为()。
答案:7020.已知函数y=2x-3,若x的值增加3,则y的值增加()。
答案:621.如图,已知矩形ABCD中,AE=AD,BD=6,CE=4,则矩形ABCD的面积为()。
答案:2422.已知函数y=-2x+5,若x的值减少2,则y的值增加()。
答案:423.如图,已知三角形ABC中,∠B=90°,AB=3,BC=4,则AC的平方为()。
答案:2524.已知函数y=x²-2x+1,它的零点为()。
答案:125.如图,在矩形ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF。
1)证明:四边形CEDF是平行四边形;2)已知AB=4,AD=6,∠B=60°,求DE的长度。
解析:1)由题意可知,CE=BC,而F是AD的中点,因此DF=EF,又因为∠CED=∠FED=90°,所以四边形CEDF是平行四边形。
人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
人教版八年级下册数学期中考试试题及答案

人教版八年级下册数学期中考试试卷一、单选题1.二次根式有意义,则x 的取值范围为()A .x >-2B .x≥-2C .x≠-2D .x≥22.下列运算正确的是()A 3=±B 5=-C .2(7=D .23=-3.下列各组线段中,能够组成直角三角形的是()A .6,7,8.B .5,6,7.C .4,5,6.D .7,24,25.4.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()A .88°,108°,88°B .88°,104°,108°C .88°,92°,92°D .88°,92°,88°5.已知△ABC 中,11A B C 23∠∠∠==,则它的三条边之比为()A .B .2C .D .1:4:16.如图所示,数轴上点A 所表示的数为a ,则a 的值是()A-1B C D .-27.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是()A .4cm,6cmB .6cm,8cmC .8cm,12cmD .20cm,30cm8.在□ABCD 中,对角线AC 和BD 交于点O ,点E 是AD 的中点,AB=6,BC=8,BD=12,则△DOE 的周长是()A .24.B .13.C .10.D .8.9.点,,,在同一平面内,从四个条件:①B =B ;②B//B ;③B =B ;④B//B 中任选两个,使四边形BB 是平行四边形,这样的选法有()A .3种B .4种C .5种D .6种10.△ABC 中,AB =15,AC =20,BC 边上的高AD =12,则BC 的长为()A .25B .7C .25或7D .14或4二、填空题11=__________.12.在四边形ABCD 中,已知AB ∥CD ,再增加一个条件可以得到□ABCD ,你添加的条件是__________________.13.在Rt ∆ABC 中,有两条边的长是3和4,则第三边的长是____________.14.已知5y =+-,则2019()x y +=____________.15.如图,在▱ABCD 中,∠DAB 的角平分线交CD 于E ,若DE :EC=3:1,AB 的长为8,则BC 的长为______16.如图,在平面直角坐标系中点A 、B 、O 是平行四边形的三个顶点,则第四个顶点的坐标是_______________.三、解答题17.(1)计算:(2)计算:2+18.已知y=2+求代数式x2+xy+y2的值。
人教版八年级下册数学期中考试试题附答案

人教版八年级下册数学期中考试试卷一、单选题1.下列二次根式中,是最简二次根式的是()AB C D 2.下列各组数中,能构成直角三角形的是()A .4,5,6B .1,1C .6,8,11D .5,12,233.在□ABCD 中,∠B-∠A=30o ,则∠A 、∠B 、∠C 、∠D 的度数分别是()A .95,85,95,85︒︒︒︒B .85,95,85,95︒︒︒︒C .105,75,105,75︒︒︒︒D .75,105,75,105︒︒︒︒4.下列各式计算正确的是()A .=B .=C .=D .5.如图,正方形网格中的ABC ,若小方格边长为1,则ABC 的形状为()A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对6.下面结论中,正确的是()A .对角线相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .对角线互相垂直的四边形是菱形D .对角线互相垂直且相等的四边形是正方形7)A .512B .C .52D 8.下列定理中,逆命题错误的是()A .两直线平行,内错角相等B .直角三角形两锐角互余C .对顶角相等D .同位角相等,两直线平行9.如图,分别以直角△ABC 的三边AB 、BC 、CA 为直径向外作半圆,设直线AB 左边阴影部分面积为S 1,右边阴影部分面积为S 2,则()A .S 1=S 2B .S 1<S 2C .S 1>S 2D .无法确定10.已知1a a +=,则1a a -=()A .1B .1-C .±1D .二、填空题11有意义,则x 的取值范围为______.12.已知菱形两条对角线的长分别为5cm 和12cm ,则这个菱形的面积是________cm 2.13.如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方形纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是___cm .14.已知实数a 、b (b+12)2=0_____.15.若最简二次根式3x ﹣___.16.如图所示,平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:___,使得平行四边形ABCD 为菱形.17.如图,在正方形ABCD 中,E 为AD 上的中点,P 为AB 上的一个动点,若AB =2,则PE+PC 的最小值为______________.18.如图,每个小正方形的边长为1.在△ABC 中,点D 为AB 的中点,则线段CD 的长为__________;三、解答题1920.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD 的形状,并说明理由.21.如图,在四边形ABCD 中,AB CD =,BE DF =;AE BD ⊥,CF BD ⊥,垂足分别为E ,F .(1)求证:ABE △≌CDF ;(2)若AC 与BD 交于点O ,求证:AO CO =.22.如图,四边形ABCD 为平行四边形,E 为AD 上的一点,连接EB 并延长,使BF=BE,连接EC 并延长,使CG=CE,连接FG.H 为FG 的中点,连接DH.(1)求证:四边形AFHD 为平行四边形;(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE 的度数.23.如图,ABC 中,点O 为AC 边上的一个动点,过点O 作直线//BC MN ,设MN 交BC ∠A 的外角平分线CF 于点F ,交ACB ∠内角平分线CE 于E .(1)试说明EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形并证明你的结论;(3)若AC 边上存在点O ,使四边形AECF 是正方形,猜想ABC 的形状并证明你的结论.24.如图,矩形ABCD 的对角线相交于点O ,点E 是OD 的中点,DF //AC 交CE 的延长线于点F ,连接AF .(1)求证:四边形AODF 是菱形;(2)若∠AOB =60°,AB =2,求CF 的长.25.如图,12Rt OA A 中,过2A 作232A A OA ⊥,以此类推,且11223341OA A A A A A A =====L ,记12OA A △面积为1S ,23OA A △面积为2S ,34OA A △面积为3S ……,细心观察图,认真分析各式,然后解答问题:①212+=,12S =②213+=,22S =③214+=,32S =……(1)请写出第n 个等式:______;(2)根据式子规律,线段10OA =______;(3)求出222212310S S S S ++++ 的值.参考答案1.B【解析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式,由此判断各选项可得出答案.【详解】A、被开方数含分母,故此选项错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故此选项正确;C、被开方数含能开得尽方的因数或因式,故此选项错误;D、被开方数含能开得尽方的因数或因式,故此选项错误.故选B.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.B【解析】【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为42+52≠62,所以不能构成直角三角形;B、因为12+12=2,所以能构成直角三角形;C、因为62+82≠112,所以不能构成直角三角形;D、因为52+122≠232,所以不能构成直角三角形.故选:B.【点睛】此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.D【解析】【分析】【详解】解:根据平行四边形的性质,一组对边平行且相等得∠B+∠A=180°,∠-∠=︒30,B A∴∠A=75°,∠B=105°,,ABCD∴∠=∠=︒∠=∠=︒75,105.C AD B故选D4.C【解析】【分析】【详解】解:选项A,8216348=⨯=⨯=;选项B,=;选项C,=选项D,428⨯⨯.所以A、B、D均计算错误,只有C正确.故选:C5.A【解析】【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【详解】解:∵正方形小方格边长为1,∴BC=AC=AB=在△ABC中,∵BC2+AC2=32+18=50,AB2=50,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点睛】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.6.B【解析】【分析】直接利用矩形、菱形、正方形的判定方法分别分析得出答案.【详解】解:A、对角线相等的四边形不一定是矩形,故此选项不合题意;B、对角线互相平分的四边形是平形四边形,正确;C、对角线互相垂直且平分的四边形是菱形,故此选项不合题意;D、对角线互相垂直且相等的平行四边形是正方形,故此选项不合题意;故选:B.【点睛】此题主要考查了命题与定理,正确掌握相关判定定理是解题关键.7.D【解析】【分析】根据二次根式的除法法则进行化简.【详解】=故选D【点睛】掌握二次根式的除法法则和最简二次根式的意义.8.C【解析】【分析】先写出逆命题,再分别分析各题设是否能推出结论,即可得出逆命题是假命题的选项.【详解】A .两直线平行,内错角相等的逆命题是内错角相等,两直线平行,是真命题;B .直角三角形两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;C .对顶角相等的逆命题是相等的两个角是对顶角,是假命题;D .同位角相等,两直线平行的逆命题是两直线平行,同位角相等,是真命题,故选C .【点睛】本题考查了命题与定理以及命题的真假判断,关键是写出逆命题并判断命题的真假,要熟悉课本中的性质定理,正确的命题叫真命题,错误的命题叫做假命题.9.A【解析】【详解】∵△ABC 为Rt △,∴AB 2=AC 2+BC 2又∵S=12πR 2∴S 1=12π(22AB ,S 2=12π(2)2AC +12π(2)2BC =12π(222AC BC +)=12π(2)2AB )=S 1∴S 1=S 2,故选A10.C【解析】【分析】根据完全平方公式的变形即可求解.【详解】∵1a a +=∴2221125a a a a ⎛⎫+=++= ⎪⎝⎭∴2213a a +=∴2221121a a a a ⎛⎫-=+-= ⎪⎝⎭∴1a a-=±1故选C .【点睛】此题主要考查二次根式的运算,解题的关键是熟知完全平方公式的应用.11.3x ≥-且0x ≠【解析】【分析】根据二次根式及分式有意义的条件可直接进行求解.【详解】∴30x +≥且0x ≠,∴3x ≥-且0x ≠;故答案为3x ≥-且0x ≠.【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式要有意义被开方数大于等于0,分式要有意义分母不为0是解题的关键.12.30【解析】【详解】菱形的面积=12×5×12=30(cm 2).故答案为30.13.5【解析】【分析】先将图形展开,再根据两点之间线段最短结合勾股定理求解比较即可.【详解】解:(1)如图所示,将长方体正面与上底面展开后,由勾股定理可得:AB=;(2)如图所示,将长方体正面与右侧面展开后,由勾股定理可得:AB=;5∵5∴最短路线长为5cm,故答案为:5.【点睛】本题考查勾股定理的实际应用,熟悉立体图形的展开图以及灵活分类讨论是解题关键.14.13.【解析】【分析】,(b+12)2≥0(b+12)2=0,(b+12)2=0,解出a,b代入即可..【详解】,(b+12)2≥0(b+12)2=0,(b+12)2=0所以,a=5,b=-12=13故答案为13【点睛】运用非负数性质求解.15.5.【解析】【分析】根据同类二次根式的定义列出方程求解,把x、y的值代入代数式进行计算即可.【详解】由题意得,3x-10=2,2x+y-5=x-3y+11,解得x=4,y=3;当x=4,y=3时,==5【点睛】此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.16.AD=DC(答案不唯一)【解析】【详解】试题分析:由四边形ABCD是平行四边形,添加AD=DC,根据邻边相等的平行四边形是菱形的判定,可使得平行四边形ABCD为菱形;添加AC⊥BD,根据对角线互相垂直的平行四边形是菱形的判定,可使得平行四边形ABCD 为菱形.答案不唯一.17【解析】【分析】作点C关于AB的对称点Q,连接EQ交AB于P,则PE+PC的值最小=EQ,过E作EF⊥BC于F,根据矩形的性质可得EF=AB=2,BF=AE=12AD=1,根据勾股定理即可求解.【详解】解:作点C关于AB的对称点Q,连接EQ交AB于P,则此时,PE+PC的值最小,PE+PC的最小值=EQ,过E作EF⊥BC于F,则四边形ABFE是矩形,∴EF=AB=2,BF=AE=12AD=1,∴QF=3,∴EQ=,【点睛】本题考查正方形的性质、轴对称、勾股定理等知识点,根据两点之间线段最短得到AE即为AP+PE的最小值是解题的关键.18【解析】【分析】根据勾股定理分别求出AB、BC、AC的长度,用勾股定理的逆定理验证△ABC是直角三角形,然后根据直角三角形斜边的中线等于斜边的一半即可得到答案.【详解】解:∵每个小正方形的边长为1,∴根据勾股定理得:CB==,CA ==A B ==∴222 26CB CA AB +==,∴△ABC 是直角三角形(勾股定理的逆定理),又∵点D 为AB 的中点∴12CD AB ==(直角三角形斜边的中线等于斜边的一半).【点睛】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质、勾股定理(222+=a b c ,c 为斜边的长度)、勾股定理的逆定理的应用,判断△ABC 是直角三角形是解题的关键.19.0【解析】【分析】根据二次根式的运算法则即可求出答案;【详解】===0【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.20.△ABD 为直角三角形,理由见解析.【解析】【分析】先在△ABC 中,根据勾股定理求出2AB 的值,再在△ABD 中根据勾股定理的逆定理,判断出AD ⊥AB,即可得到△ABD 为直角三角形.【详解】解:△ABD 为直角三角形理由如下:∵∠C=90°,AC=3,BC=4,.∴222222435AB CB AC =+=+=∵52+122=132222AB AD BD ∴+=,90BAD ∴∠=︒21.(1)见解析;(2)见解析【解析】【分析】(1)由题意易得90AEB CFD ∠=∠=︒,然后由AB CD =,BE DF =可求证;(2)由(1)可得AE CF =,90AEO CFO ∠=∠=︒,则有AOE COF ∠=∠,进而可得AEO CFO ≌,然后问题可求证.【详解】(1)证明:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,∵AB CD =,BE DF =,∴ABE △≌CDF .(2)由(1)ABE △≌CDF ,∴AE CF =,∵AE BD ⊥,CF BD ⊥,∴90AEO CFO ∠=∠=︒,∵AOE COF ∠=∠,∴()AEO CFO AAS ≌∴AO CO =.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.22.(1)证明见解析;(2)∠CBE=70°.【解析】【分析】(1)证明AD ∥BC ,AD=BC ,FH ∥BC ,FH=BC ;(2)∠CBE 是等腰△CBE 的底角,求出顶角∠ECD 即可.【详解】(1)证明:∵BF=BE,CG=CE,∴BC∥12FG,BC=12FG又∵H是FG的中点,∴FH∥12FG,FH=12FG,∴BC∥FH,且BC=FH,又∵四边形ABCD是平行四边形,∴AD∥BC,∴AD∥FH,∴四边形AFHD是平行四边形;(2)∵四边形ABCD是平行四边形,∠BAE=60°,∴∠BAE=∠DCB=60°,又∵∠DCE=20°,∴∠ECB=∠DCB-∠DCE=60°-20°=40°,∵CE=CB,∴∠CBE=∠BEC=12(180°-∠ECB)=12(180°-40°)=70°.【点睛】此题考查了平行四边形的判定.考查平行四边形的判定方法,具体选用哪种方法,需要根据已知条件灵活选择;把所求角与已知角集中到同一个三角形中.23.(1)证明过程见解析;(2)当点O运动到AC中点处时,四边形AECF是矩形,证明过程见解析;(3)ABC是直角三角形,证明过程见解析;【解析】【分析】(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.【详解】解:(1)∵CE平分ACB∠,∴ACE BCE∠=∠,∵//BC MN ,∴OEC ECB ∠=∠,∴OEC OCE ∠=∠,∴OE OC =,同理OC OF =,∴OE OF =.(2)当点O 运动到AC 中点处时,四边形AECF 是矩形.如图,AO CO EO FO ==,,∴四边形AECF 为平行四边形,∵CE 平分ACB ∠,∴12ACE ACB ∠=∠,同理,12ACF ACG ∠=∠,∴()111809022ECF ACE ACF ACB ACG ∠=∠+∠=∠+∠=⨯︒=︒,∴四边形AECF 是矩形.(3)ABC 是直角三角形,∵四边形AECF 是正方形,∴AC EN ⊥,故90AOM ∠=︒,∵//BC MN ,∴BCA AOM ∠=∠,∴90BCA ∠=︒,∴ABC 是直角三角形.【点睛】本题考查了平行线,角平分线,等腰三角形的判定与性质,正方形的性质,矩形的判定以及平行四边形的判定,解本题的关键是证明EO=OF .24.(1)见解析;(2)【解析】【分析】(1)根据矩形的性质得出AC =BD ,OA =OC ,OB =OD ,求出OA =OC =OD =OB ,根据平行线的性质得出∠FDE =∠COE ,根据全等三角形的判定推出△FED ≌△CEO ,根据全等三角形的性质得出DF =OC ,求出AO =DF ,根据菱形的判定得出即可;(2)求出△DOC 是等边三角形,求出OC =DC =2,求出AF =OD =AO =2,求出AC ,求出∠AFC =90°,根据勾股定理求出答案即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,OB =OD ,∴OA =OC =OD =OB ,∵DF ∥AC ,∴∠FDE =∠COE ,∵点E 是OD 的中点,∴DE =OE ,在△FED 和△CEO 中,FDE COEDE OE FED CEO∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FED ≌△CEO (ASA ),∴DF =OC ,∵OA =OC ,∴DF =AO ,∵DF ∥AC ,∴四边形AODF 是平行四边形,∵AO =OD ,∴四边形AODF 是菱形;(2)解:∵∠AOB =60°,∴∠DOC =∠AOB =60°,∵OD =OC ,∴△DOC 是等边三角形,∵AB =CD =2,∴AO =CO =DC =2,∵四边形AODF 是菱形,∴AF =OD =2,∵E 为OD 中点,∴∠CEO =90°,∴∠FCA =90°﹣∠DOC =30°,∵DF ∥AC ,∴∠DFC =∠FCA =30°,∵∠DOC =60°,∴∠AOD =180°﹣60°=120°,∵四边形AODF 是菱形,∴∠AFD =∠AOD =120°,∴∠AFC =120°﹣30°=90°,由勾股定理得:CF =【点睛】本题考查了矩形的性质,菱形的判定,勾股定理,平行线的性质,全等三角形的性质和判定,等边三角形的性质和判定等知识点,能综合运用知识点进行推理和计算是解此题的关键.25.(1)211,n n S +=+=(2;(3)554【解析】【分析】(1)根据题中所给①②③式可得出一般规律,然后问题可求解;(2)由(1)可直接进行求解;(3)根据规律然后结合有理数的混合运算规律可进行求解.【详解】解:(1)由①212+=,12S =②213+=,22S =③214+=,32S =……∴第n 个等式为211,2n n S +=+=;故答案为211,n n S +=+=(2)由(1)可得:10OA =;(3)由(1)中规律可得:222212310S S S S ++++ ()12101551231044444=+++=⨯++++=L L .【点睛】本题主要考查勾股定理的应用,熟练掌握相关知识,准确运算是解题的关键.。
新人教版八年级数学下册期中考试卷及答案【完美版】

新人教版八年级数学下册期中考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.如果a ,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.计算:16=_______.3.使x 2-有意义的x 的取值范围是________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数.(1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、C6、C7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、43、x 2≥4、10.5、26、32°三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3.3、(1)1;(2)m >2;(3)-2<2m -3n <184、略.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
2024年人教版初二数学下册期中考试卷(附答案)

一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 17B. 18C. 19D. 202. 在下列各数中,最大的数是:A. 0.5B. 0.7C. 0.8D. 0.93. 下列哪个图形是正方形?A. 圆B. 矩形C. 正方形D. 三角形4. 下列哪个数是偶数?A. 3B. 4C. 5D. 75. 下列哪个数是分数?A. 0.5B. 0.6C. 0.7D. 0.8二、判断题(每题1分,共5分)1. 2 + 3 = 5 ()2. 4 × 5 = 20 ()3. 6 ÷ 2 = 3 ()4. 7 4 = 3 ()5. 8 + 9 = 17 ()三、填空题(每题1分,共5分)1. 9 + 5 = __2. 8 × 6 = __3. 7 ÷ 7 = __4. 6 3 = __5. 5 × 5 = __四、简答题(每题2分,共10分)1. 请简述加法的定义。
2. 请简述减法的定义。
3. 请简述乘法的定义。
4. 请简述除法的定义。
5. 请简述分数的定义。
五、应用题(每题2分,共10分)1. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?2. 小明有10个橘子,他吃掉了4个,还剩下多少个?3. 小明有8个橙子,他吃掉了2个,还剩下多少个?4. 小明有6个梨,他吃掉了3个,还剩下多少个?5. 小明有7个葡萄,他吃掉了1个,还剩下多少个?六、分析题(每题5分,共10分)1. 请分析加法、减法、乘法、除法之间的关系。
2. 请分析分数与整数之间的关系。
七、实践操作题(每题5分,共10分)1. 请用实践操作的方法验证加法的定义。
2. 请用实践操作的方法验证减法的定义。
【答案】一、选择题1. A2. D3. C4. B5. A二、判断题1. √2. √3. √4. √5. √三、填空题1. 142. 483. 14. 35. 25四、简答题1. 加法是将两个数相加得到一个和的运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比购买一块 B 型小黑板多用 20 元,且购买 5 块 A 型小黑板和 4 块 B 型小黑板共需 820 元. (1)求购买一块 A 型小黑板、一块 B 型小黑板各需多少元? (2)根据实验中学实际情况,需从人民商场购买 A、B 两种型号的小黑板共 60 块,要 求购买 A、B 两种型号的小黑板总费用不超过 5240 元,并且购买 A 型小黑板的数量至
A.
B.
C.
D.
10. 如图,每个小正方形的边长都为 1,A、B、C 是小正方形各顶点,则
∠ABC 的度数为( )
A. B. C. D.
1 / 63
精品学习资料--------------极力推荐
11. 已知关于 x 的不等式组的
解集为 3≤x<5,则 的值为( )
A. B. C. D.
12. 如图,ABCD 是一张矩形纸片,AB=3cm,BC=4cm,将纸片
成立的条件是( )
A. B. C. D.
7. 下列各式计算正确的是( )
A.
轴上,点 B 与点 C 关于点 A 对称,A、 B 两点对应的实数分别是 和-1,则点 C 所对应的实数 是( )
A.
B.
C.
D.
9. 在△ABC 中,BC=8cm,AC=5cm,若△ABC 的周长为 xcm,则 x 应满足( )
,而-11<- <-10,8< <9,从而可求-11<x<9,进而可求 A、B 之间
整数的个数.本题主要考查了无理数的估算,解题关键是确定无理数的整数部分
即可解决问题.
少占总数量的 ,请你通过计算,求出购买 A、B 两种型号的小黑板有哪几种方案?
四、解答题(本大题共 5 小题,共 54.0 分)
20. (1)已知 a、b 为实数,且
+(1-b)
(2)若 x 满足 2(x2-2)3-16=0,求 x 的值.
21. 计算下列各题
=0,求 a2017-b2018 的值;
【解析】
解:A、负数没有平方根,0 的平方根是 0,只有正数有两个平方根,故本选项错误;
B、当 a=2,b=-2 时,a2=b2,但 a 和 b 不相等,故本选项错误;
C、 =2,故本选项错误;
D、-8 的立方根是-2,故本选项正确;故选:D.根据负数没有平方根,0 的平方根是
0,正数有两个平方根即可判断 A,举出反例即可判断 B,根据算术平方根求出
(1)
++
-
(2)( + )
(3)(2 + -6 )
÷ 2 / 63
精品学习资料--------------极力推荐
22. (1)解不等式组:
并把解集在数轴上表示出来.
(2)解不等式组:
23. 如图,四边形 ABCD 中,AD=4,AB=2 (1)求证:BD⊥BC; (2)计算四边形 ABCD 的面积.
C、 = ,故选项错误;
D、 =3 ,故选项错误.故选:B.同类二次根式是化为最简二次根式后,被
开方数相同的二次根式称为同类二次根式.把每个根式化简即可确定.本题考查
同类二次根式的概念,正确对根式进行化简是关键.
3.【答案】C
【解析】
解:设 A、B 之间的整数是 x,那么- <x< ,而-11<- <-10,8< <9,∴-11<x<9, AB 之间的整数有 19 个.故选:C.先设 AB 之间的整数是 x,于是- <x<
沿 EF 折叠,点 B 恰与点 D 重合,则折痕 EF 的长等于( )
A.
B.
C.
D.
二、填空题(本大题共 6 小题,共 18.0 分) 13. 已知 533=148877,那么 5.33 等于______. 14. 已知 x-2= ,则代数式(x+2)2-8(x+2)+16 的值等于______. 15. 设 的整数部分为 a,小数部分为 b,则 b( +a)的值为______.
A. 21 个 B. 20 个 C. 19 个 D. 18 个
4. 不等式 9-3x<x-3 的解集在数轴上表示正确的是( )
A.
B.
C.
D.
5. 如图,点 E 在正方形 ABCD 内,满足∠AEB=90°,AE=6,BE=8, 则阴影部分的面积是( )
A. 48B. 60C. 76D. 80
6. 等式 • =
=2,即可判断 C,求出-8 的立方根即可判断 D.本题考查了平方根,立方根,算
术平方根的应用,能理解平方根,立方根,算术平方根的定义是解此题的关键,
题目比较好,难度不大.
3 / 63
精品学习资料--------------极力推荐
2.【答案】B
【解析】
解:A. =2
,故选项错误;
B、 =2 ,故选项正确;
,BC=8,CD=10,∠BAD=90°.
24. 如图,在⊙O 中,DE 是⊙O 的直径,AB 是⊙O 的弦,AB 的中点 C 在直径 DE 上.已知 AB=8cm,CD=2cm (1)求⊙O 的面积; (2)连接 AE,过圆心 O 向 AE 作垂线,垂足为 F,求 OF 的长.
答案和解析
1.【答案】D
精品学习资料--------------极力推荐
最新人教版八年级数学下册期中考试试题及答案
一、选择题(本大题共 12 小题,共 36.0 分) 1. 下列说法正确的是( )
A. 任何数都有两个平方根 B. 若
,则 C.
D. 的立方根是
2. 下列二次根式中,能与 合并的是( )
A. B. C. D.
3. 数轴上点 A 表示的数为- ,点 B 表示的数为 ,则 A、B 之间表示之间表示整数的 点有( )
16. 已知关于 x 的不等式组
只有四个整数解,则实数 a 的取值范围是______.
17. 已知实数 a、b、c 在数轴上的位置如图所示,化简代数式
|a|-
+
- 的结果等于______.
18. 观察下列式子: 当 n=2 时,a=2×2=4,b=22-1=3,c=22+1=5 n=3 时,a=2×3=6,b=32-1=8,c=32+1=10 n=4 时,a=2×4=8,b=42-1=15,c=42+1=17… 根据上述发现的规律,用含 n(n≥2 的整数)的代数式表示上述特点的勾股数 a=______, b=______,c=______.