逻辑门限控制原理
ABS系统的控制原理

控制方法
• ABS系统的控制效果主要取决于系统所采 用的控制方法和控制通道 .
• 下面以博世公司研制的ABS系统为例,双 说明采用逻辑门限值控制方法进行制动防 抱死的控制过程。
• 设定系统的角加速度控制门限值为十a,角减 速度控制门限值为一a;滑移率控制下门限值 为 Sl,渭移率控制上门限值为 S2。
• 如果车轮的角加速度超过了第一控制门 限值十a,则继续进行保压,此时可能会出 现两种情况,一是车轮的角加速度再次低 于控制门限值十a,说明车轮已恢复到稳定 区域;二是因附着力系数突然增大,而使 车轮的角加速度超过设定的第二角加速度 控制门限值十Ak。为适应附着力系数的增 大,使制动压力再次增大 .
• 仅以固定的滑移率门限作为防抱死控制门 限,难以保证在各种路面情况下都能获得最 佳的控制效果、如果将车轮的加、减速度 控制门限和滑移率控制门限值结和起来就 有助于对路面情况的识别,提高系统的自适 应控制能力。
在制动的初始,随着制动压力上升,车轮产生制动减速度.当车轮达到某一减 速度值时(即A点)说明车轮有抱死倾向,车轮状态已处于不稳定的区域,此时
3.控制过程第三阶段(制动压力减小阶段):
• 当车轮的参考滑移率大于滑移率控制下门限值 S1时,说明车轮已进入不稳定区域,制动压力 减小.
4.控制过程第四阶段 (制动压力保持阶段):
• 由于车轮的制动压力减小,车轮在整个汽车的 惯性作用下,开始加速,当车轮的角减速度小 于设定的角减速度控制门限值一a时,制动压力 保持.
8.控制过程第八阶段 到车轮的角减速度再次低于控制门限值一a 后,开始进入制动压力减小阶段;此时不再 考虑参考滑移率是否超过控制门限值Sl,从 而进入下一循环的防抱死制动控制,完成了 一个防抱死控制循环过程。
毕业论文--汽车典型ABS的结构原理与故障分析

汽车典型ABS的研究Representative ABS of automobileresearch(申请学位)独创性声明本人声明所呈交的论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得长春汽车工业高等专科学校或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
论文作者签名:刘玉钊签字日期:年月日学位论文版权使用授权书本论文作者完全了解长春汽车工业高等专科学校有关保留、使用论文的规定。
特授权长春汽车工业高等专科学校可以将论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。
(保密的论文在解密后适用本授权说明)论文作者签名:刘玉钊导师签名:签字日期:年月日签字日期:年月日中文摘要摘要:随着汽车技术的不断改进,ABS已逐渐成为汽车的标准配件。
在当代,安装ABS的车辆已经相当普遍,经济型车也安装有ABS并且随着对汽车安全性能的要求越来越高,一些更为先进的、保护范围更加广泛的安全装置相继问世了。
随着汽车技术的不断改进,ABS已逐渐成为汽车的标准配件,虽然ABS能大大提高汽车的制动性能,但是不同类型的ABS在制动中发挥的作用却不尽相同,驾驶员如果缺乏对各类ABS性能特点的了解,则可能在车辆紧急制动时得不到预想的制动效果,甚至会发生意外情况。
了解ABS这些技术对汽车制动系统的维修和故障诊断工作都是十分重要的。
本文主要介绍汽车ABS技术发展,ABS 基本结构和工作原理,ABS系统的检修,并对典型ABS系统的车辆也作了简要介绍。
关键词:ABS结构组成;ABS工作原理;故障检测ABSTRACTWith the continuous improvement of technology, ABS has become automobile standard parts.Install abs in the vehicle has been fairly general, there are also install abs car as to the safety requirements are higher, some more sophisticated, more extensive scope ofprotection of safety equipment were made. as a technological upgrading, abs is becoming a standard of the car, although abs can vastly improve the brake performances, but different types of abs in the role of the brake, but not identical If the lack of abs for the performance of understanding, may in the emergency brake is not anticipated the results are even'll be an accident. that abs these technologies is the brake system maintenance and failure diagnosis work is very important. this paper mainly introduces the abstechnological development, abs basic structure and workingmechanism, abs system. the typical abs system of cars made a briefintroduction.Keywords :abs construction works of abs ;;failure to detect目录第一章:绪论1.1:选题背景及研究意义第二章:汽车ABS技术发展2.1::ABS的作用2.2:ABS技术的发展及应用现状2.3:ABS的发展趋势2.4:结论第三章:ABS的结构组成和工作原理3.1:ABS的结构组成3.2:ABS的工作原理3.3:ABS的分类第四章:典型ABS系统的车辆的介绍4.1奔驰YBL6120H型客车ABS基本结构与工作原理4.2一汽捷达轿车ABS结构原理第五章:汽车ABS常见故障及分析5.1:.ABS故障诊断仪器和工具5,2:.故障诊断与排除的一般步骤5.3:常见故障及分析第六章:ABS系统的实例故障分析6.1本田雅阁ABS常见故障分析6.2奇瑞A516 ABS故障警告灯点亮且异常频繁工作的故障分析参考文献致谢第一章绪论1.1选题背景及研究意义ABS”(Anti-lockedBrakingSystem)中文译为“防抱死刹车系统”.它是一种具有防滑、防锁死等优点的汽车安全控制系统。
逻辑门电路知识

数字系统仿真实验
组合逻辑电路仿真
使用仿真软件搭建组合逻辑电路,通过改变输入信号,观察并记录输出信号的变化,验 证组合逻辑电路的功能。
时序逻辑电路仿真
通过仿真软件搭建时序逻辑电路,如触发器、计数器等,输入不同的时钟信号和数据信 号,观察并记录输出信号的变化,验证时序逻辑电路的功能。
数字系统综合仿真
结合组合逻辑电路和时序逻辑电路,搭建完整的数字系统,并进行仿真测试,验证数字 系统的整体功能。
与门电路实验
通过搭建与门电路,输入不同的 逻辑信号,观察并记录输出信号 的变化,验证与门的逻辑功能。
或门电路实验
搭建或门电路,改变输入信号, 观察并记录输出信号的变化,验 证或门的逻辑功能。
非门电路实验
通过搭建非门电路,输入逻辑信 号,观察并记录输出信号的变化 ,验证非门的逻辑功能。
复合逻辑门电路实验
逻辑符号:¬
02
真值表:输入为1时输出为0,输 入为0时输出为1。
逻辑功能:实现逻辑“非”运算 。
03
应用场景:用于信号取反辑门电路
与非门(NAND Gate)
逻辑符号
逻辑功能
与非门的逻辑符号为一个倒置的与门符号 ,即两个输入端连接到一个输出端,并在 输出端添加一个圆圈表示否定。
逻辑功能
或非门实现的是或操作的否定,即当且仅当所有输入都为 0时,输出为1;否则输出为0。
真值表
或非门的真值表表示了不同输入组合下对应的输出值。
应用场景
或非门同样可用于实现各种逻辑功能,如多路选择器、全 加器等。
异或门(XOR Gate)
异或门的逻辑符号为一个特殊的符号,表示两个输入 端连接到一个输出端,实现异或操作。
01
逻辑门电路工作原理

逻辑门电路工作原理
逻辑门电路是数字电子电路中的基本元件,用于进行逻辑运算和控制。
逻辑门电路主要由晶体管和其他电子元件组成,在输入端和输出端之间传输电信号进行逻辑计算。
逻辑门电路根据其功能可以分为与门、或门、非门、与非门、或非门等。
与门的原理是当所有输入端同时为高电平(1)时,输出端才
为高电平;否则输出端为低电平(0)。
或门的原理是当任意一个输入端为高电平时,输出端就为高电平;只有当所有输入端都为低电平时,输出端才为低电平。
与非门的原理是与门的输出端的电平进行取反操作,即当所有输入端同时为高电平时,输出端为低电平;否则输出端为高电平。
或非门的原理是或门的输出端的电平进行取反操作,即当任意一个输入端为高电平时,输出端为低电平;只有当所有输入端都为低电平时,输出端才为低电平。
逻辑门电路通过输入信号的组合来进行逻辑计算,并将计算结果通过输出端输出。
逻辑门电路可以根据需要进行组合和级联,实现更复杂的逻辑功能,如加法器、计数器等。
总之,逻辑门电路通过控制和组合输入信号,实现逻辑计算和控制的功能,是数字电子电路中重要的基本元件。
应用于大学生方程式赛车的ABS系统控制策略

10.16638/ki.1671-7988.2020.20.027应用于大学生方程式赛车的ABS系统控制策略*李建华1,孙世伦1,马英通1,张文奇1,刘轶材1,张飞2(1.吉林大学仿真与控制国家重点实验室,吉林长春130025;2.内蒙第一机械集团股份有限公司,内蒙古自治区包头014032)摘要:ABS/EBD系统是如今极为重要且常见的主动安全装置,但在FSAE赛车上的应用极少。
为了提高FSAE赛车的制动效能和制动稳定性,响应大学生方程式汽车大赛的创新性宗旨,吉林大学吉速电动方程式车队自主设计了适用于FSAE赛车的ABS/EBD系统。
文章基于FSAE赛车设计了ABS系统的控制策略并搭建了控制模型,仿真试验表明所设计的控制策略进行取得了很好的效果,大大缩短了制动距离。
关键词:ABS控制策略;FSAE;逻辑门限值中图分类号:U461.3 文献标识码:A 文章编号:1671-7988(2020)20-83-04ABS Control Strategy Applied to FSAE Racing*Li Jianhua1, Sun Shilun1, Ma Yingtong1, Zhang Wenqi1, Liu Yicai1, Zhang Fei2(1.The State Key Laboratory of Automotive Simulation and Control of Jilin University, Jilin Changchun 130025;2.Inner Mongolia First Machinery Group Co. LTD., Inner Mongolia autonomous region Baotou 014032)Abstract: ABS/EBD system is a very important and common active safety device nowadays, but it is rarely used in FSAE racing. In order to improve the braking efficiency and braking stability of FSAE racing, response to the innovative purpose of FSAE-China, Jilin University Gspeed Electic Formula Racing Team of Jilin University has independently designed the ABS/EBD system suitable for FSAE racing. In this paper, the control strategy of ABS system is designed and the control model is built based on FSAE racing, the simulation results show that the control strategy is effective, greatly shorten the braking distance.Keywords: ABS control logic; FSAE; Logical thresholdCLC NO.: U461.3 Document Code: A Article ID: 1671-7988(2020)20-83-041 引言目前国外ABS相关技术日益成熟,博世公司在2015年发布了第十代ABS产品,现乘用车多使用的也是博世公司研发的第八代ABS产品。
分析门锁开关的控制原理

分析门锁开关的控制原理
门锁开关的控制原理是通过控制电路实现的。
主要分为以下几个步骤:
1. 接通电源:门锁通常使用直流电源供电,当通电时,电流会流经控制电路。
2. 输入信号:控制电路可以接收来自外部的输入信号,比如按键、密码、指纹等。
这些输入信号会触发控制电路进行相应操作。
3. 控制逻辑:控制电路根据输入信号进行逻辑判断,判断某种条件是否满足。
4. 电磁锁控制:当条件满足时,控制电路会输出信号给电磁锁,通过施加或取消电磁场来控制锁的状态。
如果是电磁锁,通常会有一根控制线来控制电磁铁的开闭,当电磁铁通电时,锁的插销会被吸引,门锁将被打开,当电磁铁断电时,插销会被弹回,门锁将被锁住。
5. 安全保护:门锁开关通常还会配备一些安全保护功能,比如反锁、防撬、报警等功能,这些功能可以通过控制电路来实现。
总结起来,门锁开关的控制原理是通过控制电路接收输入信号进行逻辑判断,然后输出控制信号给电磁锁,通过控制电磁场来实现门锁的开闭。
同时还可以实现一些安全保护功能。
汽车ABS控制方式探讨

汽车ABS控制方式探讨摘要:汽车防抱死制动系统(简称ABS:Anti-Lock Brake System)是基于汽车轮胎与路面之间的附着特性开发的高技术制动系统,充分利用轮胎与地面的附着系数,依据ABS的工作原理,本文分析研究了ABS的控制方式,ABS的控制方式包括逻辑门限值控制、滑动模态变结构控制等。
并通过对这些控制方式的研究,提出了自己的改进理论。
关键词:汽车防抱死制动系统控制方式在汽车防抱死制动系统出现之前,汽车所用的都是开环制动系统,极易发生交通事故。
汽车防抱死制动系统(Anti-lock Braking System简称ABS)的出现从根本上解决了汽车在制动过程中的车轮抱死问题。
汽车制动防抱死系统可使汽车在制动时维持方向稳定性和缩短制动距离,有效提高行车的安全性。
1 ABS的控制方式研究所谓控制方式是指将某种逻辑法则转换为计算机程序储存于ECU中,用以对传感器数据进行处理并发出执行指令。
1.1 ABS的控制方式分类ABS的控制方式有逻辑门限值控制、滑模变态结构控制、ABS 耗散功率控制等。
1.2 汽车ABS控制原理ABS的作用是最大限度地利用轮胎与路面的纵向和横向附着系数,从而在制动过程中增强汽车的制动效能和稳定性,防止侧滑和摆尾,同时在紧急制动过程中保持转向能力。
有效利用纵向附着力可以缩短汽车制动距离,同时减轻轮胎的磨损。
1.3 逻辑门限值控制逻辑门限制控制法的基本原理如下。
逻辑门限法的基本原理是选择车轮加速度门限和滑移率门限来控制制动压力的增压、减压或保压,以获得车轮的滑移率控制在最佳滑移率附近。
门限值主要是根据所用车型和路面特性在反复试验的基础上确定的,一般情况下,这样的试验至少要进行高附着系数路面和低附着系数路面两项试验。
1.4 滑模变结构控制滑模变结构控制原理如下。
滑模变结构控制(VSS:Variable—Structure control System with Sliding Mode)是一类特殊的非线性控制方法。
汽车ABS逻辑门限值控制算法仿真研究

摘要汽车防抱死制动系统是在制动时防止车轮抱死的一种机电一体化系统。
逻辑门限值控制方式的特点是不需要建立具体系统的数学模型,并且对系统的非线性控制很有效。
本文依据ABS的工作原理,利用车轮加减角速度门限值及参考滑移率的组合, 构成控制逻辑, 把滑移率调整在峰值附着系数附近波动。
采用Matlab/Simulink 仿真环境, 对不同附着路面下有、无ABS逻辑门限值控制的制动效果进行仿真对比分析,验证了基于逻辑门限值的ABS的控制效果:减小了制动距离和制动时间,增大了制动减速度。
关键词:制动防抱死系统;逻辑门限值控制;仿真;ABSTRACTAutomobile anti-lock braking system is at the time of braking to prevent wheel lock is a mechanical and electrical integration system. Logic threshold control method features no need to establish specific mathematical model of the system, and the system nonlinear control is very effective. On the basis of the working principle of ABS, using wheel and angular velocity threshold value and reference slip ratio combination, constitute the control logic, the slip rate adjustment in friction coefficient near fluctuation. The use of Matlab/Simulink simulation environment, roads of different adhesion coefficients under, no ABS logic threshold control braking effect compared with simulation analysis, verification based on logic threshold value ABS control effects: reduce the braking distance and braking time, increase the braking deceleration.Key word:anti-lock brake system; logic threshold control ; simulation目录第一章绪论 (1)1.1ABS的概念与意义 (1)1.1.1汽车行驶的安全性 (1)1.1.2汽车ABS系统 (2)1.1.3汽车ABS系统的意义 (2)1.2汽车ABS系统的发展 (3)1.2.1国外ABS系统的发展状况 (3)1.2.2国内ABS系统的发展概况 (3)1.2.3ABS防抱死系统的特点 (4)1.3ABS控制理论概论 (5)1.4结论 (7)第二章汽车制动的基本原理 (8)2.1车轮制动时受力分析 (8)2.2地面制动力、制动器制动力与附着力的关系 (9)2.3汽车制动时滑移率与附着系数的关系 (10)2.4汽车制动车轮抱死时的运动状况分析 (12)第三章汽车ABS逻辑门限值法原理与关键技术 (15)3.1逻辑门限值法 (15)3.2单一门限值的控制方法 (15)3.3逻辑门限值法原理 (15)第四章控制逻辑设计与仿真实验 (17)4.1控制逻辑 (17)4.2仿真分析 (18)4.2.1高附着路面仿真 (19)4.2.2低附着路面仿真 (22)结束语 (27)致谢 (28)参考文献 (29)第一章绪论1.1ABS的概念与意义1.1.1汽车行驶的安全性影响汽车行驶安全性的因素有很多,例如:1)汽车状况,如汽车的配备程度、轮胎状况和磨损现象等;2)天气、道路和交通状况,如侧向风、铺装路面状况、交通流量;3)驾驶员素质,即驾驶员的能力和健康状况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
THANK YOU !
• • • • • • • • • • •
• • • • • •
由于制动系统的惯性作用和滞后,角减速度会在重回A;以内范围后继续回 升,逐渐从角减速度变为角加速度;如果在一定时间内角加速度不能回升至A2 则说明路面附着系数较低,需要重设理想附着系数;如果一定时间内角加速度回 升至超过门限值A2,继续保持制动压力会导致两种结果:一是车轮角加速度进 一步上升至超过门限值Ak,则此时需要长期加大制动压力使得轮胎重回角减速 度状态;二是车轮角加速度慢慢回落至A2以下,则又回到了稳定区间。以上两 种情况最终结果都是车轮会回到稳定制动区间,此时开始下一次控制循环。
•
•
•
1.2.基于加减速度逻辑门限值的控制原理
逻辑门限值控制法基于大量道路试验的调试,结构简单,功能稳定可靠。控 制参数设定合理的情况下,控制效果理想,实用性强。但是这种方法缺少理论指 导,控制参数和策略的确定完全依赖于道路试验,属于经验型方法,开发成本高。 典型的逻辑门限值控制循环如图3-1所示。图中v为车速,v},为车轮线速度。 制动开始后,制动压力迅速提升,经过一定时间系统之后,车轮开始减速且减速 度不断增大。车轮角减速度低于减速门限值A1时说明车轮减速过快,出现抱死 倾向,此时ABS系统启动。系统计算实时滑移率并与预设值比较,低于理想预 设值则车辆仍处于稳定制动区间,系统控制制动压力保持不变;若高于理想值则 说明车辆已经进入不稳定制动区间,系统减小制动压力使车轮角减速度回升,直 至角减速度重新回归到门限值A;以内范围后改为保持压力限性
• • • • •
逻辑门限值控制参数的整定缺乏理论指导,完全建立在大量的道路试验之上, 开发成本极高,限制了其技术的发展。而且这种ABS控制器适应范围十分有限, 基本上是针对车型设计,可移植性差,技术壁垒大。 逻辑门限值控制在整个制动过程中只能通过减小门限值的方法保证制动的 稳定畅,但门限值过小有可能导致系统失效,因此逻辑门限法保证制动过程平 稳顺畅方面有着先天劣势,需要与其他方法相结合进行改进。
逻辑门限值控制原理
• 1.1ABS控制策略综述
• 现代应用广泛、成熟的ABS产品都采用了常规的逻辑门限值控制法。这 实施简单,可靠性好,技术成熟。 种方法
•
但是逻辑门限控制法控制参数整定困难,需要巨量的试验数据进行积累和调试, 同时方法本身因为门限值的存在,对于微小变化的控制能力不足,因而整个控制过 程不够平稳。 经过多年发展,逻辑门限值控制方法的潜力已经被挖掘殆尽,要想在现有水平上 再获得提升十分困难。因此,目前国内外对于ABS的研究都基本上围绕着滑移率控 制展开。基于滑移率的控制方法以滑移率为主要指标,运用现代控制理论,通过对 滑移率变化的实时追踪和及时调整来实现防抱死制动。