SPSS 3种相关系数的区别
spss相关性分析原理

spss相关性分析原理
SPSS相关性分析是一种统计方法,用于研究两个变量之间的
关系。
它通过计算变量间的相关系数来衡量它们之间的相关性强度和方向。
相关系数可以是皮尔逊相关系数(Pearson correlation coefficient)或斯皮尔曼等级相关系数(Spearman rank correlation coefficient)。
皮尔逊相关系数是用于度量两个连续变量之间线性相关的指标,它的取值范围从-1到1。
当相关系数为正时,表示变量之间存
在正相关关系;当相关系数为负时,表示变量之间存在负相关关系;当相关系数接近于0时,表示两个变量之间没有线性关系。
斯皮尔曼等级相关系数则用于度量两个有序变量之间的相关性,它将原始数据转换为变量的等级顺序,然后计算等级之间的相关系数。
它适用于非线性关系和存在异常值的情况。
在进行相关性分析之前,需要检查两个变量是否满足相关性分析的前提条件,如数据的正态性、线性关系和离群值的影响等。
如果数据不满足这些前提条件,可能需要进行数据转换或选择其他适当的分析方法。
相关性分析的结果通常用相关系数和p值来解释。
相关系数越接近于1或-1,则表示变量之间的相关性越强;p值则用于检
验相关系数是否显著,p值越小表示相关性越显著。
总体而言,相关性分析可以帮助研究者理解变量之间的关系,从而对研究对象或现象进行更深入的探索。
spss 关联分析

偏相关分析
剔除带有缺失值的所有个案。 仅剔除当前分析的两个变量值 是缺失值的个案。
距离分析
基本概念:
距离分析是对观测量之间或变量之间相似或不相似的成都的一种测度,是 计算一对变量之间或一对管测量之间的广义的距离。这些相似性或者距离测度 可以用于其他分析过程,例如因子分析聚类分析等。 距离分析过程中,主要利用变量间的相似性测度和不相似性测度度量两者 之间的关系。
当两个变量同时与第三个变量相关时,将 第三个变量的影响剔除,只分析另外两个 变量之间相关程度的过程。 是对变量之间相似或不相似程度的一种测 度,是计算一对变量之间的广义的距离, 以便用于其他分析过程,如聚类分析。
双变量分析
Pearson简单相关系数:连续变量、正态分布、线性关系、成对数 据、样本容量大于30 Spearman等级相关系数:原始变量的分布不作要求,属于非参数 统计方法,适用范围要广些,但统计效能要低一些。 Kendall's tau-b相关系数:适用于两个分类变量均为有序分类的情况。
距离分析
不相似性测度:
对定距型变量间距离描述的统计量,主要有欧氏距离(Euclidean distance )、平方欧式距离(Squared Euclidean distance )、契比雪夫 距离(Chebychev)、Block距离(Block)、闵可夫斯基距离 (Minkowski)等。 对定序型变量之间距离的描述,主要有卡方相似测度(Chi-Square measure)和Phi方不相似测度(Phi-Square measure)两种。 对二值(只有两种取值)变量之间的距离描述,主要有欧式距离 (Euclidean distance)、平方欧式距离(Squared Euclidean distance ) 和Lance and Williams不相似性测度(Lance and Williams)等。
第8章SPSS的相关分析

第8章SPSS的相关分析学习目标:1.明确相关关系的含义以及相关分析的主要目标。
2.掌握散点图的含义,熟练掌握绘制散点图的具体操作。
3.理解简单相关系数、Spearman相关系数、Kendall相关系数的基本原理,熟练掌握计算各种相关系数的具体操作,能够读懂分析结果。
4.理解偏相关系分析的主要目标以及与相关分析之间的关系,熟练掌握偏相关分析的具体操作,能够读懂分析结果。
8.1 相关分析相关分析是分析客观事物之间关系的数量分析方法,明确客观事物之间有怎样的关系对理解和运用相关分析是极为重要的。
客观事物之间的关系大致可归纳为两大类关系,它们是函数关系和统计关系。
相关分析是用来分析事物之间统计关系的方法。
所谓函数关系指的是两事物之间的一种一一对应的关系,即荡一个变量x取一定值时,另一变量y可以依确定的函数取唯一确定的值。
例如,商品的销售额与销售量之间的关系,在单价确定时,给出销售量可以唯一地确定出销售额,销售额与销售量之间是一一对应的关系,且这个关系可以被y=Ρx(y表示销售额,Ρ表示单价,x表示销售量)这个数学函数精确地描述出来。
客观世界中这样的函数关系有很多,如圆面积和圆半径、出租车费和行程公里数之间的关系等。
另一类普遍存在的关系是统计关系。
统计关系指的是两事物之间的一种非一一对应的关系,即当一个变量x取一定值时,另一变量y无法依确定的函数取唯一确定的值。
例如,家庭收入和支出、子女身高和父母身高之间的关系等。
这些事物之间存在一定的关系,但这些关系却不能像函数关系那样可用一个确定的数字函数描述,且当一个变量x取一定值时,另一变量y的值可能有若干个。
统计关系可再进一步划分为线性相关和非线性相关关系。
线性相关又可分为正线性相关和负线性相关。
正线性相关关系指两个变量线性的相随变动方向相同,而负线性相关关系指两个变量线性的相随变动方向相反。
事物之间的函数关系比较容易分析和测度,而事物之间的统计关系却不像函数关系那样直接,但确实普遍存在,并且有的关系强,有的关系弱,程度各有差异。
利用SPSS软件分析变量间的相关性

利用SPSS软件分析变量间的相关性利用SPSS软件分析变量间的相关性引言SPSS(Statistical Package for the Social Sciences)是一款功能强大的统计软件,广泛应用于统计学、社会科学研究以及市场调研等领域。
利用SPSS软件可以对数据进行有效的整理、分析和可视化展示。
其中,分析变量之间的相关性是一个重要的统计问题,能够帮助我们揭示变量之间的关联性和趋势。
本文将介绍如何使用SPSS软件进行变量相关性分析,并通过实例进行详细说明。
一、相关性的概念和意义相关性是指两个或多个变量之间的关联程度。
在统计学中,我们常用相关系数来衡量变量之间的相关性。
变量之间的相关性分为正相关、负相关和无相关三种情况。
正相关表示两个变量的值趋势向着同一方向变化;负相关表示两个变量的值趋势向着相反的方向变化;无相关表示两个变量之间没有明显的变化趋势。
变量间的相关性分析在许多领域都具有重要的意义。
在市场调研中,通过分析产品价格与销量之间的相关性,可以帮助企业优化定价策略;在医学研究中,分析某种药物的剂量与疗效之间的相关性,可以指导药物的使用和治疗方案的制定。
二、SPSS软件基础操作在进行相关性分析之前,我们首先需要掌握SPSS软件的基础操作。
以下是常用的几个操作步骤:1. 导入数据:在SPSS软件中,我们可以通过导入Excel表格、CVS文件等方式将数据导入软件中。
2. 创建变量:在导入数据后,有时需要创建新的变量。
例如,在分析一个销售数据表格时,我们可以通过销售额除以销售数量来创建一个新的变量,表示平均每笔交易的金额。
3. 数据整理:为了进行相关性分析,我们有时需要对数据进行整理和清洗。
例如,去掉重复值、缺失值或异常值。
4. 变量选择:根据需要,我们可以选择特定的变量进行相关性分析。
三、SPSS软件中的相关性分析在SPSS软件中,相关性分析是一个比较简单的操作。
以下是基本的步骤:1. 打开SPSS软件,选择“Analyze(分析)”菜单栏,再选择“Correlate(相关性)”,点击“Bivariate(双变量)”。
SPSS相关统计学指标

SPSS相关统计学指标SPSS(Statistical Package for the Social Sciences)是一款统计学软件,广泛用于社会科学领域的数据分析和统计建模。
在SPSS中,有很多常用的统计学指标可以用来描述和解释数据。
本文将介绍一些常见的SPSS相关统计学指标。
1. 平均数(Mean):平均数是一组数据的数值总和除以数据个数的结果。
通过计算平均数,可以了解数据的中心趋势。
2. 中位数(Median):中位数将一组数据按照大小排序,然后取中间位置的数值作为中位数。
对于偏态数据集,中位数通常更适合表示数据的中心位置。
3. 众数(Mode):众数是一组数据中出现次数最多的数值。
众数可以用来表示数据的最常见取值。
4. 标准差(Standard Deviation):标准差是一组数据的离散程度的度量指标。
标准差越大,表示数据的离散程度越大。
5. 方差(Variance):方差是一组数据的离散程度的度量指标,计算方法为每个数据值与平均数之差的平方的平均数。
6. 百分位数(Percentiles):百分位数将一组数据从小到大排序后,按百分比划分数据的位置。
例如,第50百分位数即为中位数。
7. 四分位数(Quartiles):四分位数将一组数据从小到大排序后,将数据划分为四个等份。
第一四分位数将数据划分为25%、第二四分位数为50%(即中位数)、第三四分位数为75%。
8. 偏态(Skewness):偏态用来衡量数据分布的对称性。
正偏态表示数据右偏,负偏态表示数据左偏。
9. 峰度(Kurtosis):峰度用来衡量数据分布的峰态或尖锐程度。
正峰度表示数据分布比较尖锐,负峰度表示数据分布比较平坦。
10. 相关系数(Correlation coefficient):相关系数衡量两个变量之间的线性关系强度和方向。
相关系数的取值范围为-1到1,绝对值越接近1表示关系越强。
11. 回归系数(Regression coefficient):对于回归分析,回归系数表示自变量对因变量的影响程度。
SPSS的相关分析和回归分析

n
( Xi X )(Yi Y )
r
11
n
n
( Xi X )2 (Yi Y )2i 1i 1源自2021/3/611
计算相关系数
(一)相关系数 (3)种类:
n
n
Di2 (Ui Vi )2
i 1
i 1
R
1
6 n(n2
Di2 1)
• Spearman相关系数:用来度量定序或定类变量间的线性相
第八章 SPSS的相关分析和回归分 析
2021/3/6
1
概述
(一)相关关系
(1)函数关系:(如:销售额与销售量;圆面积和圆半径.)
是事物间的一种一一对应的确定性关系.即:当一 个变量x取一定值时,另一变量y可以依确定的关 系取一个确定的值
(2)统计关系:(如:收入和消费;身高的遗传.)
事物间的关系不是确定性的.即:当一个变量x取 一定值时,另一变量y的取值可能有几个.一个变 量的值不能由另一个变量唯一确定
300
•散点图在进行相
200
关分析时较为粗略
100
领导(管理)人数
2021/3/6
0
Rsq = 0.7762
8 200 400 600 800 1000 1200 1400 1600 1800
普通职工数
计算相关系数
(一)相关系数 (1)作用:
– 以精确的相关系数(r)体现两个变量间的线性 关系程度.
2021/3/6
17
计算相关系数
(五)应用举例
• 通过27家企业普通员工人数和管理人员数,利用 相关系数分析人数之间的关系
– *表示t检验值发生的概率小于等于0.05,即总体无相 关的可能性小于0.05;
SPSS交流——相关分析与相关系数

SPSS交流——相关分析与相关系数2010-06-14 16:20:41| 分类:spss统计| 标签:|字号大中小订阅相关分析是描述两变量间是否有线性关系的分析方法,用相关系数r来描述。
相关关系的特征体现在两个方面,一个是方向(是正相关、负相关还是零相关?),另一个是强度(到底密切的程度有多大)。
如果x,y变化的方向一致,就是正相关,如身高与体重的关系,r>0;负相关:如果x,y变化的方向相反,就是负相关,如吸烟与肺功能的关系,r<0。
一、相关关系的判定ü |r|>0.95 存在显著性相关;ü |r|≥0.8 高度相关;ü 0.5≤|r|<0.8 中度相关;ü 0.3≤|r|<0.5 低度相关;ü |r|<0.3 关系极弱,认为不相关ü r=0无线性相关:。
如果变量Y与X间是函数关系,则r=1或r=-1;如果变量Y与X间是统计关系,则-1<r<1。
二、常用的相关系数2.1 Pearson相关系数亦称积差相关系数(coefficient of product-moment correlation),用r表示样本相关系数,P表示总体相关系数。
它是说明有直线关系的两变量间,相关关系密切程度和相关方向的统计指标。
计算公式:注意事项:ü变量是正态分布,没有奇异值噪音。
所以做相关性分析之前要去除可能的奇异值,而且如果不是正态分布,可以通过取对数来近似获得。
ü另外,对于某些数据样本,考查两个变量之间的相关性,按照某类属性将样本分割,分别考查,或许会获取更有价值的知识。
2.2 Spearman相关系数又称秩相关系数、等级相关系数,或顺序相关系数,是利用两变量的秩次大小作线性相关分析,具体是将两要素的样本值按数据的大小顺序排列位次,以各要素样本值的位次代替实际数据而求得的一种统计量。
Spearman对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。
利用SPSS软件分析变量间的相关性

利用SPSS软件分析变量间的相关性利用SPSS软件分析变量间的相关性简介:在社会科学研究中,了解变量之间的相关性是十分重要的。
它可以帮助我们理解变量之间的关系,并且有助于预测或解释研究现象。
SPSS(Statistical Package for the Social Sciences)软件是一种广泛应用于社会科学研究领域的统计分析软件。
本文将以通过SPSS软件分析变量之间的相关性为主题,介绍相关性概念、相关性的测量和分析方法。
相关性的概念:相关性是指在两个变量之间存在一种关系,当一个变量变化时,另一个变量也会相应地变化。
相关性可以是正相关、负相关或无相关。
正相关表示两个变量随着变化趋势的一致性增加或减少;负相关表示两个变量随着变化趋势的相反性增加或减少;无相关表示两个变量之间没有明显的关系。
相关性的测量方法:常用的相关性测量方法有皮尔逊相关系数和斯皮尔曼等级相关系数。
皮尔逊相关系数适用于度量变量之间的相关性,而斯皮尔曼等级相关系数适用于顺序变量之间的相关性。
SPSS中的相关性分析步骤:下面将以一个虚拟数据集为例,简要介绍在SPSS中进行相关性分析的步骤。
步骤一:打开SPSS软件并导入数据集首先,打开SPSS软件,并导入包含变量的数据集。
数据可以是文本文件、Excel文件或SPSS数据文件。
步骤二:选择相关性分析选项点击菜单栏中的“分析”选项,然后选择“相关性”子菜单。
在弹出的窗口中,选择需要分析的变量,并将它们添加到右侧窗格中。
步骤三:选择相关系数在相关性分析窗口中,选择使用的相关系数类型。
默认情况下,SPSS使用皮尔逊相关系数。
如果变量不符合正态分布的要求,可以选择斯皮尔曼等级相关系数。
步骤四:运行相关性分析点击“确定”按钮,SPSS将生成相关性分析结果。
相关性表将显示出所选变量之间的相关系数。
步骤五:解读结果通过查看相关性表,可以了解每对变量之间的相关系数。
相关系数范围从-1到1,接近1表示强正相关,接近-1表示强负相关,接近0表示无相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3种相关系数的区别
在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述.
Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。
对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。
Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。
Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。
对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格;
计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。
计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析
Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料
Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料
注:
1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关
2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或Kendall相关。
3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。
则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。
对一般情况默认数据服从正态分布的,故用Pearson分析方法。
在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项:
Pearson
Kendall's tau-b
Spearman:Spearman
spearman(斯伯曼/斯皮尔曼)相关系数
斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。
它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法”
斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究
Kendall's相关系数
肯德尔(Kendall)W系数又称和谐系数,是表示多列等级变量相关程度的一种方法。
适用这种方法的数据资料一般是采用等级评定的
方法收集的,即让K个评委(被试)评定N件事物,或1个评委(被试)先后K次评定N件事物。
等级评定法每个评价者对N件事物排出一个等级顺序,最小的等级序数为1 ,最大的为N,若并列等级时,则平分共同应该占据的等级,如,平时所说的两个并列第一名,他们应该占据1,2名,所以它们的等级应是1.5,又如一个第一名,两个并列第二名,三个并列第三名,则它们对应的等级应该是
1,2.5,2.5,5,5,5,这里2.5是2,3的平均,5是4,5,6的平均。
肯德尔(Kendall)U系数又称一致性系数,是表示多列等级变量相关程度的一种方法。
该方法同样适用于让K个评委(被试)评定N 件事物,或1个评委(被试)先后K次评定N件事物所得的数据资料,只不过评定时采用对偶评定的方法,即每一次评定都要将N个事物两两比较,评定结果如下表所示,表格中空白位(阴影部分可以不管)填入的数据为:若i比j好记1,若i比j差记0,两者相同则记0.5。
一共将得到K张这样的表格,将这K张表格重叠起来,对应位置的数据累加起来作为最后进行计算的数据,这些数据记为γij。
正态分布的相关检验
对来自正态总体的两个样本进行均值比较常使用T检验的方法。
T检验要求两个被比较的样本来自正态总体。
两个样本方差相等与不等时用的计算T值的公式不同。
进行方差齐次性检验使用F检验。
对应的零假设是:两组样本方差相等。
P值小于0.05说明在该水平上否定原假设,方差不齐;否则两组方差无显著性差异。
U检验时用服从正态分布的检验量去检验总体均值差异情况的方法。
在这种情况下总体方差通常是已知的。
虽然T检验法与U检验法所解决的问题大体相同,但在小样本(样本数n)=30作为大样本)且均方差未知的情况下就不能用U检验法了。
均值检验时不同的数据使用不同的统计量
使用MEANS过程求若干组的描述统计量,目的在于比较。
因此必须分组求均值。
这是与Descriptives过程不同之处。
检验单个变量的均值是否与给定的常数之间存在差异,用One-Sample T Test 单样本T检验过程。
检验两个不相关的样本是否来自来具有相同均值的总体,用Independent-Samples T test 独立样本t检验过程。
如果分组样本不独立,用Paired Sample T test 配对t检验。
如果分组不止两个,应使用One-Way ANOVO一元方差分析(用于检验几个独立的组,是否来自均值相等的总体)过程进行单变量方差分析。
如果试图比较的变量明显不服从正态分布,则应该考虑使用一种非参数检验过程Nonparametric test.
如果用户相比较的变量是分类变量,应该使用Crosstabs功能。
当样本值不能为负值时用右侧单边检验。